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Abstract 
 
“Forecast targeting,” forward-looking monetary policy that uses central-bank judgment to 
construct optimal policy projections of the target variables and the instrument rate, may perform 
substantially better than monetary policy that disregards judgment and follows a given instrument 
rule. This is demonstrated in a few examples for two empirical models of the U.S. economy, one 
forward looking and one backward looking. A practical finite-horizon approximation is used. 
Optimal policy projections corresponding to the optimal policy under commitment in a timeless 
perspective can easily be constructed. The whole projection path of the instrument rate is more 
important than the current instrument setting. The resulting reduced-form reaction function for the 
current instrument rate is a very complex function of all inputs in the monetary-policy decision 
process, including the central bank’s judgment. It cannot be summarized as a simple reaction 
function such as a Taylor rule. Fortunately, it need not be made explicit. 
 
JEL Classification: E42, E52, E58 
 
Keywords: Inflation targeting, optimal monetary policy, forecasts. 
 



 
Non-technical summary 
 
This paper shows that “forecast targeting,” forward-looking monetary policy that uses 
central-bank judgment to construct optimal policy projections of the target variables and 
the instrument rate, may perform substantially better than monetary policy that disregards 
judgment and follows a given instrument rule. This is demonstrated in a few examples for 
two empirical models of the U.S. economy, one forward looking and one backward 
looking. Furthermore, the paper shows that a complicated infinite-horizon central-bank 
projection model of the economy can be closely approximated by a simple finite system 
of linear equations, which is easily solved for the optimal policy projections. The optimal 
policy projections corresponding to the optimal policy under commitment in a timeless 
perspective can then easily be constructed.  
 
The paper emphasizes that the whole projection path of the instrument rate is more 
important than the current instrument setting. The resulting reduced-form reaction 
function for the current instrument rate is a very complicated function of all inputs in the 
monetary-policy decision process, including the central bank's judgment. It cannot be 
summarized as a simple reaction function such as a Taylor rule. Fortunately, the reaction 
function need not be made explicit. The policymakers only need to ponder the graphs of 
the projections of the target variables that are generated in the policy process and choose 
the projections of the target variables and the instrument rate that look best, from the 
point of view of achieving the central bank's objectives. 
 
On a general level, this paper is motivated by a desire to provide a better theory of 
modern monetary policy, both from a descriptive and a normative point of view, than the 
one-line modeling of monetary policy common in some of the current literature, such as 
“monetary policy is assumed to follow a Taylor rule.” The theory of monetary policy 
developed in the paper is arguably better from a descriptive point of view, since it takes 
into account some crucial aspects of monetary-policy decisions, such as the collection, 
processing, and analysis of large amounts of data, the construction of projections of the 
target variables, the use of considerable amounts of judgment, and the desire to achieve 
(mostly) relatively specific objectives. The modern monetary-policy process the paper 
has in mind can be concisely described as “forecast targeting,” meaning “setting the 
instrument rate such that the forecasts of the target variables look good,” where “look 
good” refers to the objectives of monetary policy, such as a given target for inflation and 
a zero target for the output gap. The paper argues that this view of the monetary-policy 
process is also helpful from a normative point of view, for instance, in evaluating the 
performance of and suggesting improvements to existing monetary policy. 
 
On a more specific level, the paper is motivated by a desire to demonstrate the crucial 
and beneficial role of judgment - information, knowledge, and views outside the scope of 
a particular model - in modern monetary policy and, in particular, to demonstrate that the 
appropriate use of good judgment can dramatically improve monetary-policy 
performance, even when compared to policy that is optimal in all respects except for 
incorporating judgment. More precisely, judgment is represented as the central-bank's 
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conditional mean estimate of arbitrary multidimensional stochastic “deviations” – “add 
factors” - to the model equations.  
 
The paper also demonstrates the benefits of regarding the whole projection paths of the 
target variables rather than forecasts at some specific horizon, such as 8 quarters, as the 
relevant objects in the monetary-policy decision process. In particular, the paper argues 
that it is important to emphasize the whole projection of future instrument rates rather 
than just the current instrument rate. Furthermore, the modern view of the transmission 
mechanism of monetary policy emphasizes that monetary-policy actions have effects on 
the economy and the central bank's target variables almost exclusively through the 
private-sector expectations of the future paths of inflation, output, and interest rates that 
these actions give rise to; therefore, monetary policy is really the management of private-
sector expectations. From this follows that effective implementation of monetary policy 
requires the effective communication to the private sector of the central bank's preferred 
projections, including the instrument-rate projection. The most obvious communication 
of these projections is to explicitly announce and motivate them.  
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1. Introduction

On a general level, this paper is motivated by a desire to provide a better theory of modern

monetary policy, both from a descriptive and a normative point of view, than much of the current

literature on monetary policy. The current literature to a large extent applies a one-line modeling

of monetary policy, such as when the instrument rate is assumed to be a given function of a few

variables, for instance, “monetary policy is assumed to follow a Taylor rule.”

I believe that the theory that I develop here is better from a descriptive point of view, since

it takes into account some crucial aspects of monetary-policy decisions, such as the collection,

processing, and analysis of large amounts of data, the construction of projections of the target

variables, the use of considerable amounts of judgment, and the desire to achieve (mostly) relatively

specific objectives. The modern monetary-policy process I have in mind can be concisely described

as “forecast targeting,” meaning “setting the instrument rate such that the forecasts of the target

variables look good,” where “look good” refers to the objectives of monetary policy, such as a given

target for inflation and a zero target for the output gap.1 I believe this view of the monetary-policy

process is also helpful from a normative point of view, for instance, in evaluating the performance

of and suggesting improvements to existing monetary policy.2

On a more specific level, this paper is motivated by a desire to demonstrate the crucial and

beneficial role of judgment–information, knowledge, and views outside the scope of a particular

model–in modern monetary policy and, in particular, to demonstrate that the appropriate use

of good judgment can dramatically improve monetary-policy performance, even when compared

to policy that is optimal in all respects except for incorporating judgment.3 As will be explained

in detail below, judgment will be represented as the central-bank’s conditional mean estimate of

arbitrary multidimensional stochastic “deviations”–“add factors”–to the model equations.4 I also

1 Bernanke [3] discusses and compares forecast targeting (which he refers to as “forecast-based policies”) and
simple instrument rules (which he refers to as “simple feedback policies”). He states that “the Federal Reserve relies
primarily on the forecast-based approach for making policy” and cites Greenspan’s [9] speech, entitled “Risk and
Uncertainty in Monetary Policy,” as evidence. He also notes “that not only have most central banks chosen to rely
most heavily on forecast-based policies but also that the results, at least in recent years, have generally been quite
good, as most economies have enjoyed low inflation and overall economic stability.”

2 See Svensson [22] and Svensson, Houg, Solheim, and Steigum [28] for examples of evaluations of monetary policy
in New Zealand and Norway, respectively, with this perspective.

3 Svensson [25] also emphasizes the role of judgment in monetary policy but does not provide any direct comparision
of the performance of monetary policy with and without judgment.

4 Svensson and Tetlow [31] show how central-bank judgment can be extracted according to the method of Optimal
Policy Projections (OPP). This is a method to provide advice on optimal monetary policy while taking policymakers’
judgment into account. An early version of the method was developed by Robert Tetlow for a mostly backward-
looking variant of the Federal Reserve Board’s FRB/US model. The resulting projections have been referred to
at the Federal Reserve Board as “policymaker perfect-foresight projections”–somewhat misleadingly. The paper
demonstrates the usefulness of OPP with a few example projections for two Greenbook forecasts and the FRB/US
model.
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wish to demonstrate the benefits of regarding the whole projection paths of the target variables

rather than forecasts at some specific horizon, such as 8 quarters, as the relevant objects in the

monetary-policy decision process. In particular, I believe that it is important to emphasize the whole

projection of future instrument rates rather than just the current instrument rate. Furthermore, the

modern view of the transmission mechanism of monetary policy emphasizes that monetary-policy

actions have effects on the economy and the central bank’s target variables almost exclusively

through the private-sector expectations of the future paths of inflation, output, and interest rates

that these actions give rise to; therefore, monetary policy is really the management of private-sector

expectations (Woodford [35]). From this follows that effective implementation of monetary policy

requires the effective communication to the private sector of the central bank’s preferred projections,

including the instrument-rate projection. The most obvious communication of these projections

is to explicitly announce and motivate them. Finally, I want to demonstrate the benefits of the

approximation of an inherently rather complex infinite-horizon central-bank projection models of

the economy to much simpler finite-horizon projection models that are much easier to use but still

arbitrarily close approximations to the infinite-horizon models.

The decision process of modern monetary policy has several distinct characteristics (see Brash [4],

Sims [19], and Svensson [22]):

1. Large amounts of data about the state of the economy and the rest of the world, including

private-sector expectations and plans, are collected, processed, and analyzed before each

major decision.

2. Because of lags in the transmission process, monetary-policy actions affect the economy with a

lag. For this reason alone, good monetary policy must be forward-looking, aim to influence the

future state of the economy, and therefore rely on forecasts–projections. Central-bank staff

and policymakers make projections of the future development of a number exogenous vari-

ables, such as foreign developments, import supply, export demand, fiscal policy, productivity

growth, and so forth. They also construct projections of a number of endogenous variables,

quantities and prices, under alternative assumptions, including alternative assumptions about

the future path of instrument rates. The policymakers are presented with projections of the

most important variables, including target variables such as inflation and output, often under

alternative assumptions about exogenous variables and, in particular, the instrument rate

(such as the instrument rate being constant, following market expectations, following some

arbitrary reaction function, or being optimal relative to a specific objective function).

8
ECB
Working Paper Series No. 476
April 2005



3. Throughout this process, a considerable amount of judgment is applied to assumptions and

projections. Projections and monetary-policy decisions cannot rely on models and simple

observable data alone. All models are drastic simplifications of the economy, and data give a

very imperfect view of the state of the economy. Therefore, judgmental adjustments in both

the use of models and the interpretation of their results–adjustments due to information,

knowledge, and views outside the scope of any particular model–are a necessary and essential

component in modern monetary policy.

4. Based on this large amount of information and analysis, the policymakers decide on a current

instrument rate, such that the corresponding projections of the target variables look good

relative to the central bank’s objectives. Since the projections of the target variables depend

insignificantly on the current instrument-rate setting and mainly on the whole path of future

instrument rates, the policymakers, explicitly or implicitly, actually choose an instrument-

rate projection–an instrument-rate plan–and the current instrument-rate decision can be

seen as the first element of that plan.

5. Finally, the current instrument rate is announced and implemented. In many cases, the

corresponding projections for inflation and output or the output gap are also announced. In

a few cases, an instrument-rate projection is announced as well.5

This process makes the current instrument-rate decision a very complex function of the large

amounts of data and judgment that have entered into the process. I believe that it is not very helpful

to summarize this function as a simple reaction function such as a Taylor rule. Furthermore, the

resulting complex reaction function is a reduced form, which depends on the central-bank objectives,

its view of the transmission mechanism of monetary policy, the data the central bank has collected,

and the judgment it has exercised. It is the endogenous complex result of a complex process. In

no way is this reaction function structural, in the sense of being invariant to the central bank’s

view of the transmission mechanism and private-sector behavior, or the amount of information and

judgmental adjustments. Still, much current literature treats monetary policy as characterized by

a given reaction function that is essentially structural and invariant to changes in the model of the

economy. Treating the reaction function as a reduced form is a first step in a sensible theory of

5 The Reserve Bank of New Zealand has published an instrument-rate projection for many years. The Bank of
Norway is increasingly providing more information about the future path of the instrument rate.
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monetary policy. But, fortunately, this complex reduced-form reaction function need not be made

explicit. It is actually not needed in the modern monetary-policy process.

However, there is a convenient, more structural representation of monetary policy, namely in

the form of a targeting rule, as advocated recently in some detail in Svensson and Woodford [30]

and Svensson [25] and earlier more generally in Svensson [21]. An optimal targeting rule is a first-

order condition for optimal monetary policy. It corresponds to the standard efficiency condition

of equality between the marginal rates of substitution and the marginal rates of transformation

between the target variables, the former given by the monetary-policy loss function, the latter

given by the transmission mechanism of monetary policy. An optimal targeting rule is invariant to

everything else in the model, including additive judgment and the stochastic properties of additive

shocks. Thus, it is a compact, robust, and structural representation of monetary policy, and

much more robust than the optimal reaction function. A simple targeting rule can potentially

be a practical representation of robust monetary policy, a robust monetary policy that performs

reasonably well under different circumstances.6

Optimal targeting rules remain a practical way of representing optimal monetary policy in the

small models usually applied for academic monetary-policy analysis. However, for the larger and

higher-dimensional operational macromodels used by many central banks in constructing projec-

tions, the optimal targeting rule becomes more complex and arguably less practical as a representa-

tion of optimal monetary policy. In this paper, it is demonstrated that optimal policy projections,

the projections corresponding to optimal policy under commitment in a timeless perspective, can

easily be derived directly with simple numerical methods, without reference to any optimal target-

ing rule.7 For practical optimal monetary policy, policymakers actually need not know the optimal

targeting rule. Even less do they need to know any reaction function. They only need to ponder

the graphs of the projections of the target variables that are generated in the policy process and

choose the projections of the target variables and the instrument rate that look best relative to the

central bank’s objectives.

The paper is organized in the following way. Section 2 lays out a reasonably general infinite-

horizon model of the transmission mechanism and the central bank’s objectives; defines projections,

judgment and optimal policy projections; and specifies how the optimal policy can be implemented

6 McCallum and Nelson [15] have recently criticized the advocacy of targeting rules in Svensson [25]. Svensson [26]
rebuts this criticism and gives references to a rapidly growing literature that applies targeting rules to monetary-policy
analysis. Walsh [34] shows a case of equivalence between targeting rules and robust control.

7 Nevertheless, a general form of an optimal targeting rule is derived in appendix F, for the finite-horizon approx-
imation of the projection model.
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and what information the private sector needs from the central bank. The section also presents a

simple model of judgment, when the deviation is a version of a finite-order moving average. Then

judgment can be seen as the accumulation of information over time and allows for a recursive

but high-dimensional representation of the dynamics of the deviation and judgment. Finally, the

section represents the optimal policy projections as the solution to a somewhat complex system of

difference equations, while taking judgment into account. It also makes the point that, fortunately,

the complex reduced-form reaction function need not be made explicit. Section 3 presents a conve-

nient finite-horizon model for the construction of optimal policy projections, for both forward- and

backward-looking models. This finite-horizon model can be written as a simple finite system of lin-

ear equations. Nevertheless, it is an exact or arbitrarily close approximation to the infinite-horizon

model and is easily solved for the optimal policy projections taking judgment into account. Section

4 discusses and specifies monetary policy that disregards judgment and follows different instrument

rules, such as variants of the Taylor rule or more complex instrument rules that are optimal in the

absence of judgment. Section 5 gives examples of and compares monetary policy with and without

judgment, for two different empirical models of the U.S. economy: the backward-looking model

of Rudebusch and Svensson [18] and the forward-looking New Keynesian model of Lindé [13]. In

these examples, monetary policy with judgment results in substantially better performance than

monetary policy without judgment. This is also the case when monetary policy without judgment is

represented as a Taylor rule where the instrument rate responds to forward-looking variables that

incorporate private-sector judgment (although, as emphasized below, there are serious principal

and practical problems in implementing such an instrument rule). Section 6 presents conclusions.

A separate and extensive appendix contains numerous technical details.8 These include a general

solution of the policy problem and the related system of difference equations with forward-looking

variables when the deviation is an arbitrary stochastic process; a specification of the model when

the deviation and judgment are finite-order moving-average processes and the application of the

practical method of Marcet and Marimon [14] to that case; the precise mathematical structure of

the finite-horizon approximation model, including the optimal targeting rule; and details on the

empirical backward- and forward-looking models.

8 The appendix is available at www.princeton.edu/∼svensson.
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2. A model of the policy problem with judgment

Consider the following linear model of an economy with a private sector and a central bank,9 in a

form that allows for both predetermined and forward-looking variables as well as judgment,∙
Xt+1

Cxt+1|t

¸
= A

∙
Xt

xt

¸
+Bit +

∙
zt+1
0

¸
. (2.1)

Here, Xt is a (column) nX-vector of predetermined variables (one of these may be unity to con-

veniently incorporate constants in the model) in period t; xt is an nx-vector of forward-looking

variables; it is an ni-vector of central-bank instruments (the forward-looking variables and the

instruments are the nonpredetermined variables); zt is an exogenous nX-vector stochastic process

and called the deviation in period t; and A, B, and C are matrices of the appropriate dimension.

For any variable qt, I let qt+τ |t denote private-sector expectations of the realization in period t+ τ

of qt+τ conditional on private-sector information available in period t. I assume that the private

sector has rational expectations, given its information.

For increased generality, the model is formulated in terms of an arbitrary number of instruments,

ni. In most practical applications, monetary policy can be seen as having only one instrument–a

short interest rate, the instrument rate–so then ni = 1.

The upper block of (2.1) provides nX equations determining the nX-vector Xt+1 in period t+1

for given Xt, xt, it and zt+1,

Xt+1 = A11Xt +A12xt +B1it + zt+1, (2.2)

where A and B are partitioned conformably with Xt and xt as

A ≡
∙
A11 A12
A21 A22

¸
, B ≡

∙
B1
B2

¸
. (2.3)

The realization of the deviation and the predetermined variables in each period occurs and is

observed by the private sector and the central bank in the beginning of the period (the realization

of zt+1 can be inferred from Xt+1, Xt, xt and it and (2.2)).10

The lower block of (2.1) provides nx equations determining the nx-vector xt in period t for given

xt+1|t, Xt, and it,

xt = A−122 (Cxt+1|t −A21Xt −B2it); (2.4)

9 For simplicitly, there is no explicit fiscal authority in the model, but such an authority and its behavior can be
included in the model (2.1).
10 See Svensson and Woodford [29] for an analysis of optimal policy in a model with forward-looking variables

when the current state of the economy is imperfectly observed and inferred from observed indicators.
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I hence assume that the nx × nx submatrix A22 is invertible. The realization of Xt is observed by

the private sector and the central bank in the beginning of period t; the central bank then sets the

instruments, it; after observing the instruments, the private sector forms its expectations, xt+1|t;

and this finally determines the forward-looking variables xt.

To assume that the deviation appears only in the upper block of (2.1) is not restrictive. Suppose

that I have a model where the deviation appears in both blocks,∙
Xo
t+1

Cxt+1|t

¸
=

∙
Ao11 Ao12
Ao21 Ao22

¸ ∙
Xo
t

xt

¸
+

∙
Bo1
Bo2

¸
it +

∙
zo1,t+1
zo2,t

¸
,

By adding the vector zot to the predetermined variables, I can always form a new model of the form

(2.1), where

Xt ≡
∙
Xo
t

zo2t

¸
, A ≡

⎡⎣ Ao11 0 Ao12
0 0 0
Ao21 0 Ao22

⎤⎦ , B ≡

⎡⎣ Bo1
0
Bo2

⎤⎦ , zt ≡
∙
zo1t
zo2

¸
,

and there is no deviation in the lower block.

