Επιλογές αναζήτησης
Η ΕΚΤ Ενημέρωση Επεξηγήσεις Έρευνα & Εκδόσεις Στατιστικές Νομισματική πολιτική Το ευρώ Πληρωμές & Αγορές Θέσεις εργασίας
Προτάσεις
Εμφάνιση κατά
Δεν διατίθεται στα ελληνικά.

Drew Creal

19 December 2013
WORKING PAPER SERIES - No. 1626
Details
Abstract
We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be observed at different time frequencies, may have missing observations, and may exhibit common dynamics and cross-sectional dependence due to shared exposure to dynamic latent factors. The distinguishing feature of our model is that the likelihood function is known in closed form and need not be obtained by means of simulation, thus enabling straightforward parameter estimation by standard maximum likelihood. We use the new mixed-measurement framework for the signal extraction and forecasting of macro, credit, and loss given default risk conditions for U.S. Moody
JEL Code
C32 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models, Diffusion Processes
G32 : Financial Economics→Corporate Finance and Governance→Financing Policy, Financial Risk and Risk Management, Capital and Ownership Structure, Value of Firms, Goodwill

Ο δικτυακός μας τόπος χρησιμοποιεί cookies

Χρησιμοποιούμε λειτουργικά cookies για την αποθήκευση των προτιμήσεων των χρηστών και cookies ανάλυσης για τη βελτίωση των επιδόσεων του δικτυακού τόπου· τα cookies τρίτων μερών καθορίζονται από υπηρεσίες τρίτων που είναι ενσωματωμένες στον δικτυακό τόπο. Έχετε την επιλογή να τα αποδεχτείτε ή να τα απορρίψετε. Για περισσότερες πληροφορίες ή για να επανεξετάσετε την προτίμησή σας για τα cookies και τα αρχεία καταγραφής διακομιστή που χρησιμοποιούμε, μπορείτε να κάνετε τα εξής: