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Abstract

The optimal weights on indicators in models with
partial information about the state of the economy
and forward-looking variables are derived and
interpreted, both for equilibria under discretion and
under commitment.  An example of optimal monetary
policy with a partially observable potential output and
a forward-looking indicator is examined. The optimal
response to the optimal estimate of potential output
displays certainty-equivalence, whereas the optimal
response to the imperfect observation of output
depends on the noise in this observation.
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1 Introduction

It is a truism that monetary policy operates under considerable uncertainty about

the state of the economy and the size and nature of the disturbances that hit the

economy. This is a particular problem for a procedure such as in�ation-forecast

targeting, under which a central bank, in order to set its interest-rate instrument,

needs to construct conditional forecasts of future in�ation, conditional on alter-

native interest-rate paths and the bank�s best estimate of the current state of the

economy and the likely future development of important exogenous variables.1

Often, di¤erent indicators provide con�icting information on developments in the

economy. In order to be successful, a central bank then needs to put the appro-

priate weights on di¤erent information and draw the most e¢cient inference. In

the case of a purely backward-looking model (both of the evolution of the bank�s

target variables and of the indicators), the principles for e¢cient estimation and

signal extraction are well known. But in the more realistic case where important

indicator variables are forward-looking variables, the problem of e¢cient signal-

extraction is inherently more complicated. The purpose of this paper is to clarify

the principles for determining the optimal weights on di¤erent indicators in such

an environment.

In the case where there are no forward-looking variables, it is well known that

a linear model with a quadratic loss function and a partially observable state

of the economy (partial information) is characterized by certainty-equivalence.

That is, the optimal policy is the same as if the state of the economy were fully

observable (full information), except that one responds to an e¢cient estimate

of the state vector rather than to its actual value. Thus, a separation principle

applies, according to which the selection of the optimal policy (the optimization

problem) and the estimation of the current state of the economy (the estimation or

signal-extraction problem) can be treated as separate problems. In particular, the

observable variables will be predetermined and the innovations in the observable

variables (the di¤erence between the current realization and previous prediction

1 See Svensson [27], [29] and [32] for discussion of in�ation targeting and references to the
literature.
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of each of the observable variables) contain all new information. The optimal

weights to be placed on the innovations in the various observable variables in

one�s estimate of the state vector at each point in time are provided by a standard

Kalman �lter (see, for instance, Chow [3], Kalchenbrenner and Tinsley [14] and

LeRoy and Waud [15]).2

The case without forward-looking variables is, however, very restrictive. In

the real world, many important indicator variables for central banks are forward-

looking variables, variables that depend on private-sector expectations of the

future developments in the economy and future policy. Central banks routinely

watch variables that are inherently forward-looking, like exchange rates, bond

rates and other asset prices, as well as measures of private-sector in�ation expec-

tations, industry order-�ows, con�dence measures, and the like. Forward-looking

variables complicate the estimation or signal-extraction problem signi�cantly.

They depend, by de�nition, on private-sector expectations of future endogenous

variables and of current and future policy actions. However, these expectations in

turn depend on an estimate of the current state of the economy, and that estimate

in turn depends, to some extent, on observations of the current forward-looking

variables. This circularity presents a considerable challenge for the estimation

problem in the presence of forward-looking variables.

It is well known that forward-looking variables also complicate the optimiza-

tion problem. For example, optimal policy under commitment ceases in general

to coincide with the outcome of discretionary optimization, as demonstrated for

the general linear model with quadratic objectives in Backus and Dri¢ll [2] and

Currie and Levine [6]. With regard to the estimation problem, Pearlman, Currie

and Levin [20] showed in a linear (non-optimizing) model with forward-looking

variables and partial symmetric information that the solution can be expressed

in terms of a Kalman �lter, although the solution is much more complex than in

the purely backward-looking case. Pearlman [19] later used this solution in an

optimizing model to demonstrate that certainty-equivalence, and hence the sepa-

2 See Gerlach and Smets [10], Peersman and Smets [22] and Smets [24] for recent applications
to estimation of the output gap in purely backward-looking frameworks.
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ration principle, applies under both discretion and commitment, in the presence

of forward-looking variables and symmetric partial information.

The present paper extends this previous work on partial information with

forward-looking variables by providing simpler derivations of the optimal weights

on the observable variables, and clarifying how the updating equations can be

modi�ed to handle the circularity mentioned above. We also provide a simple

application, in a now-standard model of monetary policy with a forward-looking

aggregate supply relation and a forward-looking �expectational IS� relation.

Section 2 presents a relatively general linear model of an aggregate private

sector and a policy-maker, called the central bank, with a quadratic loss function.

It then characterizes optimizing policy under discretion, demonstrates certainty-

equivalence, and derives the corresponding updating equation in the Kalman �lter

for the estimation problem. Section 3 does the same for the optimal policy with

commitment.3 Throughout the paper, we maintain the assumption of symmetric

information between the private-sector and the central bank; the asymmetric case

where certainty-equivalence does not hold is treated in Svensson and Woodford

[36].

Section 4 discusses the interpretation of the Kalman �lter. It shows how the

Kalman �lter can be modi�ed to handle the simultaneity and circularity referred

to above, and that the current estimate of the state of the economy can be

expressed as a distributed lag of current and past observable variables, with the

Kalman gain matrix providing the optimal weights on the observable variables.

Section 5 presents an example of optimal monetary policy in a simple forward-

looking model, where in�ation is forward-looking and depends on expectations

of future in�ation, on a partially observable output gap (the di¤erence between

observable output and a partially unobservable potential output), and on an

unobservable �cost-push� shock. Since the observable rate of in�ation both a¤ects

and depends on the current estimates of potential output and the cost-push shock,

this example illustrates the gist of the estimation problem with forward-looking

3 The demonstration of certainty-equivalence under commitment raises some special di¢cul-
ties which are treated in a separate paper, Svensson and Woodford [37].
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variables. Finally, section 6 presents some conclusions, while Appendices A�D

report some technical details.

2 Optimization under discretion

We consider a linear model of an economy with two agents, an (aggregate) private

sector and a policymaker, called the central bank. The model is given by264 Xt+1

Ext+1jt

375 = A1
264 Xt
xt

375+A2
264 Xtjt
xtjt

375+Bit +
264 ut+1

0

375 ; (2.1)

where Xt is a vector of nX predetermined variables in period t, xt is a vector

of nx forward-looking variables, it is (a vector of) the central bank�s ni policy

instrument(s), ut is a vector of nX iid shocks with mean zero and covariance

matrix §uu, and A1, A2, B and E are matrices of appropriate dimension. The

nx £ nx matrix E (which should not be confused with the expectations operator
E[¢]) may be singular (this is a slight generalization of usual formulations when
E is the identity matrix). For any variable zt, z¿ jt denotes E[z¿ jIt], the rational
expectation (the best estimate) of z¿ given the information It, the information

available in period t to the central bank. The information is further speci�ed

below. Let Yt denote a vector of nY target variables given by

Yt = C
1

264 Xt
xt

375+C2
264 Xtjt
xtjt

375+Ciit; (2.2)

where C1, C2 and Ci are matrices of appropriate dimension. Let the quadratic

form

Lt = Y
0
tWYt (2.3)

be the central bank�s period loss function, where W is a positive-semide�nite

weight matrix.

Let the vector of nZ observable variables, Zt, be given by

Zt = D
1

264 Xt
xt

375+D2
264 Xtjt
xtjt

375+ vt; (2.4)
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where vt, the vector of noise, is iid with mean zero and covariance matrix §vv.

The information It in period t is given by

It = fZ¿ ; ¿ · t; A1; A2; B;C1; C2; Ci;D1; D2; E;W; ±;§uu;§vvg; (2.5)

where ± (0 < ± < 1) is a discount factor (to be introduced below). This in-

corporates the case when some or all of the predetermined and forward-looking

variables are observable.4

Note that (2.1) assumes that the expectations xt+1jt in the second block of

equations are conditional on the information It. This corresponds to the case

when the private sector and the central bank has the same information It, so

information is assumed to be symmetric. The case of asymmetric information

when these expectations are replaced by a private sector expectations E[xt+1jIpt ]
where the private-sector information Ipt di¤ers from It is treated in Svensson and

Woodford [36].

Assume �rst that there is no commitment mechanism, so the central bank

acts under discretion. Assume that central bank each period, conditional on the

information It, minimizes the expected discounted current and future values of

the intertemporal loss function,

E[
1X
¿=0

±¿Lt+¿ jIt]: (2.6)

As shown in Pearlman [19] and in appendix A, certainty-equivalence applies

when the central bank and the private sector has the same information. Certainty-

equivalence means that the estimation of the partially observed state of the econ-

omy can be separated from the optimization, the setting of the instrument so as

to minimize the intertemporal loss function.

The equilibrium under discretion will be characterized by the instrument be-

ing a linear function of the current estimate of the predetermined variables,

it = FXtjt: (2.7)

4 Note that the predetermined and forward-looking variables can be interpreted as deviations
from unconditional means and the target variables can be interpreted as deviations from constant
target levels. More generally, constants, non-zero unconditional means and non-zero target levels
can be incorporated by including unity among the predetermined variables, for instance, as the
last element of Xt. The last row of the relevant matrices will then include the corresponding
constants/means/target levels.
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Furthermore, the estimate of the forward-looking variables will ful�ll

xtjt = GXtjt; (2.8)

where the matrix G by appendix A ful�lls

G = (A22 ¡EGA12)¡1[¡A21 +EGA11 + (EGB1 ¡B2)F ]; (2.9)

where

A ´ A1 +A2; (2.10)

the matrices A, Aj (j = 1; 2) and B are decomposed according to Xt and xt,

Aj =

264 Aj11 Aj12

Aj21 Aj22

375 ; B =
264 B1
B2

375 ;
and we assume that the matrix A22 ¡ EGA12 is invertible. The matrices F and
G depend on A, B, C ´ C1 + C2, Ci, E, W and ±, but (corresponding to the

certainty-equivalence referred to above) not on D1, D2, §uu and §vv.

Now, the lower block of (2.1) implies

A121(Xt ¡Xtjt) +A122(xt ¡ xtjt) = 0: (2.11)

Combining this with (2.8) and assuming that A122 is invertible gives

xt = G
1Xt +G

2Xtjt; (2.12)

where G1 and G2 ful�ll

G1 = ¡ (A122)¡1A121; (2.13)

G2 = G¡G1: (2.14)

The matrices G1 and G2 depend on G and A1, hence also on B, C ´ C1 + C2,
Ci, E, W and ±, but (because of the certainty-equivalence) they are independent

of D1, D2, §uu and §vv.

It follows from (2.7) and (2.12) that the dynamics for Xt and Zt follows

Xt+1 = HXt + JXtjt + ut+1; (2.15)

Zt = LXt +MXtjt + vt; (2.16)
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where

H ´ A111 +A
1
12G

1; (2.17)

J ´ B1F +A
1
12G

2 +A211 +A
2
12G; (2.18)

L ´ D11 +D
1
2G

1; (2.19)

M ´ D12G
2 +D21 +D

2
2G; (2.20)

where Dj = [Dj1 Dj2] (j = 1; 2) is decomposed according to Xt and xt. (Note

that the matrix L in (2.19) should not be confused with the period loss function

Lt in (2.3).)

We note that the problem of estimating the predetermined variables has been

transformed to a problem without forward-looking variables, (2.15) and (2.16).