As in Svensson [25], the deviation represents additional determinants–determinants outside

the model–of the variables in the economy, the difference between the actual value of a variable

and the value predicted by the model. It can be interpreted as model perturbations, as in the

literature on robust control.11 The central bank’s mean estimate of future deviations will be

identified with the central bank’s judgment. It represents the unavoidable judgment always applied

in modern monetary policy. Any existing model is always an approximation of the true model

of the economy, and monetary-policy makers always find it necessary to make some judgmental

adjustments to the results of any given model. Such judgmental adjustments could refer to future

fiscal policy, productivity, consumption, investment, international trade, foreign-exchange and other

risk premia, raw-material prices, private-sector expectations, and so forth. The “add factors”

applied to model equations in central-bank projections (Reifschneider, Stockton, and Wilcox [17])

are an example of central-bank judgment. Given this interpretation of judgment and the deviation

zt+1, it would be completely misleading to make a simplifying assumption such as the deviation

being a simple autoregressive process. In that case, it could just be incorporated among the

predetermined variables. Thus, I will refrain from such an assumption and instead leave the dynamic

properties of zt+1 unspecified, except in a special case when the deviation is a version of a finite-

order moving-average process. Generally, the focus will be on the central bank’s judgment of the

whole sequence of future deviations.
11 See, for instance, Hansen and Sargent [10]. However, that literature deals with the more complex case when the

model perturbations are endogenous and chosen by nature to correspond to a worst-case scenario.
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More precisely, let the infinite-dimensional period-t random vector ζt ≡ (z0t+1, z0t+2, ...)0 (where 0

denotes the transpose) denote the vector of the (in period t) unknown random vectors zt+1, zt+2,...

Let the central bank’s beliefs in period t about the random vector ζt be represented by the infinite-

dimensional probability distribution Φt with distribution function Φt(ζt). The probability distri-

bution Φt may itself be time-varying and stochastic. The central bank is assumed to know the

matrices A, B, C, D, and W and the discount factor δ (D, W , and δ refer to the central bank’s

objectives and are defined below). The private sector is assumed to know the matrices A, B, and

C, but may or may not know the central bank’s objectives (that is, D, W , and δ). The private

sector may or may not have the same beliefs about the future deviations as the central bank.

Let Yt be an nY -vector of target variables. For simplicity, these target variables are measured

as the difference from a fixed nY -vector Y ∗ of target levels. This vector of target levels is held fixed

throughout this paper. In order to examine the consequences of shifting target levels, one only

needs to replace Y t by Y t − Y ∗ throughout the paper. Let the target variables be given by

Yt = D

⎡⎣ Xt

xt
it

⎤⎦ , (2.5)

where D is an nY × (nX + nx + ni) matrix.

Let the central bank’s intertemporal loss function in period t be

Et

∞X
τ=0

δτLt+τ ≡
Z ∞X

τ=0

δτLt+τdΦt(ζ
t), (2.6)

where 0 < δ ≤ 1 is a discount factor, Lt is the period loss given by

Lt =
1

2
Y 0tWYt, (2.7)

and W is a symmetric positive semidefinite nY × nY matrix. That is, in period t the central bank

wants to minimize the expected discounted sum of current and future losses, where the expectation

Et is with respect to the distribution Φt.

Since this is a linear model with a quadratic loss function and the random deviations enter addi-

tively, the conditions for certainty equivalence are satisfied. Then, as shown in detail in appendix A,

the optimal policy in period t need only consider central-bank mean forecasts–projections–of all

variables, including the infinite-dimensional mean forecast, zt, of the random vector ζt,

zt ≡ Etζt ≡
Z

ζtdΦt(ζ
t).
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The central-bank projection in period t of the realization of the deviation in period t+ τ , zt+τ , is

denoted zt+τ,t, so zt ≡ (z0t+1,t, z0t+2,t, ...)0. The projection zt is identified with the central bank’s

judgment. Under the assumed certainty equivalence, the projection zt is, for optimal policy, a

sufficient statistic for the distribution Φt. Although there is genuine uncertainty about the future

random deviations, ζt, the only thing that matters for policy is the mean, the judgment, zt. The

second and higher moments of ζt–the variance, skew, kurtosis, and so forth–do not matter for

policy.12 The judgment can itself be seen as an exogenous infinite-dimensional random vector that

is realized in the beginning of each period and summarizes the central bank’s relevant information

in that period about expected future deviations.

Let qt ≡ (q0t,t, q0t+1,t, ...)0 denote a central-bank projection in period t for any vector of variables

qt+τ (τ ≥ 0) (with the exception of εt and εt+τ,t, to be introduced below), a central-bank mean

forecast conditional on central-bank information in period t. (Thus, for variables other than the

deviation, the projection also includes also the current value, qt,t = qt.) The central bank then

constructs various projections of the endogenous variables to be used in its decision process. These

projections of endogenous variables may be conditional on various assumptions. In order to keep

private-sector expectations and central-bank projections conceptually distinct, I denote the former

by qt+τ |t and the latter by qt+τ,t for any variable qt.

For given judgment, zt, the projection model of the central bank for the projections (Xt, xt,

it, Y t) in period t–the model the central bank uses in the decision process to consider alternative

projections–will be ∙
Xt+τ+1,t

Cxt+τ+1,t

¸
= A

∙
Xt+τ,t

xt+τ,t

¸
+Bit+τ,t +

∙
zt+τ+1,t
0

¸
, (2.8)

Yt+τ,t = D

⎡⎣ Xt+τ,t

xt+τ,t
it+τ,t

⎤⎦ (2.9)

for τ ≥ 0, where Xt,t satisfies

Xt,t = Xt, (2.10)

since the realization of the predetermined variables is assumed to be observed in the beginning of

period t.

In order to introduce more compact notation, let the (nX+nx+ni)-vector st ≡ (X 0
t, x

0
t, i

0
t)
0 denote

the state of the economy in period t, and let the vector st+τ,t ≡ (X 0
t+τ,t, x

0
t+τ,t, i

0
t+τ,t)

0 denote the

12 The variance of the future deviations will add a term to the intertemporal loss, but that term is independent of
policy.
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projection in period t of the state of the economy in period t+τ . Finally, let the infinite-dimensional

vector st ≡ (s0t,t, s0t+1,t, st+2,t, ...)0 denote a projection in period t of the (current and future) states

of the economy. By (2.9), I can write the projection of the target variables in a compact way, as a

linear function of the projection of the states of the economy, as

Y t = D̃st, (2.11)

where D̃ is an infinite-dimensional block-diagonal matrix with the τ +1-th diagonal block equal to

D for τ ≥ 0.

The set of feasible projections of the states of the economy in period t, St, can now be defined

as the set of projections st that satisfy (2.8)-(2.10) for given Xt and zt.

The intertemporal loss function (2.6) with (2.7) induces an intertemporal loss function for the

target-variable projection,13

L(Y t) ≡
∞X
τ=0

δτY 0t+τ,tWYt+τ,t, (2.12)

The policy problem in period t is to find the optimal policy projection (ŝt, Ŷ t), the projection

that minimizes (2.12) over the set of feasible projections of the states of the economy, that is,

subject to (2.8)-(2.11) for τ ≥ 0 for given Xt and zt. More compactly,

ŝt = arg min
st∈St

L(D̃st), (2.13)

Ŷ t ≡ D̃ŝ; and the optimal policy projection (X̂t, x̂t, ı̂t) of the predetermined variables, forward-

looking variables, and instruments can be extracted from ŝt.

The policy problem will be further specified below to correspond to commitment in a “timeless

perspective,” in order to avoid any time-consistency problems (see Woodford [36] and Svensson and

Woodford [30]).

2.1. Implementation and what information the private sector needs

The implementation of the optimal policy in period t involves announcing the optimal policy

projection and setting the instruments in period t equal to the first element of the instrument

projection,

it = ı̂t,t.
13 Note that minEt

∞
τ=0 δ

τLt+τ = min{L(Y t) + Et
∞
τ=0 δ

τ (Yt+τ − Yt+τ,t)
0W (Yt+τ − Yt+τ,t)} = min{L(Y t) +

∞
τ=0 δ

τ trace(WCovtYt+τ )}. By certainty equivalence, CovtYt+τ ≡ Et(Yt+τ − Yt+τ,t)(Yt+τ − Yt+τ,t)
0 ≡ (Yt+τ −

Yt+τ,t)(Yt+τ − Yt+τ,t)
0dΦt(ζ

t) is independent of policy, so minimizing (2.12) in period t implies the same policy as
minimizing (2.6) in period t.
Furthermore, note that, since trace(WCovtYt+τ ) will normally be strictly positive, (2.6) will normally converge

only for δ < 1, whereas (2.12) will normally converge also for δ = 1.
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In period t + 1, conditional on new realizations of the predetermined variables, Xt+1, and the

judgment, zt+1, a new optimal policy projection, (X̂t+1, x̂t+1, ı̂t+1, Ŷ t+1), is found and announced

together with a new instrument setting,

it+1 = ı̂t+1,t+1.

In a forward-looking model, the private sector (including policymakers other than the central

bank) will need to know at least parts of the aggregate projections X̂t, x̂t, and ı̂t, in order to make

decisions consistent with these and make the rational-expectations equilibrium in the economy

correspond to the central bank’s optimal policy projection. If the private sector knows the matrices

A, B, C, D, and W and the discount factor δ and has the same judgment zt as the central bank,

it can in principle compute the optimal policy projection itself–assuming that it has the same

computational capacity as the central bank.

However, the private sector actually needs to know less. An assumption maintained through

this paper is that the private sector knows the model (2.1), in the sense of knowing the matrices

A, B, and C. Furthermore, it observes Xt (determined by Xt−1, xt−1, and it−1 in period t− 1 and

the realization of zt in the beginning of period t according to (2.2)) in the beginning period t, then

observes it = ı̂t,t set by the central bank, thereafter forms one-period-ahead expectations xt+1|t, and

finally determines (and thereby knows) xt; after this, period t ends. In order to make decisions in

period t consistent with the optimal policy projection–that is, decisions resulting in xt = x̂t,t from

(2.4)–the private sector needs be able to form expectations xt+1|t = x̂t+1,t. The most direct way is if

the central bank announces x̂t+1,t and the private sector believes the announcement. Formally, x̂t+1,t

is the minimum additional information the private sector needs. However, the central bank may

have to provide the whole optimal policy projection, and also motivate the underlying judgment,

in order to demonstrate the optimal policy projections are internally consistent with the model

(2.1). In particular, the private sector may not believe x̂t+1,t unless it is apparently consistent with

the whole projection ı̂t. Furthermore, the private sector will need to know the central bank’s loss

function–D, W , and δ–in order to judge whether the projections announced are really optimal

relative to the central bank’s loss function and thereby incentive-compatible, credible. Only then

may the central bank be able to convince the private sector to form expectations according to

the optimal policy projection.14 Indeed, the private sector completely trusting the central bank’s
14 Being explicit about the loss function and announcing the optimal policy projection also seem to take care of

the criticism of real-world inflation targeting expressed by Faust and Henderson [6].
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problem discussed below.15 16

2.2. Judgment as a finite-order moving average

Consider the special case when the deviation is a version of a moving-average stochastic process

with a given finite order T > 0 (where T could be relatively large),

zt+1 = εt+1 +
TX
j=1

εt+1,t+1−j , (2.14)

where ε̃t ≡ (ε0t, εt 0)0 ≡ (ε0t, ε0t+1,t, ..., ε0t+T,t)0 is a zero-mean iid random (T + 1)nX-vector realized in

the beginning of period t and called the innovation in period t.17 For T = 0, zt+1 is a simple iid

disturbance. For T > 0, the deviation is a version of a moving-average process.

It follows that the central-bank judgment zt+τ,t (τ ≥ 1) is also a finite-order moving average

and satisfies

zt+τ,t ≡ Etzt+τ =
TX
j=τ

εt+τ,t+τ−j = εt+τ,t +
TX

j=τ+1

εt+τ,t+τ−j = εt+τ,t + zt+τ,t−1.

Hence, εt+τ,t = zt+τ,t − zt+τ,t−1 can be interpreted as the innovation in period t to the previous

judgment zt+τ,t−1, the new information the central bank receives in period t about the realization

of zt+τ in period t+ τ . Hence, the judgment zt+τ,t in period t is the sum of current and previous

information about zt+τ . For horizons larger than T , the central-bank judgment is constant and,

without loss of generality, equal to zero,

zt+τ,t = 0 (τ > T ). (2.15)

The dynamics of the deviation zt and the judgment zt+1 can then be written as∙
zt+1
zt+1

¸
= Az

∙
zt
zt

¸
+

∙
εt
εt+1

¸
, (2.16)

where the (T + 1)nX × (T + 1)nX matrix Az is defined as

Az ≡

⎡⎣ 0nX×nX InX 0nX×(T−1)nX
0(T−1)nX×nX 0(T−1)nX×nX I(T−1)nX
0nX×nX 0nX×nX 0nX×(T−1)nX

⎤⎦ ,
15 See Geraats [7] for such examples.
16 In a much noted contribution, Morris and Shin [16] and Amato, Morris, and Shin [1] have emphasized the pos-

sibility that public information may be bad and reduce social welfare by crowding out private information. Svensson
[27] scrutinizes this results and shows that, in the model considered by Morris and Shin, public information actually
increases social welfare for reasonable parameters.
17 Note that εt ≡ (ε0t+1,t, ε0t+2,t, ..., ε0t+T,t)0 here denotes a random vector realized in the beginning of period t and

not the projection in period t of the random variables εt+1, εt+2, ...,εt+T . That projection is always zero under the
above assumption of εt being a zero-mean iid random variable.

isolated announcement of x̂t+1,t could invite misleading announcements, given the time-consistency
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where 0m×n and Im denote anm×n zero matrix and an n×n identity matrix, respectively. Thus, the

dynamics of the deviation and the judgment has a convenient linear and recursive representation.

The modeling of the dynamics of the deviation, zt, and the additive judgment, zt, in (2.16)

allows for a relatively flexible accumulation of information about future deviations. Whereas the

stochastic process for the deviation is not a simple Markov process in terms of itself but a finite-order

moving-average process, it can be written as a higher-dimensional AR(1) process. The restriction

imposed is that the innovation is zero-mean and iid across periods. There is no restriction of

the variance and covariance of the elements of ε̃t within the period. It follows that, for instance,

εt+τ,t may have a variance that is decreasing in τ , corresponding to a situation where there is less

information about the mean projection of deviations further into the future; by assumption, there

is no specific information about the deviation for τ > T . For given t, there may be serial correlation

of εt+τ,t across τ , corresponding to new information about serially correlated future deviations.

2.3. Representing optimal policy projections

Without the judgment terms (or, alternatively, with the deviation being an iid zero-mean process

or an autoregressive process with iid shocks), the above infinite-horizon linear-quadratic problem

with forward-looking variables is a well-known problem, examined and solved in Backus and Driffill

[2], Currie and Levine [5], and Söderlind [20]. The traditional way to find a solution to this problem

is to derive the first-order conditions for an optimum and combine the first-order conditions with

the model (2.1) to form a system of difference equations with an infinite horizon. The solution

can then also be expressed as a difference equation. Furthermore, Marcet and Marimon [14] have

shown a new practial way of reformulating the problem with forward-looking variables as a recursive

saddlepoint problem (see appendix D).

A new element here is the solution with the judgment. For the case when the deviation is a finite-

order moving average, the dynamics of the deviation and the judgment, (2.16), can be incorporated

with (2.1), the vector of predetermined variables can be expanded to include zt, and the standard

solution can be applied directly.18 The details for this case are provided in appendices C and D.

When the judgment is a realization of an infinite-dimensional random vector, the standard solution

has to be modified to take that into account. The details of that solution in the form of a difference

equation are explained in appendices A and B. Here I shall first report the solution in the form of

an infinite-horizon difference equation and later develop a very convenient finite-horizon version of

18 Since zt is incorporated in Xt, one does not need to add zt as a separate predetermined variable.

the model.
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Under the assumption of optimization under commitment, one way to describe the optimal

policy projection is by the following difference equations,

∙
x̂t+τ,t
ı̂t+τ,t

¸
= F

⎡⎣ X̂t+τ,t

zt+τ,t

Ξt+τ−1,t

⎤⎦ , (2.17)

∙
X̂t+τ+1,t

Ξt+τ,t

¸
= M

⎡⎣ X̂t+τ,t

zt+τ,t

Ξt+τ−1,t

⎤⎦ , (2.18)

for τ ≥ 0, where X̂t,t = Xt. When the deviation is a finite-order moving average and the judgment is

finite-dimensional, zt+τ,t denotes the TnX-vector (z0t+τ+1,t, z
0
t+τ+2,t, ..., z

0
t+τ+T,t)

0, where zt+τ+j,t = 0

for j + τ > T . When the judgment is infinite-dimensional, zt+τ,t denotes the infinite-dimensional

vector (z0t+τ+1,t, z
0
t+τ+2,t, ...)

0. In the former case, F and M are finite-dimensional matrices. In

the latter case, F and M include a linear operator R on zt+τ,t (an infinite-dimensional matrix) of

the form
P∞

j=0Rjzt+1+τ+j,t, where {Rj}∞j=0 is a sequence of matrices. The matrices F , M , and

{Rj}∞j=0 depend on A, B, C, D, W , and δ, but they are independent of the second and higher

moments of the deviation. The nX-vector Ξt+τ,t consists of the Lagrange multipliers of the lower

block of (2.8), the block determining the projection of the forward-looking variables.

As discussed in appendix A, the value of the initial Lagrange multiplier, Ξt−1,t, is zero, if there is

commitment from scratch in period t, that is, disregarding any previous commitments. This reflects

a time-consistency problem when there is reoptimization and recommitment in later periods, as

is inherently the case in practical monetary policy. Instead, I assume that the optimization is

under commitment in a timeless perspective. Then, if the optimization, and reoptimization, under

commitment in a timeless perspective started in an earlier period and has occurred since then, the

initial value of the Lagrange multiplier satisfies

Ξt−1,t = Ξt−1,t−1, (2.19)

where Ξt−1,t−1 denotes the Lagrange multiplier of the lower block of (2.8) for the determination of

xt−1,t−1 in the decision problem in period t− 1. The dependence of the optimal policy projection

in period t on this Lagrange multiplier from the decision problem in the previous period makes the

optimal policy projection depend on previous projections and illustrates the history dependence of

optimal policy under commitment in a forward-looking model shown in Backus and Driffill [2] and

Currie and Levin [5] and especially examined and emphasized in Woodford [36].
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It follows from (2.17)-(2.19) and (2.11) that the optimal policy projection of the states of the

economy, the target variables, and the instruments will be linear functions of Xt, zt, and Ξt−1,t−1,

which can be written in a compact way as

ŝt = H

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , Ŷ t = D̃H

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , ı̂t = Hi

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , (2.20)

where H is an appropriately formed infinite-dimensional matrix, and Hi is an infinite-dimensional

submatrix of H consisting of the rows corresponding to the instruments. In particular, the instru-

ment setting in period t will be given by

it = ı̂t,t = h

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , (2.21)

where the finite- or infinite-dimensional matrix h consists of the ni first rows of the matrix Hi.

As explained in Svensson and Woodford [30], a simple way of imposing the timeless perspective

is to add a term to the intertemporal loss function (2.12),

L(Y t) + Ξt−1,t−1
1

δ
Cxt,t. (2.22)

In the policy problem in period t− 1, Ξt−1,t−1C can be interpreted as the marginal loss in period

t − 1 of a change in the one-period-ahead projection of the forward-looking variables, xt,t−1. The

time-consistency problem arises from disregarding that marginal loss in the policy problem in

period t. Adding the corresponding term to the loss function in period t as in (2.22) handles the

time-consistency problem, and the optimal policy under commitment in the timeless perspective

will result from minimizing (2.22) subject to (2.8)-(2.10) for given Xt, zt, and Ξt−1,t−1.19 Since xt,t

is an element of the projection st, the optimal policy projection ŝt is then defined as

ŝt = arg min
st∈St

{L(D̃st) + Ξt−1,t−1
1

δ
Cxt,t}, (2.23)

for given Xt, zt, and Ξt−1,t−1.

From (2.18) follows that the Lagrange multiplier Ξt,t, to be used in the decision problem in

period t+ 1, will be given by

Ξt,t = HΞ

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , (2.24)

19 Alternatively, as discussed in Giannoni and Woodford [8] and Svensson and Woodford [30], one can impose the
constraint

xt,t = Fx
Xt

zt

Ξt−1,t−1
,

where F in (2.17) is suitably partitioned. In the present context, it is more practical to add the term to the
intertemporal loss function as in (2.22).
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where HΞ is a finite- or infinite-dimensional matrix.

Let the set of feasible target-variable projections in period t, Yt, be defined as the set of target-

variable projections satisfying (2.11) for projections st in the set St for given Xt and zt. In the

special case where the forward-looking variables, xt, happen to be target variables and elements

in Yt, so xt,t is an element of Y t, the optimal target-variable projection, Ŷ t, can be defined as the

target-variable projection Y t that minimizes (2.22) on the set Yt, for given Xt, zt, and Ξt−1,t−1,

Ŷ t = arg min
Y t∈Yt

{L(Y t) + Ξt−1,t−1
1

δ
Cxt,t}.

However, in the more general case when some or all forward-looking variables are not target vari-

ables, xt,t is not an element of Y t, and the optimal policy projection has to be found by optimization

over the set St, as in (2.23).

2.4. Backward-looking model

In a backward-looking model, there are no forward-looking variables: nx = 0. There is no lower

block in (2.1) and (2.8), and there are no forward-looking variables in (2.5) and (2.9). There are

no projections of forward-looking variables and Lagrange multipliers in (2.17), (2.18), (2.20), and

(2.21). There is no time consistency problem and no need to consider commitment in a timeless

perspective.

Hence, for a backward-looking model, the optimal target-variable projection can always be

found by minimizing (2.12) over the set of feasible target-variable projections,

Ŷ t = arg min
Y t∈Yt

L(Y t),

for given Xt and zt.

2.5. The complex reduced-form reaction function need not be made explicit

The compact notation for the determination of the period-t instrument it in (2.21) and the Lagrange

multiplier Ξt,t in (2.24) may have given the impression that optimal monetary policy is just a

matter of calculating the finite- or infinite-dimensional matrices h and HΞ once and for all; then, in

each period, first observe Xt, form zt, and recall Ξt−1,t−1 from last period’s decision; then simply

compute, announce, and implement it from (2.21); and finally compute Ξt,t to be used in next

period’s decision.
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This is a misleading impression, though. First, h andHΞ are indeed high- or infinite-dimensional

and therefore difficult to grasp and interpret. Second, zt is also high- or infinite-dimensional.

It is difficult to conceive of policymakers or even staff pondering pages and pages, or computer

screens and computer screens, of huge arrays of numbers in small print, arguing and debating

about adjustments of the numbers of zt, such as the numbers in rows 220—250 and 335—385. Third,

no central bank (certainly no central bank that I have any more thorough information about)

behaves in that way, and is ever likely to behave that way. Instead, the practical presentation

of information and options to policymakers is always in the form of multiple graphs, modest-size

tables, and modest amounts of text.

Fourth, the intertemporal loss function L(Y t) has the projections of the target variables as its

argument. What matters for the construction of the target variables is the whole projection path

of the instruments, not the current instrument setting. The obvious conclusion is that the relevant

objects of importance in the decision process are the whole projection paths of the target variables

and the instruments, not the current instrument setting or projections of the target variables at some

fixed horizon. These projection paths are most conveniently illustrated as graphs. Indeed, graphs of

projections are prominent in the existing monetary-policy reports where projections are reported.

The analytical techniques discussed in this paper should predominantly be seen as techniques for

computer-generated graphs of whole projection paths. Pondering such graphs is an essential part

of the monetary-policy decision process. Importantly, policymakers need not know the underlying

detailed high- or infinite-dimensional matrices behind the construction of those graphs. Therefore,

the complex reduced-form reaction functions embedded in these matrices need not be made explicit.

Fifth, in the discussion in section 2.1, there was no reference to the reaction function, only to

the optimal policy projection. Given Xt and it, the private sector needs to be able to form the

expectations xt+1|t in order to make decisions in period t. The minimum for this is the central

bank’s announcement of x̂t+1,t. In order to make that announcement credible, the central bank

may have to announce the complete optimal policy projection and motivate its judgment. But it

does not need to announce any reaction function. In principle, given the reaction function, the

private sector could combine the reaction function with the model and solve for the optimal policy

projection, but that is an overwhelmingly complicated and roundabout way.
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3. A finite-horizon projection model

Regardless of whether the judgment is finite- or infinite-dimensional (that is, whether (2.15) holds

or not), the problem of minimizing the intertemporal loss function is an infinite-horizon problem.

From a practical and computational point of view, it is convenient to transform the infinite-horizon

policy problem above to a finite-horizon one. When the judgment satisfies (2.15), this can be done

in a simple and approximate, but arbitrarily close to exact, way for the forward-looking model, and

in a simple and exact way for the backward-looking model. The finite-horizon model also makes

it very easy to incorporate any arbitrary constraints on the projections, for instance, a particular

form of the instrument projection, such as a constant instrument for some periods. Then, all the

relevant projection paths are computed in one simple step.

3.1. Forward-looking model

Suppose that the estimate of the deviation is constant beyond a fixed horizon T . Without loss of

generality, assume that the constant is zero.20 That is, I assume (2.15).

Start by writing the projection model (2.8) and (2.10) for τ = 0, ..., T − 1 as

Xt,t = Xt, (3.1)

−Ãst+τ,t +
∙

Xt+τ+1,t

Cxt+τ+1,t

¸
=

∙
zt+τ+1,t
0

¸
(τ = 0, ..., T − 1). (3.2)

where Ã is the (nX +nx)× (nX +nx+ni) matrix defined by Ã ≡ [A B]. The first nX equations of

the last block of nX +nx equations in (3.2) determine Xt+T,t for given Xt+T−1,t, xt+T−1,t, it+T−1,t,

and zt+T,t. The last nx equations of that block are

−A21Xt+T−1,t −A22xt+T−1,t −B2it+T−1,t + Cxt+T,t = 0.

They determine xt+T−1,t for given Xt+T−1,t and it+T−1,t, and, importantly, for given xt+T,t. A

problem is that nx equations determining xt+T,t are lacking. I will assume that xt+T,t is determined

by the assumption that xt+T+1,t is equal to its steady-state level. That is, I assume that the optimal

policy projection has the property that, for (2.15), it approaches a steady state when T →∞. This

is true for the models and loss functions considered here. Without loss of generality, I assume that

the steady-state values for the forward-looking variables are zero,

xt+T+1,t = 0. (3.3)
20 If the estimate of the deviation from horizon T on is constant but nonzero, it can be incorporated among

other constants in the model. If the estimate of the deviation from horizon T on is not constant but follows an
autoregressive process (for instance, if it is assumed to gradually approach a constant), it can be incorporated among
the predetermined variables.
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From this follows that Xt+T,t, xt+T,t, and it+T,t must satisfy

−A21Xt+T,t −A22xt+T,t −B2it+T,t = 0, (3.4)

which gives me the desired nx equations for xt+T,t.

Let st, the projection of the states of the economy, now denote the finite-dimensional (T +1)×

(nX + nx + ni)-vector st ≡ (s0t,t, s0t+1,t, ..., s0t+T,t)0. Similarly, let all projections qt for q = X, x, i

and Y now denote the finite-dimensional vector qt ≡ (q0t,t, q0t+1,t, ..., q0t+T,t)0. Finally, let zt be the

TnX-vector zt ≡ (z0t+1,t, z0t+2,t, ..., z0t+T,t)0 (recall that zt does not include the component zt).

The finite-horizon projection model for the projection of the states of the economy, st, then

consists of (3.1), (3.2) and (3.4). It can be written compactly as

Gst = gt, (3.5)

where G is the (T + 1)(nX + nx)× (T + 1)(nX + nx + ni) matrix formed from the matrices on the

left side of (3.1), (3.2), and (3.4), and gt is a (T + 1)(nX + nx)-vector formed from the right side

of (3.1), (3.2), and (3.4) as gt ≡ (X 0
t, z

0
t+1,t, 0

0, z0t+2,t, 0
0, ..., z0t+T,t, 0

0, 00)0 (where zeros denote zero

vectors of appropriate dimension).

Since Y t now denotes the finite-dimensional (T + 1)nY -vector Y t ≡ (Y 0t,t, Y 0t+1,t, ..., Y 0t+T,t)0, I

can write

Y t = D̃st, (3.6)

where D̃ now denotes a finite-dimensional (T +1)nY × (T +1)(nX +nx+ni) block-diagonal matrix

with the matrix D in each diagonal block.

The set of feasible projections, St, is then defined as the finite-dimensional set of st that satisfy

(3.5) and (3.6) for a given gt, that is, for a given Xt and zt.

It remains to specify the intertemporal loss function in the forward-looking model in the finite-

horizon case. In the forward-looking model, under assumption (2.15), the minimum loss from the

horizon T + 1 on depends on the projection of the predetermined variables for period t + T + 1,

Xt+T+1,t, and the Lagrange multipliers Ξt+T,t according to the quadratic form

1

2
δT+1

£
X 0
t+T+1,t Ξ0t+T,t

¤
V

∙
Xt+T+1,t

Ξt+T,t

¸
,

where V is a symmetric positive semidefinite matrix that depends on the matrices A, B, C, D, and

W and the discount factor δ (see appendix A). It follows from (2.18) and (2.15) that this quadratic
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form can be written as a function Xt+T,t and Ξt+T−1,t as21

1

2
δT+1

£
X 0
t+T,t Ξ0t+T−1,t

¤
M 0VM

∙
Xt+T,t

Ξt+T−1,t

¸
. (3.7)

In principle, I could use (2.18) to keep track of Ξt+T−1,t. However, a simpler way is to extend the

horizon T so far that Xt+T,t and Ξt+T−1,t are arbitrarily close to their steady-state levels. Without

loss of generality, I assume that the steady-state levels are zero, in which case the above quadratic

form is zero, and the loss from horizon T can be disregarded. Checking that Xt+T,t is close to zero

is straightforward; I will show a practical way to check that Ξt+T−1,t is also close to zero.22

Under this assumption, it follows from (2.9), (2.12), and (3.6) that the intertemporal loss

function can be written as a function of st as the finite-dimensional quadratic form

1

2
st 0Ωst, (3.8)

where Ω is a symmetric positive semidefinite block-diagonal (T +1)(nX + nx + ni) matrix with its

(τ + 1)-th diagonal block being δτD0WD for 0 ≤ τ ≤ T . However, in order to impose the timeless

perspective, as explained in section 2.3, I need to add the term

Ξt−1,t−1
1

δ
Cxt,t

to the loss function, where Ξt−1,t−1 is the relevant Lagrange multiplier from the policy problem in

period t− 1. This term can be written ω0t−1s
t, with the appropriate definition of the (T +1)(nX +

nx + ni)-vector ωt−1 as ωt−1 ≡ (0,0 00, (Ξt−1,t−1 1δC)0, 00, ..., 00)0 (where the zeros denote zero vectors

of appropriate dimension). Thus, the intertemporal loss function with the added term is

1

2
st 0Ωst + ω0t−1st. (3.9)

Then, the policy problem is to find the optimal policy projection ŝt that minimizes (3.9) subject

to (3.5). The Lagrangian for this problem is

1

2
st 0Ωst + ω0t−1st + Λ

t 0(Gst − gt), (3.10)

where Λt is the (T + 1)(nX + nx)-vector of Lagrange multipliers of (3.5). The first-order condition

is

st 0Ω+ ω0t−1 + Λ
t 0G = 0.

21 The matrix M appearing in (3.7) is the matrix M in (2.18) with the columns corresponding to zt deleted.
22 Appendix E presents an iterative numerical procedure that will provide a projection arbitrarily close to the

optimal policy projection without requiring such a long horizon that Xt+T,t and Ξt+T−1,t are close to their steady-
state levels.
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Combining this with (3.5) gives the linear equation system∙
G 0
Ω G0

¸ ∙
st

Λt

¸
=

∙
gt

−ωt−1

¸
. (3.11)

The optimal policy projection ŝt and Lagrange multiplier Λt are then given by the simple matrix

inversion23 ∙
ŝt

Λt

¸
=

∙
G 0
Ω G0

¸−1 ∙
gt

−ωt−1

¸
. (3.12)

The optimal target-variable projection then follows from (3.6). The optimal policy projection is a

linear function of Xt, zt, and Ξt−1,t−1, and it can be written compactly as in section 2.3,

ŝt = H

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , Ŷ t = D̃H

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , ı̂t = Hi

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ ,
except that the matrices H and Hi and the vector zt now are finite-dimensional. The matrices can

be directly extracted from (3.12). The period-t instrument setting can be written

it = ı̂t,t = h

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , (3.13)

where the finite-dimensional matrix h consists of the first ni rows of the matrix Hi. Under assump-

tion (2.15) and a sufficiently long horizon T , the finite-horizon projections here are arbitrary close

to the optimal infinite-horizon policy projections for τ = 0, ..., T in section 2.3.

The Lagrange multiplier Λt can be written Λt ≡ (1δ ξ
0
t,t, ξ

0
t+1,t,Ξ

0
t,t, δξ

0
t+2,t, δΞ

0
t+1,t, ..., δ

T ξ0t+T,t,

δTΞ0t+T−1,t)
0, where ξt+τ,t is the vector of Lagrange multipliers for the block of equations in (3.1),

(3.2), and (3.4) determining Xt+τ,t and Ξt+τ−1,t is the vector of Lagrange multipliers for the block

of equations determining xt+τ−1,t. Hence, extraction of Ξt+T−1,t from Λt allows me to check that

the assumption made above of Ξt+T−1,t being close to zero is satisfied. If the assumption is not

satisfied, the horizon T can be extended until the assumption is satisfied.24 Furthermore, Ξt,t can

be extracted from Λt in order to form the vector ωt to be used in the loss function for the policy

problem in period t+1, to ensure the timeless perspective. The Lagrange multiplier needed in the

loss function in period t+ 1, Ξt,t, can be written

Ξt,t = HΞ

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ , (3.14)

23 Numerically, it is faster to solve the system of linear equations (3.11) by other methods than first inverting the
left-side matrix, see Judd [11].
24 In practice, the horizon T is extended until the optimal projection ŝt is insensitive to variations in T .
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where the finite-dimensional matrix HΞ can be extracted from (3.12).

Again, as noted above in section 2.3, in spite of the compact notation for the instrument it and

Lagrange multiplier Ξt,t in (3.13) and (3.14), these analytical techniques should predominantly be

seen as techniques for computer-generated graphs to be pondered by the policy makers, and the

matrices never need to made explicit to the policymakers. Although the matrices are now formally

finite-dimensional, they are still high-dimensional and somewhat difficult to interpret.

3.2. Backward-looking model

Make the same assumption (2.15) as for the forward-looking model. The projection in period t of

the state of the economy in period t + τ , st+τ,t, is now defined as the (nX + ni)-vector st+τ,t ≡

(X 0
t+τ,t, i

0
t+τ,t)

0 for τ ≥ 0, in which case I can write, for the backward-looking model,

Xt+τ+1,t = Ãst+τ,t (τ ≥ T ). (3.15)

The projection model with horizon T can now be written

Xt,t = Xt, (3.16)

− Ãst+τ,t +Xt+τ+1,t = zt+τ+1,t (0 ≤ τ ≤ T − 1), (3.17)

where Xt and zt are given. The projection of the states of the economy, st, is now a (T+1)(nX+ni)-

vector. Then the projection model can be written as (3.5), where G is a (T+1)nX×(T+1)(nX+ni)

matrix formed from the left side of (3.16) and (3.17), and gt is a (T +1)nX-vector formed from the

right side of (3.16) and (3.17) as gt ≡ (X 0
t, z

t 0)0.

It is a standard result for a linear-quadratic backward-looking model that the minimum loss

from the horizon T + 1 on depends on the projection of the predetermined variables for period

t+ T + 1, Xt+T+1,t, according to the quadratic form

1

2
δT+1X 0

t+T+1,tV Xt+T+1,t, (3.18)

where V is a symmetric positive semidefinite matrix that depends on the matrices A, B, D, and

W and the discount factor δ (see appendix A). I could now, as for the forward-looking model,

assume that the predetermined variables approach a steady-state level for large T , without loss

of generality assume that the steady-state level is zero, and extend the horizon T so far that the

predetermined variables are arbitrarily close to zero, and the loss from period T on is arbitrarily

close to zero. I could then form the finite-horizon loss function as for the forward-looking model,
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and this together with (3.16) and (3.17) would form the finite-horizon model, which would be an

arbitrarily close approximation to the infinite-horizon model for sufficiently large T .

However, the absence of the time-consistency problem and the need to keep track of the Lagrange

multiplier Ξt+T−1,t allows a simple approach, which is exact also for small T , as long as assumption

(2.15) holds for that T . I follow this approach here.

From (3.15) follows that the quadratic form (3.18) can be written as a function of st+T,t as

1

2
δT+1s0t+T,tÃ

0V Ãst+T,t.

The finite-horizon intertemporal loss function can then be written

1

2

TX
τ=0

δτs0t+τ,tD
0WDst+τ,t +

1

2
δT+1s0t+T,tÃ

0V Ãst+T,t.

The intertemporal loss function can now be written more compactly as the quadratic form (3.8),

where Ω now is a symmetric positive-semidefinite block-diagonal (T + 1)(nX + ni)-matrix, whose

(τ + 1)-th diagonal block is δτD0WD for 0 ≤ τ ≤ T − 1 and whose (T + 1)-th diagonal block now

is δT (D0WD + δÃ0V Ã). Thus, it differs from the matrix Ω for the forward-looking model by the

addition of that last term, 12δÃ
0V Ã.

The finite-horizon policy problem is now to find the optimal policy projection ŝt that minimizes

(3.8) subject to (3.5), for given gt, that is, for given Xt and zt. The corresponding optimal target-

variable projection Ŷ t then follows from (3.6).

The Lagrangian for this problem is

1

2
st 0Ωst + Λt 0(Gst − gt),

where Λt is a vector of Lagrange multipliers for (3.5). The first-order condition is

st 0Ω+ Λt 0G = 0.

Combining this with (3.5) gives the linear equation system∙
G 0
Ω G0

¸ ∙
st

Λt

¸
=

∙
gt

0

¸
.

The optimal policy projection ŝt is then given by the simple matrix inversion,∙
ŝt

Λt

¸
=

∙
G 0
Ω G0

¸−1 ∙
gt

0

¸
. (3.19)

The optimal target-variable projection then follows from (3.6).
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The optimal policy projection is obviously a linear function of Xt and zt, and I can write,

ŝt = H

∙
Xt

zt

¸
, Ŷ t = D̃H

∙
Xt

zt

¸
, ı̂t = Hi

∙
Xt

zt

¸
,

where the finite-dimensional matrices H and Hi can be extracted from (3.19). The instrument

setting for period t can be written

it = ı̂t,t = h

∙
Xt

zt

¸
, (3.20)

where the finite-dimensional matrix h consists of the first ni rows of the matrix Hi.

3.3. Other considerations

A finite-horizon projection model has several advantages. One is that it is very easy to incorporate

any restrictions on the projections. Any equality restriction on Xt, xt, it, or Y t can be written

R̄st = s̄t, (3.21)

where the number of rows of the matrix R̄ and the dimension of the given vector s̄t equal the number

of restrictions. This makes it easy to incorporate any restriction on the instrument projection, for

instance, that it shall be constant or of a particular shape for some periods.

Transforming the model into a finite system of equations may be particularly practical from a

computational point of view for a nonlinear model. It may then also be easy to handle commitment

in a timeless perspective for a nonlinear model.

4. Monetary policy without judgment

Modern monetary policy inherently to a large extent relies on judgment. Previous sections of this

paper have attempted to model this dependence on judgment in a simple but specific way. This

section attempts to specify monetary policy without judgment, in order to compare monetary policy

with and without judgment.

There are several alternatives in modelling monetary policy without judgment. Above, monetary

policy with judgment has been modeled as forecast targeting, finding an instrument projection such

that the corresponding projection of the target variables minimizes a loss function. This procedure

uses all information available to the central bank, including central-bank judgment. This results

in a complex reduced-form reaction function, which fortunately never needs to be made explicit.

When modelling monetary policy without judgment, however, the most obvious route is to consider
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monetary policy as a more mechanical process–a commitment to a particular reaction function, a

commitment to a particular instrument rule.25

Instrument rules can be divided into two categories, explicit instrument rules and implicit instru-

ment rules (Svensson and Woodford [30], Svensson [25]). An explicit instrument rule is a reaction

function where the instrument responds to predetermined variables only. Its implementation then

consists of the central bank observing the predetermined variables in the beginning of the period,

and then calculating, announcing, and setting the instrument according to this instrument rule.

The implementation obviously requires that the relevant predetermined variables must be observed

by the central bank, but since the predetermined variables in a particular period are independent

of the instrument setting in that period, no further complications arise. An implicit instrument

rule is a relation between the current instrument and some of the current forward-looking variables.

Then, since the forward-looking variables depend on the instrument setting, the instrument and

the forward-looking variables are simultaneously determined. Thus, an implicit instrument rule is

actually an equilibrium condition, a relation that holds in equilibrium. The implementation of an

implicit instrument rule, that is, how to get to the desired equilibrium, is not trivial but a complex

issue. This fact has largely been overlooked in the literature, except, for instance, in Svensson and

Woodford [30] and Svensson [25].

Here, I shall discuss how monetary policy without judgment can be modeled as a commitment

to an instrument rule, either an explicit instrument rule or an implicit instrument rule, with some

discussion of the implementation of the latter. I will start from the reduced-form reaction function

for the instrument setting that follows from the forecast targeting modeled above. For simplicity, I

now consider the realistic case when there is only one instrument, the instrument rate, so ni = 1.

4.1. Explicit instrument rules

The construction of the optimal instrument projection, ı̂t, in the forward-looking model results in

an optimal reduced-form reaction function for the current instrument setting, (3.13) (or (2.21)),

which is repeated here as

it = hXXt + hzz
t + hΞΞt−1,t−1, (4.1)

where the row vector h is partitioned conformably with Xt, zt, and Ξt−1,t−1 as h ≡ [hX hz hΞ] (h is

now a row vector, since ni = 1). The optimal reaction function implies a particular instrument

25 This is an approach that a large part of the literature has taken, for instance, most papers in the conference
volume Taylor [33]. The approach is criticized in Svensson [25] and [26].
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response to the predetermined variables, Xt; the judgment, zt; and the Lagrange multiplier for

the equations for xt−1,t−1 in the policy problem in period t − 1, Ξt−1,t−1. The discussion here

refers to the forward-looking model; for the backward-looking model, I can simply delete the term

hΞΞt−1,t−1.

I want to model the central bank setting its instrument in a mechanical way, via a commitment

to a particular instrument rule, while disregarding judgment. Considering (4.1) as a potential in-

strument rule, it is natural that disregarding judgment means that the central bank behaves as if it

believes that zt = 0 and hence disregards the judgment term in (4.1), hzzt. Thus, monetary policy

without judgment is modeled as the central bank erroneously believing that the expected future devi-

ations equal zero, for instance, the central bank believing that zt is a zero-mean iid process. A first

possibility is then that the central bank also disregards the term with the Lagrange multiplier from

the previous policy problem. For one thing, if the central bank did set the instrument mechanically

in period t−1 rather than by explicit optimization, it may not be aware of the Lagrange multiplier

and its value. This leaves responding to the current predetermined variables only,

it = hXXt. (4.2)

Such a policy would be inefficient for two reasons, even if the response coefficients toXt are those

of the optimal reaction function (4.1). First, it disregards judgment, the term hzz
t. Second, it also

disregards the response to lagged predetermined variables implied by the response to the Lagrange

multiplier, Ξt−1,t−1, as indicated in (2.19). Indeed, optimization under discretion would result in a

reduced-form reaction function where the instrument responds only to the current predetermined

variables.26 27

The response to the Lagrange multipliers in (4.1) implies a response to lagged predetermined

variables. Disregarding judgment, the Lagrange multiplier in (3.14) (or (2.24)) follows

Ξt−1,t−1 = HΞXXt−1 +HΞΞΞt−2,t−2

=
∞X
j=0

Hj
ΞΞHΞXXt−1−j

26 The resulting reduced-form reaction function resulting from optimization under discretion would have different
coefficients than the optimal hX . Because of this, and because of the missing response to lagged predetermined
variables, the response is suboptimal and results in so-called stabilization bias relative to the commitment policy
(Svensson and Woodford [30]).
27 Given a particular restricted class of instrument rules, for instance, simple instrument rules with only a few

arguments, one can find the optimal instrument rule in that restricted class, see appendix G. The optimal instrument
rule in a restricted class will depend on the stochastic properties of the disturbances to the economy. Many papers
of Taylor [33] provide examples of such optimal restricted instrument rules.

32
ECB
Working Paper Series No. 476
April 2005



where HΞ is partitioned conformably with Xt, zt, and Ξt−1,t−1 as HΞ ≡ [HΞX HΞz HΞΞ]. A

second possibility for policy disregarding judgment is then that the policy responds with the optimal

coefficients hΞ to these lagged predetermined variables, resulting in the reaction function

it = hXXt + hΞ

∞X
j=0

Hj
ΞΞHΞXXt−1−j . (4.3)

This would seem to be an instrument rule corresponding to a rather sophisticated policy, com-

mitment to the reaction function resulting from optimal policy under commitment in a timeless

perspective, while disregarding judgment.28

4.2. Implicit instrument rules

Another apparent possibility would be an implicit instrument rule, where the instrument responds to

the forward-looking variables, xt. This might seem advantageous, since, in a rational-expectations

equilibrium, the forward-looking variables might be affected by private-sector expectations of future

deviations. Then, by responding to forward-looking variables, the central bank might indirectly

take judgment into account, although in this case private-sector judgment. Thus, one might want

to consider an ad hoc implicit instrument rule of the form

it = fXXt + fxxt, (4.4)

where fX and fx are row vectors of given response coefficients.

As mentioned above, there is, however, a specific problem with the central bank responding

to forward-looking variables, something largely overlooked in the literature (except, for instance,

Svensson and Woodford [30] and Svensson [25]). Since the forward-looking variables depend on

the central bank’s instrument setting, a simultaneity problem arises. The central bank cannot

observe the forward-looking variables before it sets the instrument, and the private sector needs to

observe the instrument setting before it determines the forward-looking variables. A relation such

28 Note that, only if hΞ is invertible, can this be written on the “instrument smoothing” form

it = hXXt + hΞHΞXXt−1 + hΞHΞΞh
−1
Ξ hΞ

∞

j=0

Hj
ΞΞHΞXXt−1−j

= hXXt + hΞHΞXXt−1 + hΞHΞΞh
−1
Ξ (it−1 − hXXt−1)

= hXXt + hΞ(HΞX −HΞΞh
−1
Ξ hX)Xt−1 + hΞHΞΞh

−1
Ξ it−1.

If there is only one instrument, hΞ is invertible only if Ξt−1,t−1 is a scalar, that is, if there is only one forward-
looking variable. The point is that the optimal reaction function under commitment usually cannot be written as an
instrument rule involving current predetermined variable and the lagged instrument, unless it−1 happens to be one
of the predetermined variables.
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as (4.4) is actually an equilibrium condition, where it and xt are simultaneously determined. The

implementation of such an equilibrium condition is not straightforward.

A sophisticated way to implement (4.4) is for the central bank to construct projections (Xt, xt, it)

that satisfy (4.4). The central bank can amend the relation

it+τ,t = fXXt+τ,t + fxxt+τ,t (4.5)

for τ ≥ 0 to its projection model (3.5) (or (2.8)). It can then solve for the projection (X̃t, x̃t, ı̃t)

for given Xt, disregarding the judgment (setting zt+τ,t = 0 for τ ≥ 1). These projections will by

construction satisfy (4.5). The corresponding instrument setting, it = ı̃t,t, will then be a linear

function of Xt,

it = f̃XXt. (4.6)

The central bank can then set this instrument level according to the reduced-form reaction function

(4.6).29

However, if the private sector understands that the central bank is effectively implementing

the reaction function (4.6); has rational expectations of future variables; and, in particular, has

expectations of future nonzero deviations, zt+τ |t 6= 0 (τ ≥ 1); the resulting market-determined

forward-looking variables, xt, will deviate from the central-bank projection, x̃t,t. Thus, although

the instrument setting will satisfy

it = fXXt + fxx̃t,t,

for the central-bank projection x̃t,t, it will not satisfy (4.4) for the market-determined forward-

looking variables xt.

29 In the context of the finite-horizon projection model, relation (4.5) can be written as (T + 1)ni equations,

R̄st = 0,

where R̄ is an (T + 1)ni × (T + 1)(nX + nx + ni) matrix. Combining these with (3.5) for zt = 0 gives an equation
system

G
R̄ st = g̃t

0
,

where g̃t is the (T +1)(nX +nx)-vector (X0
t, 0

0)0. Under the assumption that the matrix on the left side has full rank,
st is given by

s̃t ≡ G
R̄

−1
g̃t

0 . (4.7)

This results in
x̃t,t = H̃x0Xt,

where the matrix H̃x0 can be extracted from the right side of (4.7) and

ı̃t,t = fXXt + fxx̃t,t = (fX + fxH̃x0)Xt ≡ f̃XXt.
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For relation (4.4) to be satisfied for the market-determined forward-looking variables, the central

bank has to amend the relation (4.5) for τ ≥ 0 to its production model (3.5) (or (2.8)) and solve

for the projection (Xt, xt, xt) for given Xt, taking the judgment into account.30 This results in

xt,t = H̃xX0Xt + H̃xz0z
t

it,t = fXXt + fxxt,t = (fX + fxH̃xX0)Xt + fxH̃xz0z
t

≡ f̃XXt + f̃zz
t.

Thus, the resulting reduced-form reaction function is

it = f̃XXt + f̃zz
t.

If the private sector understands that this is the reaction function followed by the central bank and

has rational expectations corresponding to the same judgment; the market-determined forward-

looking variables, xt, will equal the central-bank projection, xt,t; and the relation (4.4) will be

satisfied in equilibrium.

This is of course an example of a central bank explicitly taking judgment into account, not

an example of a central bank disregarding judgment. But instead of finding the optimal policy

projection, (X̂t, x̂t, ı̂t, Ŷ t), that minimizes its loss function, it finds the projection (Xt, xt, it, Y t)

that satisfies the ad hoc relation (4.4). Since the latter is no easier than the former and, in

particular, suboptimal, this behavior seems a bit far-fetched.

Thus, I can model monetary policy without judgment as following either the explicit instru-

ment rule (4.2), where both judgment and lagged predetermined variables are ignored, or the more

sophisticated explicit instrument rule (4.3), or perhaps some intermediate case of (4.3) where the

summation is over a finite past periods. Using the implicit instrument rule (4.4) is somewhat prob-

lematic, since its implementation is complex and open to alternative very different interpretations,

30 The equation system is then
G
R st = gt

0
,

where gt is the (T + 1)(nX + nx)-vector (X0
t, zt,t

0, 00, z0t+1,t, 0
0, ..., z0t+T,t, 0

0, 00)0 specified in section 3.1. Under the
assumption that the matrix on the left side has full rank, st is given by

st = G
R

−1
gt

0
. (4.8)

This results in
xt,t = H̃xX0Xt + H̃xz0z

t,

where H̃xX0 and H̃xz0 can be extracted from the right side of (4.8) and

it,t = fXXt + fxxt,t = (fX + fxH̃x0)Xt + fxH̃xz0z
t ≡ f̃XXt + f̃zz

t.

with very different resulting equilibria.
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4.3. Taylor rules

In the literature, a number of simple ad hoc instrument rules have been used to discuss and evaluate

monetary policy. The most common are variants of the Taylor rule.31 One variant of the Taylor

rule with instrument smoothing (meaning, in this context, a response to the lagged instrument

rate) is

it = (1− fi)(fππt + fyyt) + fiit−1;

where πt denotes a measure of the difference of inflation from a given inflation target; yt denotes

a measure of the output gap; fπ and fy are given positive coefficients that can be interpreted as

the long-run response to inflation and the output gap, respectively; and the coefficient fi satisfies

0 ≤ fi ≤ 1. If inflation and the output gap are predetermined, this is an explicit instrument

rule, and its implementation only requires that the central bank can observe or estimate current

inflation and the output gap. If inflation and/or the output gap are forward-looking variables,

this is an implicit instrument rule, where the instrument and the forward-looking variable are

simultaneously determined. As noted above, such an instrument rule is somewhat problematic and

its implementation may need to be further specified.

One variant of the Taylor rule, a so-called forecast-based or forward-looking Taylor rule, can be

written

it = (1− fi)[fππt+J,t + fyyt+K,t] + fiit−1;

where πt+J,t denotes a projection of the difference of inflation from an inflation target at horizon

J ≥ 0 and yt+K,t denote a projection of the output gap at horizon K ≥ 0, where at least one of J

or K is positive. Such an instrument rule is an explicit or an implicit instrument rule depending

on how the projections are constructed. If the projections are constructed with information that is

predetermined in period t, the projections are predetermined and the instrument rule is explicit. If

the projections are constructed with information that includes simultaneously determined forward-

looking variables, the instrument rule is implicit and hence an equilibrium condition. Again, the

implementation of such an instrument rule is not trivial and open to alternative interpretations.32

31 Koizicki [12] provides a discussion of the usefuleness of Taylor rules.
32 Svensson [24] discusses additional serious problems with forecast-based instrument rules.
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5. Examples

In this section, I discuss examples of monetary policy with and without judgment in two different

empirical models of the U.S. economy: a backward-looking model due to Rudebusch and Svensson

[18] and a forward-looking model due to Lindé [13].

5.1. Backward-looking model

The backward-looking empirical model of Rudebusch and Svensson [18] has two equations (with

estimates rounded to two decimal points)

πt+1 = 0.70πt − 0.10πt−1 + 0.28πt−2 + 0.12πt−3 + 0.14 yt + zπ,t+1 (5.1)

yt+1 = 1.16 yt − 0.25 yt−1 − 0.10
µ
1

4
Σ3j=0it−j −

1

4
Σ3j=0πt−j

¶
+ zy,t+1. (5.2)

The period is a quarter, and πt is quarterly GDP inflation measured in percentage points at an

annual rate, yt is the output gap measured in percentage points, and it is the quarterly average of

the federal-funds rate, measured in percentage points at an annual rate. All variables are measured

as differences from their means, their steady-state levels. The deviations zπ,t+1 and zy,t+1 for

inflation and the output gap have been substituted for the shocks of the original Rudebusch-

Svensson model. The predetermined variables are (πt, πt−1, πt−2,πt−2, yt, yt−1, it−1, it−2,it−3). See

appendix H for details.

The target variables are inflation, the output gap, and the first-difference of the federal funds

rate. The period loss function is

Lt =
1

2
[π2t + λy2t + ν(it − it−1)

2], (5.3)

where πt is measured as the difference from the inflation target, which is equal to the steady-state

level. The discount factor, δ, and the relative weights on the output-gap stabilization, λ, and

interest-rate smoothing, ν, is set so δ = 1, λ = 1, and ν = 0.2.

Let me emphasize that there may be considerable uncertainty about the future deviations, ζt,

in this case {zπ,t+τ , zy,t+τ}∞τ=1. Consider a simple case, when the distribution Φt is such that there

is uncertainty only about zπ,t+τ and only for a finite number of quarters, 1 ≤ τ ≤ T . Then, I can

take ζt to be the random T -vector ζt = (zπ,t+1, ..., zπ,t+T ). Suppose furthermore that there are only

four possible events with realizations ζt(j) (j = 1, 2, 3, 4), and that these are as follows:

1. With probability 0.4: ζt(1) = (0, 0, ...)0, no deviation.

37
ECB

Working Paper Series No. 476
April 2005



2. With probability 0.3: ζt(2) = (0, 1.0, 1.0, 0.0, 0.0, 0, ...)0, a short sequence of large“cost push”

shocks.

3. With probability 0.2, ζt(3) = (0, 0.2, 0.2, 0.2, 0.2, 0, ...)0, a long sequence of small cost-push

shocks.

4. With probability 0.1, ζt(4) = (0, 1.0, 1.0, 1.0, 1.0, 0, ...)0, a long sequence of large cost-push

shocks.

The resulting judgment is the mean of the future deviations, the T -vector zt = 0.4 ζt(1)0+0.3 ζt(2)0+

0.2 ζt(3)0 + 0.1 ζt(4)0 = (0, 0.44, 0.44, 0.14, 0.14, 0, ...)0.

Note that the same judgment arises if the probabilities are the same for the four events but the

first event is that all components τ = 1, ..., T of ζt have independent uniform distributions between

−1 and 1; the second event is that all components have the same distributions as for the first event

except that component τ = 2 and 3 have independent uniform distributions between 0 and 2; the

third event is that all components have the same distributions as for the first event except that

component τ = 2, 3, 4, and 5 have independent uniform distributions between −0.8 and 1.2; and

the fourth event is that all components have the same distribution as for the first event except

that component τ = 2, 3, 4, and 5 have independent uniform distributions between 0 and 2. Thus,

behind a given judgment vector can be a distribution Φt involving considerable uncertainty. Still,

only the mean of that distributions matters.

Figure 5.1 shows a situation where the predetermined variables, inflation and the output gap,

and the deviations are assumed to have been equal to their steady-state levels, zero, up to quar-

ter 0. Furthermore, in previous quarters, the central bank’s judgment, zt (t < 0) has been zero:

The central bank’s expected future inflation and output-gap deviations have been zero (although

possibly with large variances).

In panel a, the central bank’s judgment in quarter, z0, changes from that in previous quarters,

such that the central bank’s expected inflation deviation equals 1 percentage point for quarter 6,

whereas it is still zero in all other quarters; the expected output-gap deviation is still zero for all

quarters.33 Again, behind these means may be a distribution Φ0 corresponding to considerable

uncertainty. The expected inflation deviation, denoted zπ, is marked by circles with no connecting

line. The panel shows the optimal policy projection in quarter 0, (π0, y0, i0, r0), of inflation, π (the

33 In terms of the modeling of the deviation as a mean-average process in section 2.2, panel a shows the impulse
respons to ε0.
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Figure 5.1: Monetary policy with and without judgment: Backward-looking model
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dashed line); the output gap, y (the dashed-dotted line); the instrument rate, i (the solid line); and

the short real interest rate, r (the dotted line).34

Panel a has two main interpretations. The first interpretation is that the panel just shows the

judgment z0 and the optimal policy projection (π̂0, ŷ0, ı̂0, r̂0) in quarter t = 0 for the future quarters

τ ≥ 1 and thereby the realization of z0, π̂0, ŷ0, ı̂0, and r̂0 in quarter 0. Conditional on the actual

realization of π1 and y1 (in turn depending on the realization of zπ1 and zy1) and the realization

of z1 in quarter t = 1, a new optimal policy projection (π̂1, ŷ1, ı̂0, r̂0) has to be plotted in quarter

1 for future quarters τ ≥ 2), and so forth for t = 2, 3, ...

The second interpretation is that the panel shows the probability-zero event that the future

realizations of the random deviation zt for t ≥ 1 are exactly equal to the judgment z0 in quarter 0.

That is, the realizations of zπt for t ≥ 1 are zero, except in quarter 6 when it is 1 percentage point,

and the realizations of zyt for t ≥ 1 are all zero. In this interpretation, the panel also shows the

optimal policy projection (π̂t, ŷt, ı̂t, r̂t) for each quarter t ≥ 1. These optimal policy projections are
34 The short real interest rate is defined as rt ≡ it − πt+1|t.
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then simply the continuation of the optimal policy projection of the previous quarter. Furthermore,

the actual future realization of inflation, the output gap, the instrument rate, and the real interest

rate are then equal to the previous optimal policy projections.

Thus, in the first interpretation, panel a just shows a particular realization of the judgment z0

and the corresponding optimal policy projection (π̂0, ŷ0, ı̂0, r̂0). In the second interpretation, panel

a in addition shows a time series of a particular realization of the future deviation–namely the

realization that is exactly equal to the judgment in quarter 0–as well as the resulting realizations

over time of inflation, the output gap, the instrument rate, and the real interest rate. Clearly, the

probability of the future realizations of the deviation being exactly equal to the previous judgment

is generally zero.

Panel a shows that, when the central bank expects a 1 percentage-point inflation deviation in

quarter 6, it chooses an optimal instrument-rate projection such that the instrument rate is raised

to about 1 percentage point during the first few quarters and then gradually lowered back to its

steady-state level. As a result, the projected output gap gradually falls to about −0.5 percentage

in quarter 7 and then very gradually rises back towards zero. The inflation projection shows

inflation falling slightly before it is hit by the inflation-deviation in quarter 6, then rising to almost

1 percentage point, and finally falling back towards its steady-state level after quarter 6. Thus,

the optimal policy projection is a clear example of preemptive monetary policy: The instrument

rate is raised and the output gap is reduced well before the expected inflation-deviation shock, so

as to efficiently control inflation and bring it back to target after the shock. The optimal policy

projection in quarter 0 results in an intertemporal loss of 2.1 units.35 In the second interpretation,

when panel a shows the actual realization of the deviation, the accumulated realized loss over time,

discounted to quarter 0, is also the same 2.1 units (since δ = 1, the discounting does not affect the

loss).

Panel b shows the time series of the variables for the same particular realization of the future

deviations when the inflation deviation equals 1 percentage point in quarter 6 and is zero elsewhere.

However, in this panel, the central bank in each quarter disregards judgment, while still responding

optimally to the predetermined variables. That is, the central bank responds in the same way to the

predetermined variables as for the optimal policy, but it does not respond to any expected future

deviation. It behaves as if it believes that the deviation is a serially uncorrelated zero-mean process,

35 Given how the target variables are measured, with the loss function (5.3) and δ = 1, an expected difference of
inflation from target of one (two) annualized percentage point(s) for a single quarter gives rise to an intertemporal
loss of one (four) units.
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so its expected future deviations are zero. This corresponds to a commitment to the instrument

rule (4.2) (recall that there is no optimal response to Lagrange multipliers or lagged predetermined

variables for the backward-looking model). The central bank then keeps the instrument rate at

its steady-state level through quarter 5. Accordingly, inflation and the output gap stay at the

steady-state levels through quarter 5. In quarter 6, the inflation shock hits and inflation jumps to

1 percentage point, while the predetermined output gap still stays at zero. In this situation, once

the inflation shock has hit, the optimal monetary-policy response is to raise the instrument rate

substantially, to more than 1.5 percentage points above the steady-state level during the following

few quarters. This reduces the output gap to almost −0.5 percentage points during the next 8—9

quarters. The instrument rate is gradually lowered back to the steady-state level, and inflation

and the output gap return to their steady-state levels very slowly. The absence of any preemption

requires a larger instrument-rate response when the shock occurs, the output-gap is nevertheless

reduced with a considerable lag, and inflation stays above target for a long time. The resulting loss

intertemporal is 3.2, 1.1 units higher than when monetary policy relies on judgment.

Panel c is analogous to panel a, except that it shows a situation when the central bank’s

judgment in quarter 0, z0, is such that the central bank expects an output-gap deviation of 1

percentage point in quarter 6, whereas no other deviations are expected. The expected output-

gap deviation, zy, is denoted by circle markers with no connecting line. Again, panel c has two

interpretations; the first is that the panel just shows the judgment and optimal policy projection in

quarter 0; the second is that is also shows the time series of the variables if the future realizations

of the output-gap deviation are exactly equal to the judgment in quarter 0. For this expected

output-gap deviation, the optimal policy projection shows a substantial increase in the instrument

rate to almost 2 percentage points above the steady-state level in quarter 3—5 and then a rather

quick reduction back to the steady-state level. As a result, the output-gap projection shows output

falling by almost −0.5 percentage points before the expected output-gap deviation hits, after which

it rises to less than 0.5 percentage points and then relatively quickly comes back to the steady-level.

The resulting movements in the inflation projection are small. A modest loss of 0.51 units results

from this preemptive optimal policy projection.

Panel d is analogous to panel b, except that it shows the time series of the variables for the

particular realization of the output-gap deviation when it equals 1 percentage-point in quarter 6 and

is zero in other quarter. The central bank disregards judgment and only responds to current and

lagged inflation and the output gap (although again optimally so, according to the instrument rule
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(4.2)). Then the central bank keeps the instrument rate at its steady-state level until the output-gap

shock hits in quarter 6. Once the shock has hit, it is optimal to raise the instrument rate even more,

to more than 2 percentage points for a few quarters, before it is lowered back to the steady-state

level. The output gap stays up around 1 percentage point for several quarters. This causes inflation

to rise and only very slowly return to target. The output gap has to undershoot the steady-state

level significantly in order to bring inflation back. Clearly, inflation and the output gap deviate

substantially more than when the central bank uses its judgment. The resulting intertemporal loss

is 3.1, 2.6 units higher than the loss for the optimal policy projection with judgment.

This example shows a substantial difference between monetary policy with and without judg-

ment, with substantial differences in the development of the target variables and corresponding

intertemporal losses.

5.2. Forward-looking model

The forward-looking New Keynesian model of Lindé [13] has two equations. I use the following

parameter estimates,

πt = 0.457πt+1|t + (1− 0.457)πt−1 + 0.048yt + zπt,

yt = 0.425 yt+1|t + (1− 0.425)yt−1 − 0.156(it − πt+1|t) + zyt.

The variables are measured as for the backward-looking model. The predetermined variables are

(πt−1, yt−1, it−1, zπt, zyt) (the lagged instrument rate enters because it enters into the loss function,

and the two deviations are entered in order to write the model on the form (2.1), see section 2).

The forward-looking variables are (πt, yt). See appendix I for details. The loss function and its

parameters used in the experiment below are the same as for the backward-looking model.36

Figure 5.2, panel a-d, shows the same experiments as figure 5.1, but for the forward-looking

model. Thus, before quarter 0, the variables are equal to their steady-state levels, zero, and the

central bank does not expect any future inflation and output-gap deviations.

In panel a, in quarter 0, while the inflation and the output-gap deviations in that quarter

are still zero, the central bank’s judgment, z0, changes, such that the central bank expects an

inflation deviation equal to 1 percentage point in quarter 6, whereas it still expects zero inflation

deviations for all other quarters and zero output-gap deviations for all quarters. Again, behind these
36 I find it very unrealistic to consider inflation and output in the current quarter as forward-looking variables. I

believe it makes more sense to have current inflation and the output gap predetermined, and to have one-quarter-
ahead inflation, output-gap, and instrument-rate plans be determined by the model above. Such a variant of the
newkeynesian model is used in Svensson and Woodford [30] and Svensson [25].
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Figure 5.2: Monetary policy with and without judgment: Forward-looking model
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expected deviation could be a probability distribution Φ0 corresponding to substantial uncertainty.

As above, panel a has two interpretations. In the first interpretation, it just shows the judgment

z0 and the optimal policy projection (π̂0, ŷ0, ı̂0, r̂0). In the second interpretation, it shows the

time series of inflation, the output-gap, the instrument rate, and the real interest rate, for the

particular realizations of the future deviations that are exactly equal to the central-bank’s judgment

in quarter 0. In this interpretation, I also assume that the private sector has sufficient information–

cf. the discussion in section 2.1–to form expectations consistent with the optimal policy projection.

The optimal policy projection in panel a shows that the central bank plans to raise the instru-

ment rate to about 2 percentage points above the steady-state level in the quarters before and

including the time of the inflation shock. This makes the output-gap projection fall to more than

−2 percentage points at the time of the expected inflation deviation. The inflation projection rises

before and up to the expected inflation deviation, because private-sector expectations are forward-

looking and consistent with the optimal inflation projection. After the expected inflation deviation,

the instrument rate, the output gap, and inflation are projected to return to their steady-state lev-
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els. Again, there is a considerable amount of preemption in the optimal policy with judgment,

with a projected positive real interest rate and negative output gap before the expected inflation

deviation. A substantial intertemporal loss of 25 units results from the optimal policy projection.

Panel b shows the realizations over time of these variables when the realizations of the inflation

deviation is equal to 1 percentage point in quarter 6 and zero in other quarters and the central

bank in each quarter disregards judgment while still responding optimally to current and lagged

inflation and output gap. In this case, the central bank is assumed to respond optimally to both

the predetermined variables and the lagged predetermined variables, as if the central bank had

committed itself to the optimal policy under commitment while ignoring its judgment. Hence,

the central bank behaves according to instrument rule (4.3) and responds optimally to the current

deviation but expects zero future deviations. However, the private sector is assumed to have rational

expectations of the future inflation shock. These expectations will increase inflation to more than 4

percentage points at the time of the inflation shock. The central bank’s optimal response to current

and predetermined variables induces it to raise the instrument rate in line with inflation, but it

is nevertheless behind the curve in the sense that the real interest rate becomes negative and the

output gap becomes positive in the first few quarters. The central bank’s response eventually leads

to a high positive real interest rate, a negative output gap, and a fall in inflation. In comparison

with panel a, inflation rises earlier and more, and the output gap falls later, than under the optimal

monetary policy with judgment. The intertemporal loss is 54, a substantial increase of 29 units

above the loss for monetary policy with judgment.

Panel c shows the situation where the central bank’s judgment in quarter 0 is such that it

expects an output-gap deviation of 1 percentage point in quarter 6 and otherwise zero deviations.

The optimal policy projection, taking this judgment into account, is to raise the instrument rate

before the expected output-gap deviation, which moderates the expected impact on the output

gap. The inflation projection remains very flat, and the projections of the real interest rate and

the instrument rate are almost identical. The resulting intertemporal loss is small, 0.56.

Panel d shows the realizations over time of the variables in the situation where the realization

of the output-gap deviation is 1 percentage point in quarter 6 and zero in other quarters and the

central bank disregards judgment and only responds to current and lagged predetermined variables,

although again optimally so, corresponding to the instrument rule (4.3). In comparison with the

second interpretation of panel c, when the panel shows the actual realization of the variables for

the same realization of the deviations, the central bank ends up raising the instrument rate later
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Figure 5.3: Monetary policy with Taylor rules: Forward-looking model
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and more, and there is more movement in both the output gap and inflation. The intertemporal

loss is 1.9, 1.3 units above the loss for optimal policy under judgment.

Again, there are substantial differences between monetary policy with and without judgment

and corresponding intertemporal losses.

5.2.1. Taylor rules

I also examine two variants of Taylor rules for the forward-looking model, an explicit instrument

rule for which the instrument rate responds to lagged inflation and the output gap,

it = 1.5πt−1 + 0.5 yt−1,

and an implicit instrument rule for which the instrument rate responds to the forward-looking

current inflation and output,

it = 1.5πt + 0.5 yt.
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As noted in section 4, the implementation of an implicit instrument rule is somewhat complex. I

disregard these complications here, and just assume that it is somehow implemented. Figure 5.3

shows the realizations over time of the variables when the central bank implementing the two Taylor

rules for the two cases of either an inflation deviation or an output-gap deviation only in quarter 6.

Panels a and b show the result of the explicit and implicit Taylor rule, respectively, when

there is an inflation deviation in quarter 6 and the private sector has rational expectations of that

deviation. The resulting intertemporal losses are substantial, 43 and 38, respectively–18 and 13

units, respectively, above the loss for optimal monetary policy with judgment, 25. Interestingly, the

intertemporal loss with either of the two Taylor rules is less than the policy without judgment that

responds optimally to current and lagged predetermined variables, panel b in figure 5.2, which has

an intertemporal loss of 54. One possible interpretation of this is that history dependence in the

form of responding to the Lagrange multipliers is not always advantageous, when these multipliers

do not take into account the expected future deviations. The loss for the implicit Taylor rule is

lower than for the explicit one. One interpretation is that the implicit Taylor rule takes private-

sector expectations better into account, and therefore indirectly takes the expected future deviation

better into account.

Panels c and d show the result of the two Taylor rules when there is an output-gap deviation

in quarter 6. Here, the intertemporal loss is substantially higher than the small loss for monetary

policy without judgment in panel d of figure 5.2. In this case, the optimal response to current and

lagged predetermined variables does much better than the two Taylor rules.

I conclude that the two Taylor rules perform considerably worse than the optimal policy with

judgment, especially when there are expected future output-gap deviations.

6. Conclusions

The decision process of modern monetary policy that can be called “forecast targeting”–finding

a projection of the current and future instrument rate such that the projection paths of the target

variables “look good” relative to the central bank’s objectives–is formalized in this paper as a

technique that provides projections of the instrument rate and the target variables that minimize

an intertemporal loss function. The paper shows how this technique can easily incorporate central-

bank judgment, a necessary ingredient in modern monetary policy. In two empirical models of the

U.S. economy, a few examples are shown in which forecast targeting that incorporates judgment

provides significantly better monetary-policy performance than a policy that follows an instrument
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rule and disregards judgment. The paper shows how the policy problem, normally treated as an

infinite-horizon problem, can be reformulated as a convenient finite-horizon decision problem, which

is either an exact or a very close approximation to the infinite-horizon problem. This approximation

makes the policy problem much easier to handle numerically. The paper also shows how the time-

consistency problem can be easily managed and the resulting projections made to be optimal under

commitment in a timeless perspective. In particular, the paper shows that it is not necessary to

be explicit about the underlying complex reduced-form reaction function of monetary policy. The

policymakers only need to ponder the projections of the target variables and the instrument rate

under alternative assumptions, and these projections can be presented as graphs.

Several of the ideas and techniques presented here are already applied to various extents by

different central banks. I hope the presentation here will be useful for attempts to apply them

more extensively and systematically.

If policymakers hesitate to make the parameters of their loss function explicit (for instance, the

weight on output-gap stabilization relative to inflation stabilization), the techniques presented here

can still be very useful. For instance, the policymakers can ask the staff to provide optimal policy

projections of the target variables for a range of loss-function parameters. These projections then

provide one way to illustrate the available tradeoffs among the target variables, the set of feasible

projections of the target variables from which the policy makers should choose their optimal policy

projection.

The framework used here is one where mean projections are sufficient for optimal decisions,

what can be called mean forecast targeting, which is sufficient under the assumptions that result in

certainty equivalence. If these assumptions are not satisfied, the principal ideas in this paper can

be extended to a situation when the projections are probability distributions rather than means,

and the intertemporal losses can be computed by numerical integration over those distributions.

This I have previously called distribution forecast targeting (Svensson [23]). The details in such an

undertaking remain to be completed, and the practical differences between mean and distribution

forecast targeting remain to be clarified. Svensson and Williams [32] examines distribution forecast

targeting in a situation when where genuine model uncertainty implies that certainty equivalence

does not hold.
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Appendix to
Monetary Policy with Judgment: Forecast Targeting

Contents

A. Optimal policy under commitment with the deviation being an arbitrary stochastic process

B. The solution of a system of difference equations with the deviation

C. The model when judgment is a finite-order moving average

D. The Marcet-Marimon method to solve the linear-quadratic optimization problem with forward-
looking variables

E. An alternative finite-horizon numerical procedure for forward-looking models

F. The feasible set of projections of the states of the economy, the feasible set of projections of
the target variables, and the optimal targeting rule

G. An optimal restricted instrument rule

H. An empirical backward-looking model

I. An empirical forward-looking model

A. Optimal policy under commitment with the deviation being an arbitrary sto-

chastic process

Let the model equations for t ≥ 0 be (2.1). A common special case is when the matrix C = I, but

in general C need not be invertible. This system can be written

C̃

⎡⎣ Xt+1

Etxt+1
Etit+1

⎤⎦ = Ã

⎡⎣ Xt

xt
it

⎤⎦+ ∙ zt+1
0

¸
, (A.1)

where Etqt+τ ≡
R
qt+τdΦt(ζ

t) for any variable qt+τ (τ ≥ 0), the matrices Ã and C̃ are of dimension

(nX + nx)× (nX + nx + ni) and given by

Ã ≡
£
A B

¤
≡
∙
A11 A12 B1
A21 A22 B2

¸
, C̃ ≡

∙
I 0 0
0 C 0

¸
.

where A and B are partitioned according to (2.3).

The target variables are defined by (2.5). The intertemporal loss function in period 0 is

E0

∞X
t=0

δtLt,
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where the period loss function, (2.7), can be written as

Lt =
1

2

£
X 0
t x0t i0t

¤
D0WD

⎡⎣ Xt

xt
it

⎤⎦ .
Consider minimizing this intertemporal loss function under once-and-for-all commitment in period

t = 0, for given X0 = X̄0. For convergence, when the variance of zt+1 is nonzero, I need 0 < δ < 1.

Variants of this problem are solved in Backus and Driffill [2], Currie and Levine [5], and Söderlind

[20], when the deviation is an iid shock. The focus here is on the case when the deviation is an

arbitrary stochastic process.

Construct the Lagrangian,

L0 = E0

∞X
t=0

δt

⎧⎨⎩Lt +
£
ξ0t+1 Ξ0t

¤⎛⎝C̃

⎡⎣ Xt+1

Etxt+1
Etit+1

⎤⎦− Ã

⎡⎣ Xt

xt
it

⎤⎦− ∙ zt+1
0

¸⎞⎠⎫⎬⎭
+ ξ00(X0 − X̄0)/δ

= E0

∞X
t=0

δt

⎧⎨⎩Lt +
£
ξ0t+1 Ξ0t

¤⎛⎝C̃

⎡⎣ Xt+1

xt+1
it+1

⎤⎦− Ã

⎡⎣ Xt

xt
it

⎤⎦− ∙ zt+1
0

¸⎞⎠⎫⎬⎭
+ ξ00(X0 − X̄0)/δ,

where ξt+1 and Ξt are vectors of nX and nx Lagrange multipliers of the upper and lower block,

respectively, of (A.1). The law of iterated expectations has been used in the second equality,

E0Et = E0 for t ≥ 0. Note that Ξt is dated to emphasize that it depends on information available

in period t.

For t ≥ 1, the first-order conditions with respect to Xt, xt and it can be written£
X 0
t x0t i0t

¤
D0WD +

£
ξ0t Ξ

0
t−1

¤ 1
δ
C̃ −

£
Etξ

0
t+1 Ξ0t

¤
Ã = 0. (A.2)

For t = 0, the first-order condition with respect to X0, x0, and i0 can be written£
X 0
t x0t i0t

¤
D0WD +

£
ξ0t 0

¤ 1
δ
C̃ −

£
Etξ

0
t+1 Ξ0t

¤
Ã = 0, (A.3)

where X0 = X̄0. In comparison with (A.2), a vector of zeros enters in place of Ξ−1, since there is

no constraint corresponding to the lower block of (A.1) for t = −1. By including a fictitious vector

of Lagrange multipliers, Ξ−1, equal to zero,

Ξ−1 = 0, (A.4)

in (A.3), I can write the first-order conditions more compactly as (A.2) for t ≥ 0 and (A.4).
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The system of difference equations (A.2) has nX + nx + ni equations. The first nX equations

can be associated with the Lagrange multipliers ξt. Indeed, − ξt/δ can be interpreted as the total

marginal losses in period t of the predetermined variables Xt (for t = 0, with given X0, the equa-

tions determine ξ0). They are forward-looking variables: Lagrange multipliers for predetermined

variables are always forward-looking, whereas the Lagrange multipliers for the (equations for the)

forward-looking variables are predetermined. The middle nx equations are associated with the La-

grange multipliers Ξt. Indeed, ΞtA22 can be interpreted as the total marginal losses in period t of

the forward-looking variables, xt. Also, ΞtC can be seen as the marginal loss in period t of expec-

tations Etxt+1 of the forward-looking variables. The last ni equations are the first-order equations

for the vector of instruments. In the special case when the lower right ni×ni submatrix of D0WD

is of full rank, the instruments can be solved in terms of the other variables and eliminated from

(A.2), leaving the first nX+nx equations involving the Lagrange multipliers and the predetermined

and forward-looking variables only.

Rewrite the nX + nx + ni first-order conditions as

Ã0
∙
Etξt+1
Ξt

¸
= D0WD

⎡⎣ Xt

xt
it

⎤⎦+ 1
δ
C̃ 0
∙

ξt
Ξt−1

¸
. (A.5)

They can be combined with the model equations (A.1) to get a system of 2(nX+nx)+ni difference

equations for t ≥ 0,

∙
C̃ 0

0 Ã0

¸⎡⎢⎢⎢⎢⎣
Xt+1

Etxt+1
Etit+1
Etξt+1
Ξt

⎤⎥⎥⎥⎥⎦ =
∙

Ã 0

D0WD 1
δ C̃

0

¸⎡⎢⎢⎢⎢⎣
Xt

xt
it
ξt
Ξt−1

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎣

zt+1
0

0
0

⎤⎥⎥⎦ . (A.6)

Here, Xt and Ξt are predetermined variables, and xt, it, and ξt are non-predetermined variables.

This can be rearranged as the system

C
∙

y1,t+1
Ety2,t+1

¸
=M

∙
y1t
y2t

¸
+

⎡⎣ ∙ zt+1
0

¸
0

⎤⎦ ,
where

C ≡

⎡⎢⎢⎢⎢⎣
I 0 0 0 0
0 0 C 0 0
0 A021 0 0 A011
0 A022 0 0 A012
0 B02 0 0 B01

⎤⎥⎥⎥⎥⎦ , (A.7)

y1t ≡
∙

Xt

Ξt−1

¸
, y2t ≡

⎡⎣ xt
it
ξt

⎤⎦ .
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Thus, y1t is a vector of m1 ≡ nX + nx predetermined variables, and y2t is a vector of m2 ≡

nx + ni + nX non-predetermined variables.

Under suitable assumptions (see appendix B), such a system has a unique solution, which can

be written

y2t = F1y1t + Zt (A.8)

y1,t+1 = M1y1t +NEtZt+1 + PEtzt+1 +

∙
zt+1 − Etzt+1

0

¸
, (A.9)

where Zt is an m2-dimensional stochastic process given by

Zt ≡
∞X
τ=0

RτEtzt+1+τ ≡ Rzt, (A.10)

where I can interpret R as a linear operator on zt ≡ Et(z0t+1, z0t+2, ...)0.

In terms of the original variables, the solution for t ≥ 0, given X0 and Ξ−1 = 0, can be written⎡⎣ xt
it
ξt

⎤⎦ = F1

∙
Xt

Ξt−1

¸
+Rzt

≡ F

⎡⎣ Xt

zt

Ξt−1

⎤⎦ , (A.11)

∙
Xt+1

Ξt

¸
= M1

∙
Xt

Ξt−1

¸
+NREtz

t+1 + PEtzt+1 +

∙
zt+1 − Etzt+1

0

¸

≡ M

⎡⎣ Xt

zt

Ξt−1

⎤⎦+ ∙ zt+1 − Etzt+1
0

¸
, (A.12)

where F and M are linear operators. The details of the solution are derived in appendix B. The

matrices F1,M1, N , P , and {Rτ}∞τ=0–and thereby the linear operatorsM and F–depend on A, B,

C, D,W , and δ, but are independent of the second and higher moments of the exogenous stochastic

process {zt}∞t=1. This demonstrates the certainty equivalence of the commitment solution.37

If the commitment is once and for all and starts in period 0, Ξ−1 = 0. Commitment in a timeless

perspective can be seen as corresponding to a situation where the lower block of (A.12) is restricted

to apply also for previous periods. Then, Ξt−1 is determined by

Ξt−1 = M121Xt−1 +M122Ξt−2 +N2Et−1Zt + P2Et−1zt

=
∞X
τ=0

M122
τ (M121Xt−1−τ +N2Et−1−τZt−τ + P2Et−1−τzt−τ ),

37 The middle block of (A.11) is the optimal explicit instrument rule for this problem, the instrument written as
a function of predetermined and exogenous variables. Eliminating the Lagrange multipliers from (A.2) results in
the optimal targeting rule for this problem, a consolidated optimal first-order condition for the target variables. See
Svensson [25] on instrument and targeting rules, as well as the lecture notes Svensson [A7].
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where M1, N , and P are partitioned conformably with Xt and Ξt−1.

Alternatively, the commitment in a timeless perspective can be generated as optimization under

commitment or discretion with a term added to the intertemporal loss function in period 0,

E0

∞X
t=0

δtLt + Ξ−1
1

δ
Cx0,

where Ξ−1 is the Lagrange multiplier for the block of forward-looking equations from the optimiza-

tion in period −1 (see Svensson and Woodford [30] and Svensson [25]).

In the standard case, when zt is a vector of iid zero-mean shocks, I have Etzt+1 ≡ 0, Zt ≡

EtZt+1 ≡ 0, and zt ≡ 0. Thus, the terms involving Zt in (A.11) and (A.12) vanish.38 Consequently,

the effect of zt being an arbitrary exogenous stochastic process shows up only in the addition of the

terms involving Zt and the corresponding matrices N , P , and {Rτ}∞τ=0. Then, I can set M ≡ M1

and F ≡ F1, and

y1,t+1 =My1t + zt+1.

Let Σ denote the variance-covariance matrix of the iid shocks zt+1. Define the matrices D̄ and W̄

according to

Yt = D

⎡⎣ Xt

xt
it

⎤⎦ = D

⎡⎣ I 0
F11 F12
F21 F22

⎤⎦ y1t ≡ D̄y1t,

Lt =
1

2
Y 0tWYt =

1

2
y01tD̄

0WD̄y1t ≡
1

2
y01tW̄y1t,

where W̄ is symmetric and positive semidefinite. Then twice the minimum loss in period t will

satisfy

y01tV y1t + w = Et

∞X
τ=0

δτy01,t+τW̄y1,t+τ

= y01tW̄y1t +Et

∞X
τ=1

δτy01,t+τW̄y1,t+τ

= y01tW̄y1t + δEtEt+1

∞X
τ=0

δτy01,t+1+τW̄y1,t+1+τ

= y01tW̄y1t + δEt(y
0
1,t+1V y1,t+1 + w)

= y01tW̄y1t + δ(y01tM
0VMy1t +Etz

0
1,t+1V z1,t+1 + w)

= y01tW̄y1t + δy01tM
0VMy1t + δtrace(VΣ) + δw.

38 In the case when {zt} is an autoregressive process and can be written zt+1 = Ψzt + εt+1, where Ψ is a matrix
and εt an iid zero-mean process, zt can simply be included among the predetermined variable.

55
ECB

Working Paper Series No. 476
April 2005



It follows that

w =
δ

1− δ
trace(V Σ),

and that the matrix V satisfies the Lyapunov equation

V = W̄ + δM 0VM. (A.13)

It follows that when trace(V Σ) is nonzero, I must have δ < 1 for the existence of an finite w.

I can use the relations vec(A + B) = vec(A) + vec(B) and vec(ABC) = (C 0 ⊗ A) vec(B) on

(A.13) (where vec(A) denotes the vector of stacked column vectors of the matrix A, and ⊗ denotes

the Kronecker product) which results in

vec (V ) = vec(W̄ ) + δvec
¡
M 0VM

¢
= vec(W̄ ) + δ

¡
M 0 ⊗M 0¢ vec (V ) .

Solving for vec (V ) gives

vec (V ) =
£
I − δ

¡
M 0 ⊗M 0¢¤−1 vec(W̄ ). (A.14)

A.1. No forward-looking variables

If there are no forward-looking variables, so nx = 0, I have

C̃

∙
Xt+1

Etit+1

¸
= Ã

∙
Xt

it

¸
+ zt+1, (A.15)

where the matrices Ã and C̃ are of dimension nX × (nX + ni) and given by

Ã ≡
£
A B

¤
, C̃ ≡

£
I 0

¤
.

The period loss function is

Lt =
1

2
Y 0tWYt ≡

1

2

£
X 0
t i0t

¤
D0WD

∙
Xt

it

¸
.

The nX + ni first-order conditions can be written

Ã0Etξt+1 = D0WD

∙
Xt

it

¸
+
1

δ
C̃ 0ξt. (A.16)

Combined with the model equations, I get a system of 2nX + ni difference equations for t ≥ 0,∙
C̃ 0

0 Ã0

¸⎡⎣ Xt+1

Etit+1
Etξt+1

⎤⎦ = ∙ Ã 0

D0WD 1
δ C̃

0

¸⎡⎣ Xt

it
ξt

⎤⎦+ ∙ zt+1
0

¸
.
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Here, Xt are predetermined variables, and it and ξt are non-predetermined variables.

Under suitable assumptions, this system will have a unique solution for t ≥ 0, given X0, which

can be written ∙
it
ξt

¸
= F1Xt +Rzt,

Xt+1 = M1Xt +N0Rz
t + zt+1.

When there are no forward-looking variables, Xt+1 is directly determined by Xt, it, and zt+1

according to (2.1), so M1 and N0 are determined by A, B, and F1 as

M1 ≡ A+BFi,

N0 ≡ [B 0],

where

F1 ≡
∙
Fi
Fξ

¸
is partitioned conformably with it and ξt. In comparison with the general solution of (A.9), for the

backward-looking case,

N0Rz
t ≡ NREtz

t+1 + (P − I)Etzt+1.

B. The solution of a system of difference equations with the deviation

In order to understand the term in the solution (A.10) and (A.11) that corresponds to the deviation,

consider the system

C
∙

y1,t+1
Ety2,t+1

¸
=M

∙
y1t
y2t

¸
+

∙
θt+1
0

¸
(B.1)

for t ≥ 0; where y1t is a vector of m1 predetermined variables (y1t ≡ (X 0
t,Ξ

0
t−1)

0 and m1 = nX +nx

in the previous section); y2t is a vector of m2 non-predetermined variables (y2t ≡ (x0t, i0t, ξ0t)0 and

m2 = nx+ni+nX in the previous section); θt is an m1-vector of stochastic processes (θt ≡ (z0t, 00)0

in the previous section); and y10 is given.

By defining the m2-vector of endogenous expectation errors, ηt, as

ηt ≡ y2t − Ety2t,

(B.1) can be written in the form used in Sims [A6],

Γ0yt = Γ1yt−1 +Ψθt +Πηt,
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where yt ≡ (y01t, y
0
2t)

0. Sims shows that, under suitable assumptions, this system has a unique

solution of the form

yt = Θ1yt−1 +Θ0θt +Θy

∞X
τ=0

Θτ
fΘθEtθt+1+τ ,

where Θ0 and Θ1 are real matrices, Θy, Θf , and Θθ are complex matrices, and ΘyΘ
τ
fΘθ for any

integer τ ≥ 0 is a real matrix. These matrices can be calculated by his Matlab program Gensys,

available at www.princeton.edu/∼sims. An advantage with Sims’s approach is that one need not

keep track of what variables are predetermined or nonpredetermined. An arguable disadvantage is

that the determination of the expectational errors is somewhat complex.

Here, I prefer to keep close track of what variables are predetermined and nonpredetermined

and therefore choose to derive the solution to (B.1) following a route closer to Klein [A4] than

Sims [A6], but going beyond Klein in, as Sims, explicitly treating the case of θt being an arbitrary

stochastic process rather than an autoregressive process. The solution will then be of the form

y2t = F1y1t + Zt,

y1,t+1 = M1y1t +NEtZt+1 + PEtθt+1 + (θt+1 − Etθt+1),

Zt ≡
∞X
τ=0

RτEtθt+1+τ ,

where F1, M1, N , P , and Rτ are real matrices to be determined.

Take the expectation conditional on information in period t and write the system as

C
∙
Ety1,t+1
Ety2,t+1

¸
=M

∙
y1t
y2t

¸
+

∙
Etθt+1
0

¸
. (B.2)

Following Klein [A4], Sims [A6], and Söderlind [20], I use the generalized Schur decomposition.

This decomposition results in the square complex matrices Q, S, T , and Z such that

C = Q0SZ 0, (B.3)

M = Q0TZ 0, (B.4)

where Z 0 for a complex matrix denotes the complex conjugate transpose of Z (the transpose of the

complex conjugate of Z).39 The matrices Q and Z are unitary (Q0Q = Z 0Z = I), and S and T

are upper triangular (see Golub and van Loan [A2]). The decomposition is furthermore ordered so

the block consisting of the stable generalized eigenvalues (the jth diagonal element of T divided

39 Let the elements of the complex matrix Z be denoted zjk ≡ Re(zjk)+ i Im(zjk). Then the complex conjugate of
the matrix Z is the matrix of elements z̄jk ≡ Re(zjk)− i Im(zjk).
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by the jth diagonal element of S, λj ≡ tjj/sjj) comes first and the block of unstable generalized

eigenvalues comes last.40

More precisely, I assume the saddle-point property emphasized by Blanchard and Kahn [A1]:

The number of eigenvalues with modulus larger than unity equals the number of nonpredetermined

variables. Thus, I assume that |λj | > 1 for m1+1 ≤ j ≤ m1+m2 and |λj | < 1 for 1 ≤ j ≤ m1 (for

an exogenous predetermined variable with a unit root, I can actually allow |λj | = 1 for some 1 ≤ j

≤ m1).

Define ∙
ỹ1t
ỹ2t

¸
≡ Z 0

∙
y1t
y2t

¸
. (B.5)

I can interpret ỹ1t as a complex vector of m1 transformed predetermined variables and ỹ2t as a

complex vector of m2 transformed non-predetermined variables. Premultiply the system (B.2) by

Q and use (B.3)-(B.5) to write it as∙
S11 S12
0 S22

¸ ∙
Etỹ1,t+1
Etỹ2,t+1

¸
=

∙
T11 T12
0 T22

¸ ∙
ỹ1t
ỹ2t

¸
+

∙
Q11
Q21

¸
Etθt+1, (B.6)

where S, T , and Q have been partitioned conformably with ỹ1t and ỹ2t.

Consider the lower block of (B.6),

S22 Etỹ2,t+1 = T22 ỹ2t +Q21Etθt+1. (B.7)

Since the diagonal terms of S22 and T22 (sjj and tjj for m1+1 ≤ j ≤ m1+m2) satisfy |tjj/sjj | > 1,

the diagonal terms of T22 are nonzero, the determinant of T22 is nonzero, and T22 is invertible. Note

that S22 may not be invertible. I can then solve for ỹ2t as

ỹ2t = JEtỹ2,t+1 +KEtθt+1 (B.8)

=
∞X
τ=0

JτKEtθt+1+τ (B.9)

for t ≥ 0, where the complex matrices J and K (m2 ×m2 and m2 ×m1, respectively) are given by

J ≡ T−122 S22, (B.10)

K ≡ −T−122 Q21. (B.11)

Here, I have exploited that the modulus of the diagonal terms of T−122 S22 is less than one. I also

assume that Etỹ2,t+τ and Etθt+τ are sufficiently bounded. Then JτEtỹ2,t+τ → 0 when τ →∞, and
40 The sorting of the eigenvalues is often done by two programs written by Sims and available at

www.princeton.edu/∼sims, Qzdiv and Qzswitch.
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the infinite sum on the right side converges. Note that J may not be invertible, since S22 may not

be invertible.

I have, by (B.5),

y1t = Z11ỹ1t + Z12ỹ2t, (B.12)

y2t = Z21ỹ1t + Z22ỹ2t, (B.13)

where

Z ≡
∙
Z11 Z12
Z21 Z22

¸
(B.14)

is partitioned conformably with y1t and y2t. Under the assumption of the saddle-point property,

Z11 is square. I furthermore assume that Z11 is invertible. Then I can solve for ỹ1t in (B.12),

ỹ1t = Z−111 y1t − Z−111 Z12ỹ2t, (B.15)

and use this in (B.13) to get

y2t = F1y1t +Hỹ2t, (B.16)

where the real m2 ×m1 matrix F1 and the complex m2 ×m2 matrix H are given by

F1 ≡ Z21Z
−1
11 , (B.17)

H ≡ Z22 − Z21Z
−1
11 Z12. (B.18)

I will show below that H is invertible.

By (B.9) and (B.16), I can then write the solution of y2t as

y2t = F1y1t + Zt, (B.19)

where Zt is a real exogenous m2-vector stochastic process (not to be confused with the unitary

matrix Z in the Schur decomposition) given by

Zt ≡ Hỹ2t ≡
∞X
τ=0

RτEtθt+1+τ , (B.20)

Rτ ≡ HJτK (τ ≥ 0), (B.21)

where the matrices Rτ are real.

I note that the complex conjugate transpose of Z, Z 0, satisfies

Z 0 ≡
∙
Z 011 Z 021
Z 012 Z 022

¸
, (B.22)
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where the submatrices are given by (B.14). Since Z 0Z = ZZ 0 = I, I have∙
Z11 Z12
Z21 Z22

¸ ∙
Z 011 Z 021
Z 012 Z 022

¸
=

∙
Z11Z

0
11 + Z12Z

0
12 Z11Z

0
21 + Z12Z

0
22

Z21Z
0
11 + Z22Z

0
12 Z21Z

0
21 + Z22Z

0
22

¸
=

∙
I 0
0 I

¸
, (B.23)

By (B.22), I can write

ỹ2t = Z 012y1t + Z 022y2t.

Using this in (B.16) gives

y2t = F1y1t +H(Z 012y1t + Z 022y2t)

= (F1 +HZ 012)y1t +HZ 022y2t.

It follows that

F1 +HZ 012 = 0, (B.24)

HZ 022 = I. (B.25)

I can also show (B.24) by using (B.23),

Z21Z
−1
11 + (Z22 − Z21Z

−1
11 Z12)Z

0
12 = Z21Z

−1
11 + Z22Z

0
12 − Z21Z

−1
11 Z12Z

0
12

= Z21Z
−1
11 + Z22Z

0
12 − Z21Z

−1
11 (I − Z11Z

0
11)

= Z21Z
−1
11 + Z22Z

0
12 − Z21Z

−1
11 + Z21Z

0
11

= 0.

Similarly, I can show (B.25) by

(Z22 − Z21Z
−1
11 Z12)Z

0
22 = Z22Z

0
22 − Z21Z

−1
11 Z12Z

0
22

= Z22Z
0
22 − Z21Z

−1
11 (−Z11Z

0
21)

= Z22Z
0
22 + Z21Z

0
21

= I.

It follows from (B.25) that H is invertible and that its inverse is given by

H−1 = Z 022. (B.26)

It remains to find a solution for y1,t+1. The upper block of (B.6) is

S11Etỹ1,t+1 + S12Etỹ2,t+1 = T11ỹ1t + T12ỹ2t +Q11Etθt+1.
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Since the diagonal terms of S11 and T11 satisfy |tjj/sjj | < 1, all diagonal terms of S11 must be

nonzero, so the determinant of S11 is nonzero, and S11 is invertible. I can then solve for Etỹ1,t+1 as

Etỹ1,t+1 = S−111 (T11ỹ1t + T12ỹ2t)− S−111 S12Etỹ2,t+1 + S−111 Q11Etθt+1.

By (B.12),

Ety1,t+1 = Z11Etỹ1,t+1 + Z12Etỹ2,t+1

= Z11[S
−1
11 (T11ỹ1t + T12ỹ2t)− S−111 S12Etỹ2,t+1 + S−111 Q11Etθt+1] + Z12Etỹ2,t+1

= Z11S
−1
11 T11ỹ1t + Z11S

−1
11 T12ỹ2t + (Z12 − Z11S

−1
11 S12)Etỹ2,t+1 + Z11S

−1
11 Q11Etθt+1

= Z11S
−1
11 T11(Z

−1
11 y1t − Z−111 Z12ỹ2t) + Z11S

−1
11 T12ỹ2t + (Z12 − Z11S

−1
11 S12)Etỹ2,t+1

+Z11S
−1
11 Q11Etθt+1

= Z11S
−1
11 T11Z

−1
11 y1t + Z11S

−1
11 (T12 − T11Z

−1
11 Z12)ỹ2t

+(Z12 − Z11S
−1
11 S12)Etỹ2,t+1 + Z11S

−1
11 Q11Etθt+1

= Z11S
−1
11 T11Z

−1
11 y1t + Z11S

−1
11 (T12 − T11Z

−1
11 Z12)(JEtỹ2,t+1 +KEtθt+1)

+ (Z12 − Z11S
−1
11 S12)Etỹ2,t+1 + Z11S

−1
11 Q11Etθt+1

= Z11S
−1
11 T11Z

−1
11 y1t

+ [Z11S
−1
11 (T12 − T11Z

−1
11 Z12)J + (Z12 − Z11S

−1
11 S12)]Etỹ2,t+1

+Z11S
−1
11 [Q11 + (T12 − T11Z

−1
11 Z12)K]Etθt+1, (B.27)

where I have used (B.15) and (B.8).

It follows that I can use (B.27), (B.20), and (B.26) and write the solution as

y1,t+1 =My1t +NEtZt+1 + PEtθt+1 + (θt+1 − Etθt+1), (B.28)

where the real matrices M , N , and P are given by

M ≡ Z11S
−1
11 T11Z

−1
11 , (B.29)

N ≡ [Z11S
−1
11 (T12 − T11Z

−1
11 Z12)J + (Z12 − Z11S

−1
11 S12)]Z

0
22, (B.30)

P ≡ Z11S
−1
11 [Q11 + (T12 − T11Z

−1
11 Z12)K]. (B.31)

Thus, the solution to the system (B.1) is given by (B.19) and (B.28) for t ≥ 0. This results in

the solution (A.11)-(A.12) above, where the matrix P in (A.12) is the submatrix of the first nX

rows of the matrix P in (B.31) (since θt+1 ≡ (z0t+1, 00)0).
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C. The model when judgment is a finite-order moving average

When the deviation is a finite-order moving-average process and the dynamics of the deviation and

judgment is described by (2.16), the model can be written as⎡⎣ Xt+1

zt+1

Cxt+1|t

⎤⎦ = Ā

⎡⎣ Xt

zt

xt

⎤⎦+ B̄it +

⎡⎣ εt+1
εt+1

0

⎤⎦ , (C.1)

where the matrices Ā and B̄ are given by

Ā ≡

⎡⎣ A11 Az12 A12
0 Az22 0
A21 0 A22

⎤⎦ , B̄ ≡

⎡⎣ B1
0
B2

⎤⎦ ,
the matrix Az is partitioned conformably with zt and zt as

Az ≡
∙
0 Az12

0 Az22

¸
,

and ε̃t ≡ (ε0t, εt 0)0 is zero-mean and iid. Thus, this results in the standard forward-looking linear-

quadratic model, with the predetermined variables being Xt and zt. The optimal policy projection

can then be described as (2.17) and (2.18), where F and M are finite-dimensional matrices. The

intertemporal loss for the optimal policy projection can then be written as

1

2

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦0 V
⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ ,
where the matrix V is the solution to the Lyapunov equation,

V = W̄ + δM 0VM,

the symmetric and positive semidefinite matrix W̄ is defined by

W̄ =

⎡⎣ I 0 0
Fx
Fi

⎤⎦0D0WD

⎡⎣ I 0 0
Fx
Fi

⎤⎦ ,
and the matrix F is partitioned conformably with xt and it as

F ≡
∙
Fx
Fi

¸
.
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D. TheMarcet-Marimonmethod to solve the linear-quadratic optimization prob-

lem with forward-looking variables

Let X̄t ≡ (Xt, z
t) and write the model (C.1) as

X̄t+1 = Ā11X̄t + Ā12xt + B̄1it + ε̃t+1, (D.1)

CEtxt+1 = Ā21X̄t + Ā22xt + B̄2it. (D.2)

Write the period loss function as

Lt =
1

2

⎡⎣ X̄t

xt
it

⎤⎦0W 0

⎡⎣ X̄t

xt
it

⎤⎦ , (D.3)

where the symmetric positive semidefinite matrix W 0 is defined by⎡⎣ X̄t

xt
it

⎤⎦0W 0

⎡⎣ X̄t

xt
it

⎤⎦ ≡
⎡⎣ Xt

xt
it

⎤⎦0D0WD

⎡⎣ Xt

xt
it

⎤⎦ .
Consider the problem in period 0,

min
{it}t≥0

E0

∞X
t=0

δtLt, (D.4)

subject to (D.1), (D.2) and X0 given. The minimization is taken to be under commitment.

Marcet and Marimon [14] show that this problem can be reformulated as a recursive saddlepoint

problem,

max
{γt}t≥0

min
{xt,it}t≥0

E0

∞X
t=0

δtL̃t, (D.5)

where the modified period loss function satisfies

L̃t ≡ L̃(X̄t,Ξt−1;xt, it, γt)

≡ Lt + L1t

≡ Lt + γ0t(− Ā21X̄t − Ā22xt − B̄2it) +
1

δ
Ξ0t−1Cxt,

and the optimization is subject to (D.1), to

Ξt = γt, (D.6)

and to X0 and Ξ−1 = 0 given. The value function for the saddlepoint problem, starting in any

period t, satisfies

Ṽ (X̄t,Ξt−1) ≡ max
γt

min
(xt,it)

{L̃(X̄t,Ξt−1;xt, it, γt) + δEtṼ (X̄t+1,Ξt)},
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subject to (D.1) and (D.6).

Define

X̃t ≡
∙

X̄t

Ξt−1

¸
, ı̃t ≡

⎡⎣ xt
it
γt

⎤⎦ ,
and define W̄ , Ã, B̃, and C̃ such that

L̃t ≡
1

2

∙
X̃t

ı̃t

¸0
W̄

∙
X̃t

ı̃t

¸
, (D.7)

X̃t+1 = ÃX̃t + B̃ı̃t + C̃ε̃t+1. (D.8)

The problem (D.5) subject to (D.8) and given X̃t is isomorphic to a standard backward-looking

linear-quadratic problem, except being a saddlepoint problem. However, the saddlepoint aspect

does not affect the first-order conditions. It is easy to show that the first-order conditions of the

saddlepoint problem are identical to those of the original problem, (D.4) subject to (D.1) and (D.2).

The value function for the saddlepoint problem is quadratic,

Ṽ (X̃t) ≡
1

2
(X̃ 0

tṼ X̃t + w̃),

where Ṽ solves the Riccati equation,

Ṽ = Q+ δÃ0Ṽ Ã− (δB̃0Ṽ Ã+N 0)0(δB̃0Ṽ B̃ +R)−1(δB̃0Ṽ Ã+N 0),

where

W̄ ≡
∙

Q N
N 0 R

¸
,

is partitioned conformably with X̃t and ı̃t.

The optimal reaction function for the saddlepoint problem is linear,

ı̃t = FX̃t ≡

⎡⎣ Fx
Fi
Fγ

⎤⎦ X̃t,

where F is partitioned conformably with xt, it, and γt and satisfies

F ≡ − (δB̃0Ṽ B̃ +R)−1(δB̃0Ṽ Ã+N 0).

This reaction function function is the optimal reaction function function for the original problem.

Optimization in a timeless perspective in period t corresponds to taking Ξt−1 from the previous

period’s decision problem as given, also in period 0.
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The equilibrium dynamics will be given by

X̃t+1 = MX̃t + C̃εt+1,

xt = FxX̃t,

it = FiX̃t,

Lt =
1

2
X̃ 0
tW̃ X̃t,

where

M ≡ Ã+ B̃F̃ ,

W̃ ≡

⎡⎣ I 0
Fx
Fi

⎤⎦0W 0

⎡⎣ I 0
Fx
Fi

⎤⎦ .
The value function for the saddlepoint problem can be decomposed according to

1

2
(X̃ 0

tṼ X̃t + w̃) ≡ 1
2
(X̃ 0

tV X̃t + w) +
1

2
(X̃ 0

tV
1X̃t + w1),

where
1

2
(X̃ 0

tV X̃t +w) ≡ Et
∞X
τ=0

δτ−t
1

2
X̃ 0
t+τW̃ X̃t+τ ,

is the value function for the original problem starting in period t with X̃t ≡ (X 0
t,Ξ

0
t−1)

0 given. The

matrix V will satisfy the Lyapunov equation,

V = W̃ + δM 0VM,

and, when δ < 1, the constant w will satisfy

w =
δ

1− δ
tr(C̃ 0V C̃Σε̃ε̃),

where Σε̃ε̃ is the covariance matrix for ε̃t.

E. An alternative finite-horizon numerical procedure for forward-looking models

In the finite-horizon model in section 3.1, there is an obvious alternative numerical procedure that

will provide a projection arbitrarily close to the optimal policy projection without requiring such a

long horizon that Xt+T,t and Ξt+T−1,t are close to their steady-state levels. It requires iterations,

though.
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Assume that iteration j−1 has resulted in Ξ(j−1)t+T−1,t. Start iteration j by using (2.17) and (2.18)

to replace (3.3) by

xt+T+1,t = FxM1

"
Xt+T,t

Ξ
(j−1)
t+T−1,t

#
,

where the matrices F1 and M1 are defined by

F

⎡⎣ Xt

0
Ξt−1

⎤⎦ ≡ F1

∙
Xt

Ξt−1

¸
, M

⎡⎣ Xt

0
Ξt−1

⎤⎦ ≡M1

∙
Xt

Ξt−1

¸
,

and F1 is partitioned conformably with xt and it as

F1 ≡
∙
Fx
Fi

¸
.

Consequently, replace (3.4) by

−A21Xt+T,t −A22xt+T,t −B2it+T,t + CFxM1

"
Xt+T,t

Ξ
(j−1)
t+T−1,t

#
= 0. (E.1)

Use (3.1), (3.2), and (E.1) to construct G and gt (the left submatrix of the matrix CFxM1 will

enter the last block of G and the product of the right submatrix and Ξ(j−1)t+T−1,t will enter the last

block of gt). Furthermore, add the term (3.7) with Ξt+T−1,t = Ξ
(j−1)
t+T−1,t to the loss function (that is,

modify the diagonal block of Ω that corresponds to Xt+T,t and add a linear term that corresponds

to the cross products of Xt+T,t and Ξ
(j−1)
t+T−1,t). Find the optimal policy projection ŝ

t(j) and Lagrange

multiplier Λt(j) via the analogue of (3.12). This ends iteration j and results in Ξ(j)t+T−1,t. Continue

until Ξ(j)t+T−1,t has converged.

Obviously this alternative procedure does not require that Xt+T,t and Ξt+T−1,t are close to

their steady-state levels. Which procedure is fastest will depend on the number of variables in the

problem and the rate of convergence towards the steady state of the optimal policy projection.

F. The feasible set of projections of the states of the economy, the feasible set of

projections of the target variables, and the optimal targeting rule

In the finite-horizon projection model in section 3.1, the feasible set of projections in period t of

the states of the economy, St, is the set of projections st that satisfy (3.5), repeated here as

Gst = gt. (F.1)

That is, St is the set of solutions to (F.1) for given G and gt. Define n ≡ (T + 1)(nX + nx + ni),

m ≡ (T + 1)(nX + nx) < n, and p ≡ (T + 1)ni ≡ n−m. Note that G is m× n, st is n× 1, and gt

is m× 1. Assume that G is of rank m.
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Since G is of rank m, the set of solutions to (F.1) is a linear manifold of Rn of dimension

p ≡ n−m.41 It can be written as the set of projections st that satisfy

st = G+gt + (I −G+G)ξ (F.2)

for any ξ ∈ Rn (see Harville [A2, chapters 11 and 20]). Here, the n×m matrix G+ is the Moore-

Penrose inverse of G. When G is m× n and of rank m, the Moore-Penrose inverse is given by

G+ = G0(GG0)−1

(note that GG0 is m × m, of rank m, and hence invertible). Then, G+G = G0(GG0)−1G is a

projection matrix that projects vectors in Rn on the m-dimensional column space of the n × m

matrix G0, the transpose of G.42 Denote the column space of G0 by C(G0). For any ξ in Rn,

the vector G+Gξ lies in C(G0). Then I − G+G is a projection matrix that projects vectors in Rn

off the column space of G0, that is, on the p-dimensional subspace of Rn orthogonal to C(G0),

the orthogonal complement of C(G0) (relative to Rn), denoted C⊥(G0). Hence, the solution set St
consist of C⊥(G0) shifted away from the origin by the vector G+gt,

St = {G+gt}+ C⊥(G0).

Furthermore, the vector G+gt is the st of minimum norm that satisfies (F.1). Then, G+gt is

orthogonal to the solution set St and lies in the column space of G, C(G0).43

Figure F.1 provides an illustration of the above, when n = 2 andm = p = 1. The linear manifold

St, the set of feasible projections of the states of the economy, st, is shown as the negatively sloped

line through the point st = G+gt. The column space C(G0) is the positively sloped line through

the origin. The linear manifold St is orthogonal to the column space. The orthogonal complement

of the column space, C⊥(G0), is the negatively sloped line through the origin. The linear manifold

is the orthogonal complement shifted away from the origin to the point G+gt. Furthermore, the

point G+gt is the point in the linear manifold with the shortest distance to the origin.

Let G⊥ denote a p× n matrix with p linearly independent rows, each of which is orthogonal to

the m rows of G. Then C⊥(G0) = C(G⊥0), where the latter expression denotes the column space of
41 Let V be a linear space. A subset S of V is a linear manifold of V (also called a linear variety of V ), if there is a

v in V such that the set S− {v} ≡ {s− v|s ∈ S} is a subspace of V . The dimension of S is the dimension of S− {v}.
Hence, a linear manifold is a subspace that has possibly been shifted away from the origin (in the above case by the
vector v).
42 In this section, the word “projection” is used not only to refer to mean forecasts but also, depending on the

context, to refer to mathematical projections in linear space.
43 A vector is orthogonal to a linear manifold if it is orthogonal to the corresponding subspace.
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Figure F.1: The set of feasible projections of the state of the economy, St

Rn
C(G' )

C (G' )

St

G+gt

0

st^

⊥

Ωst+ωt–1
^

G⊥0, and St can be written as the set of projections st that satisfy

st = G+gt +G⊥0ξ

for any ξ ∈ Rn.

The projection of the target variables, Y t, is a linear function of the projection of the states of

the economy according to (3.6), repeated here as

Y t = D̃st. (F.3)

Let q ≡ (T +1)nY ≤ n, note that Y t is q× 1 and D̃ is q×n, and take D̃ to be of rank q. It follows

that the set of feasible projections of the target variables, Yt, consists of the set of projections Y t

that satisfy

Y t = D̃G+gt + D̃G⊥0ξ

for any ξ in Rn. This is a linear manifold of Rq of dimension at most min(p, q). If I take as the

normal case that the number of target variables is at least as large as the number of instruments,

nY ≥ ni (typically, there are at least two target variables, inflation and the output gap, but only

one instrument, the instrument rate), I have q ≥ p, and the set of feasible projections of the target

variables, Yt, is a linear manifold of Rq of dimension at most p ≤ q. The matrix D̃ simply maps

the p-dimensional linear manifold St of Rn into the at most p-dimensional linear manifold Yt of Rq.
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Figure F.2: The set of feasible projections of the target variables, Yt

Rq
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It follows that Yt is the at most p-dimensional column space C(D̃G⊥0) in Rq shifted away from

the origin by the vector D̃G+gt,

Yt = {D̃G+gt}+ C(D̃G⊥0).

Figure F.2 provides an illustration of the above, when q = 2 and p = 1. The linear manifold

Yt, the set of feasible projections of the target variables, Y t, is shown as the negatively sloped line

through the point Y t = D̃G+gt. The column space of the matrix D̃G⊥0, C(D̃G⊥0), is shown as the

negative sloped line through the origin. The linear manifold Yt is this column space shifted away

from the origin to the point D̃G+gt.

F.1. An optimal targeting rule for the forward-looking model

Consider the first-order condition for optimal policy under commitment in a timeless perspective

in the forward-looking model, (3.10), rewritten here as

Ωst + ωt−1 +G0Λt = 0 (F.4)

The optimal targeting rule is the first-order condition in terms of Y t when the Lagrange multiplier

has been eliminated.

Let me interpret the first-order condition in terms of st, eliminate the Lagrange multiplier, and

interpret the resulting targeting rule. Note that Ω is n× n, st and ωt−1 are n× 1, G0 is n×m and

of rank m, and Λt is m× 1.
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Write the first-order condition as

Ωst + ωt−1 = G0(−Λt). (F.5)

The term Ωst+ωt−1 on the left side is the gradient of the loss function with respect to st, a vector

in Rn. The condition (F.5) can be interpreted as stating that the gradient of the loss function is an

element of the m-dimensional column space of the n×m matrix G0, C(G0), with −Λt providing the

coefficients of the corresponding linear combination of the column vectors of G0. This is equivalent

to the tangency of the loss function’s iso-loss surface in Rn with the feasible set of projections,

St. The gradient of the loss function is orthogonal to the iso-loss surface. Tangency of the iso-loss

surface with St is then equivalent to the gradient being orthogonal to St. The subspace orthogonal

to St is C(G0), as noted above.

This is illustrated in figure F.1 when n = 2 and m = p = 1. The curve shows part of the iso-loss

surface of the loss function that is tangential to the linear manifold St. The tangency occurs at

the optimal policy projection, ŝt. The gradient of the loss function at that point, Ωŝt + ωt−1, is

shown as the vector pointing northeast from that point. Tangency between the iso-loss surface and

the linear manifold is equivalent to the gradient being orthogonal to the linear manifold, or the

gradient being an element in the column space, C(G0).

In order to eliminate the Lagrange multipliers, premultiply (F.5) by G,44

G(Ωst + ωt−1) = GG0(−Λt). (F.6)

Exploit that GG0 is m×m, of rank m, and hence invertible, and solve for −Λt,

−Λt = (GG0)−1G(Ωst + ωt−1). (F.7)

(The matrix (GG0)−1G is actually the Moore-Penrose inverse of G0, G0+, where G0 is n ×m with

rank m.) Substitution of Λt in (F.4) gives

M(Ωst + ωt−1) = 0, (F.8)

where M is the n× n matrix (not to be confused with the matrix denoted M in other sections of

this paper)

M ≡ I −G0(GG0)−1G = I −G+G.

44 One might ask why multipliying with the matrix G with rank m < n rather than a matrix with full rank n does
not loose any information of (F.5). More formally, let G⊥ be a p× n matrix whose p rows are linearly independent
and orthogonal to the m rows of G. That is, the column space of G⊥0 is the space in Rn orthogonal to the column

space of G0. Then the n×n matrix G
G⊥

is of full rank. Multiplying (F.5) by this matrix leads to the m equations

of (F.6) and p additional trivial equations of zero equals zero, since we know that the left and right sides of (F.5) lie
in the column space of G0.
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As noted above, M is the projection matrix that projects vectors in Rn on the p-dimensional

orthogonal complement of the column space of G0, C⊥(G0). Hence, (F.8) states that the projection

on C⊥(G0) of the gradient of the loss function is zero. Of course, this follows directly from the

observation above that the gradient lies in C(G0).

In any case, the optimal targeting rule in terms of st is equivalent to the statement that the

gradient is orthogonal to the feasible set of projections of the states of the economy, St, which can

be expressed algebraically as (F.8).

However, (F.8) involves n equations, but only p independent equations. It is hence desirable to

condense (F.8) to only p equations. The projection matrix M is a symmetric idempotent matrix of

rank p. Then its spectrum consists of p eigenvalues equal to one and m eigenvalues equal to zero,

and it can be decomposed as

M = Q

∙
Ip 0
0 0

¸
Q0 ≡

£
Qp Qm

¤ ∙ Ip 0
0 0

¸ ∙
Q0p
Q0m

¸
≡ QpQ

0
p.

Here Q is the orthonormal n× n matrix whose columns are the eigenvectors of M , Ip is the p× p

identity matrix, and Qp is the n× p matrix whose columns are the p eigenvectors corresponding to

the p nonzero eigenvalues. Then, pre-multiplying (F.8) by Q0 gives the p nontrivial equations,

Q0p(Ωs
t + ωt−1) = 0, (F.9)

and m trivial equations of zero equals zero.

Furthermore, (F.9) is expressed in terms of the projection of the states of the economy, st. In

order to express it in terms of the projection of the target variables, Y t, note that, by the definition

of Ω for the forward-looking model in section 3.1,

Ωst ≡ D̃0W̃ D̃st ≡ D̃0W̃Y t,

where W̃ is a symmetric positive semidefinite block-diagonal (T +1)nY matrix with the (τ +1)-th

diagonal block being δτW for 0 ≤ τ ≤ T . Hence, I can write (F.9) as involving only the target

variables and, through the vector ωt−1, the Lagrange multiplier Ξt−1,t−1 from the optimization in

period t− 1,

Q0p[D̃
0W̃Y t + ωt−1] = 0. (F.10)

This is one concise form of the targeting rule. The history-dependence of the optimal policy

under commitment in a timeless perspective enters via Ξt−1,t−1.
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By combining (F.9) with (3.5), I get∙
G

Q0pΩ

¸
st =

∙
gt

−Q0pωt−1

¸
,

and

ŝt =

∙
G

Q0pΩ

¸−1 ∙
gt

−Q0pωt−1

¸
≡ H

⎡⎣ Xt

Ξt−1,t−1
zt

⎤⎦ , (F.11)

Ŷ t = D̃ŝt = D̃H

⎡⎣ Xt

Ξt−1,t−1
zt

⎤⎦ .
From (F.7) and (F.11), I can extract

Ξt,t = HΞ

⎡⎣ Xt

Ξt−1,t−1
zt

⎤⎦ ,
to be used in the intertemporal loss function for the decision problem in period t+ 1.

If the forward-looking variables, xt, are target variables–elements of Yt–the intertemporal loss

function with the added term can be written

1

2
Y t 0W̃Y t +w0t−1Y

t,

where wt−1 is a q-vector whose only nonzero elements contain the vector (Ξt−1,t−1 1δC)
0 such that

w0t−1Y
t ≡ Ξt−1,t−1 1δCxt,t. Then, the optimal targeting rule can be expressed as the gradient,

W̃Y t + wt−1, being orthogonal to the linear manifold Yt. Suppose Yt is of dimension p, and let

F ≡ D̃G⊥0 (not to be confused with the matrix denoted F in other sections of the paper). The

projection matrix that projects vectors in Rq on the p-dimensional subspace Yt− {D̃G+gt} is then

F (F 0F )−1F 0, so the condition that the gradient is orthogonal to the linear manifold Yt can be

written as the p equations.

F (F 0F )−1F 0W̃ (ΩY t + wt−1) = 0.

This is the optimal targeting rule for this case.

This case is illustrated in figure F.2. The curve in the figure shows a part of the iso-loss surface

of the loss function that is tangential to the linear manifold Yt. The tangency point is the optimal

policy projection of the target variables, Ŷ t. The gradient of the loss function at that point,

W̃ Ŷ t + wt−1, is shown as the vector at that point that points northeast. It is orthogonal to the

linear manifold.

Svensson [25] interprets optimal targeting rules in terms of the equality between the marginal

rates of transformation and marginal rates of substitution between the target variables. A vector
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of marginal rates of transformation between the target variables is a vector in the column space

C(D̃G⊥0), the subspace associated with Yt. A vector of marginal rates of substitution between the

target variables is a vector in the tangent space of the intertemporal loss function, the subspace

orthogonal to the gradient of the loss function. Equality between the marginal rates of transfor-

mation and substitution is equivalent to the gradient being orthogonal to Yt, that is, the iso-loss

surface being tangential to Yt.

G. An optimal restricted instrument rule

Add to the model (2.1) an explicit instrument rules of the form

it = fXXt, (G.1)

where the ni×nX matrix fX is restricted to be an element fX ∈ F of a given class F of instrument

rules. Assume that the deviation zt is an iid zero-mean process with variance-covariance matrix Σ.

Let the loss function in period t be

lim
δ→1

Et

∞X
τ=0

(1− δ)δτLt+τ = E[Lt],

where Lt is given by (2.7). By appendix A, for a given instrument rule fX , the conditional loss in

period t is, for a given δ (0 < δ < 1), given by

Et

∞X
τ=0

(1− δ)δτLt+τ =
1

2
{(1− δ)X 0

tV (fX , δ)Xt + δtrace[V (fX , δ)Σ]},

where V (fX , δ) is a symmetric positive semidefinite nX × nX matrix that depends on A, B, C, D,

W , fX , and δ. It follows that

E[Lt] =
1

2
trace[V (fX , 1)Σ].

The optimal restricted instrument rule, f̂X , is then given by

f̂X = arg min
fX∈F

1

2
trace[V (fX , 1)Σ].

It depends on the class F and the variance-covariance matrix Σ, in addition to A, B, C, D, and

W .

Note that there is little point in considering implicit instrument rules here,

it = fXXt + fxxt. (G.2)
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For any such implicit instrument rule f ≡ [fX fx] for which a unique equilibrium exists,

xt = g(f)Xt,

where the matrix g(f) depends on f . Then,

it = [fX + fxg(f)]Xt ≡ f̃X(f)Xt.

That is, for each implicit instrument rule f for which there is a unique equilibrium, there is a

unique explicit instrument rule f̃X(f) consistent with that equilibrium. Furthermore, for any

explicit instrument rule fX in (G.1) for which there is a unique equilibrium, there is a continuum

of implicit instrument rules consistent with that equilibrium. For any given instrument rule fX for

which there exists a unique equilibrium,xt = g(fX)Xt, where the matrix g(fX) depends on fX . For

any arbitrary ni × nx matrix fx, I can then write

it = fXXt + fx[xt − g(fX)Xt] = [fX − fxg(fX)]Xt + fxxt ≡ f̃X(fX , fx)Xt + fxxt.

The only reason for considering implicit instrument rules rather than an explicit instrument rule in

this context (when the deviation is an iid zero-mean shock) is when an explicit instrument rule has a

determinacy problem–multiple equilibria–in which case one may be able to find a corresponding

implicit instrument rule for which there is a unique equilibrium. Svensson and Woodford [30]

examine such issues further.

H. An empirical backward-looking model

The two equations of the model of Rudebusch and Svensson [18] are

πt+1 = απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3 + αyyt + zπ,t+1 (H.1)

yt+1 = βy1yt + βy2yt−1 − βr

µ
1

4
Σ3j=0it−j −

1

4
Σ3j=0πt−j

¶
+ zy,t+1, (H.2)

where πt is quarterly inflation in the GDP chain-weighted price index (pt) in percentage points at

an annual rate, i.e., 400(ln p− ln pt−1); it is the quarterly average federal funds rate in percentage

points at an annual rate; yt is the relative gap between actual real GDP (qt) and potential GDP (q∗t )

in percentage points, i.e., 100(qt− q∗t )/q
∗
t . These five variables were de-meaned prior to estimation,

so no constants appear in the equations.

The estimated parameters, using the sample period 1961:1 to 1996:2, are shown in table H.1.
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Table H.1
απ1 απ2 απ3 απ4 αy βy1 βy2 βr
0.70
(0.08)

− 0.10
(0.10)

0.28
(0.10)

0.12
(0.08)

0.14
(0.03)

1.16
(0.08)

− 0.25
(0.08)

0.10
(0.03)

The hypothesis that the sum of the lag coefficients of inflation equals one has a p-value of .16, so

this restriction was imposed in the estimation.45

The state-space form can be written⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt+1
πt
πt−1
πt−2
yt+1
yt
it
it−1
it−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P4
j=1 απjej + αye5

e1
e2
e3

βre1:4 + βy1e5 + βy2e6 − βre7:9
e5
e0
e7
e8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt
πt−1
πt−2
πt−3
yt
yt−1
it−1
it−2
it−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

− βr
4
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
it +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zπ,t+1
0
0
0

zy,t+1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ej (j = 0, 1, ..., 9) denotes a 1×9 row vector, for j = 0 with all elements equal to zero, for

j = 1, ..., 9 with element j equal to unity and all other elements equal to zero; and where ej:k

(j < k) denotes a 1×9 row vector with elements j, j + 1, ..., k equal to 1
4 and all other elements

equal to zero. The predetermined variables are πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−2, and

it−3. There are no forward-looking variables.

For a loss function (5.3) with δ = 1, λ = 1, and ν = 0.2, and the case where zt is an iid zero-

mean shock; the optimal reaction function (2.21) is (the coefficients are rounded to two decimal

points),

it = 1.22πt+0.43πt−1+0.53πt−2+0.18πt−3+1.93 yt− 0.49 yt−1+0.36 it−1− 0.09 it−2− 0.05 it−3.

I. An empirical forward-looking model

An empirical New Keynesian model estimated by Lindé [13] is

πt = ωfπt+1|t + (1− ωf )πt−1 + γyt + zπt,

yt = βfyt+1|t + (1− βf )(βy1yt−1 + βy2yt−2 + βy3yt−3 + βy4yt−4)− βr(it − πt+1|t) + zyt,

where the restriction
P4

j=1 βyj = 1 is imposed. The estimated coefficients are (Table 6a in Lindé

[13], non-farm business output) are shown in table I.1.
45 This p-value was obtained by simulating the above inflation equation 1000 times and ranking the sum of

coefficients from the unrestricted Phillips curve estimated from the actual data (i.e., 0.969) in the set of unrestricted
sums estimated from the simulated data. This is in the spirit of Rudebusch [A5]. For comparison, the simple t -test
gives a p-value of 0.42.
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Table I.1
ωf γ βf βr βy1 βy2 βy3
0.457
(0.065)

0.048
(0.007)

0.425
(0.027)

0.156
(0.016)

1.310
(0.174)

− 0.229
(0.279)

− 0.011
(0.037)

For simplicity, I set βy1 = 1, βy2 = βy3 = βy4 = 0. Then the state-space form can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt
yt
it

zπ,t+1
zy,t+1

ωfπt+1|t
βrπt+1|t + βfyt+1|t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− (1− ωf ) 0 0 − 1 0 1 − γ
0 − (1− βf ) 0 0 − 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt−1
yt−1
it−1
zπt
zyt
πt
yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
βr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
it +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

zπ,t+1
zy,t+1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The predetermined variables are πt−1, yt−1, it−1, zπt, and zyt, and the forward-looking variables

are πt and yt.

For a loss function (5.3) with δ = 1, λ = 1, and ν = 0.2, and the case where zt is an iid zero-

mean shock; the optimal reaction function (2.21) is (the coefficients are rounded to two decimal

points),

it = 0.58πt−1 + 0.80 yt−1 + 0.41 it−1 + 1.06 zπt + 1.38 zyt + 0.02Ξπ,t−1,t−1 + 0.20Ξy,t−1,t−1,

where Ξπ,t−1,t−1 and Ξy,t−1,t−1 are the Lagrange multipliers for the two equations for the forward-

looking variables in the decision problem in period t− 1.
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