This means that the estimation problem becomes a simpler variant of the estima-

tion problem with forward-looking variables that is solved in Pearlman, Currie

and Levine [20]. The derivations below is hence a simpli�cation of that in [20].5

2.1 Optimal �ltering

Assume that the optimal prediction of Xt will be given by a Kalman �lter,

Xtjt = Xtjt¡1 +K(Zt ¡ LXtjt¡1 ¡MXtjt); (2.21)

where the Kalman gain matrix K remains to be determined. We can rationalize

(2.21) by observing that Zt ¡MXtjt = LXt + vt, hence,

Zt ¡ LXtjt¡1 ¡MXtjt = L(Xt ¡Xtjt¡1) + vt;

so (2.21) can be written in the conventional form

Xtjt = Xtjt¡1 +K[L(Xt ¡Xtjt¡1) + vt]; (2.22)

which allows us to identify K as (one form of) the Kalman gain matrix.6 From

(2.15) we get

Xt+1jt = (H + J)Xtjt; (2.23)

5 Pearlman [19] refers to the complex derivation of the Kalman �lter in Pearlman, Currie
and Levine [20] but doesn�t report that the derivation is actually much easier than in [20].

6 Harvey [12] de�nies the Kalman gain matrix in this way, whereas Harvey [13] de�nes it as
the transition matrix (yet to be speci�ed in our case) times K.
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and the dynamics of the model are given by (2.15), (2.12), (2.22) and (2.23).

It remains to �nd an expression for K. Appendix B shows, by expressing the

problem in terms of the prediction errors Xt ¡Xtjt¡1 and Zt ¡ Ztjt¡1, that K is

given by

K = PL0(LPL0 +§vv)¡1; (2.24)

where the matrix P ´ Cov[Xt¡Xtjt¡1] is the covariance matrix for the prediction
errors Xt ¡Xtjt¡1 and ful�lls

P = H[P ¡ PL0(LPL0 +§vv)¡1LP ]H 0 +§uu: (2.25)

Thus P can be solved from (2.25), either numerically or analytically, depending

upon the complexity of the matrices H, L and §uu. Then K is given by (2.24).

Note that (2.24) and (2.25) imply that K only depends on A1, D1, §uu and

§vv, and hence is independent of C1, C2, Ci, W and ±. Thus, K is independent

of the policy chosen. This demonstrates that the determination of the optimal

policy given an estimate of the state of the economy and the estimation of the

state of the economy can be treated as separate problems, as in the case without

forward-looking variables treated in Chow [3], Kalchenbrenner and Tinsley [14]

and LeRoy and Waud [15]. This is no longer true under asymmetric information,

as demonstrated in Svensson and Woodford [36].

3 Optimal policy with commitment

Consider again the model described by equations (2.1)�(2.4), but suppose instead

that the central bank commits itself in an initial ex ante state (prior to the

realization of any period zero random variables) to a state-contingent plan for

the inde�nite future that minimizes the expected discounted losses

E

24 1X
t=t0

±tLt

35 :
Here E[¢] indicates the expectation with respect to information in the initial state
in period t0, in which the commitment is made. It is important to consider

optimal commitment from such an ex ante perspective, because, in the case of

8



partial information, the information that the central bank possesses in any given

state depends upon the way that it has committed itself to behave in other states

that might have occurred instead.

As shown in Pearlman [19] for a slightly less general case, certainty-equivalence

applies in this case as well. A more intuitive proof of certainty-equivalence is sup-

plied in Svensson and Woodford [37]. Svensson and Woodford [37] show that the

optimal policy under commitment satis�es

it = FXtjt +©¥t¡1; (3.1)

xtjt = GXtjt + ¡¥t¡1; (3.2)

¥t = SXtjt +§¥t¡1; (3.3)

for t ¸ t0, where F , G, S, ©, ¡ and § are matrices of appropriate dimension,

and ¥t is the vector of the nx Lagrange multiplier of the lower block of (2.1), the

equations corresponding to the forward-looking variables. Furthermore, ¥t0¡1 =

0.

Woodford [42] and Svensson and Woodford [35] discuss a socially optimal

equilibrium in a �timeless perspective,� which involves a stationary equilibrium

corresponding to a commitment made far in the past, corresponding to t0 !
¡1. Then, (3.1)�(3.3) apply for all t > ¡1. Here, we consider this stationary
equilibrium.

Note that (3.3) can then be solved backward to yield

¥t¡1 =
1X
¿=0

§¿SXt¡1¡¿ jt¡1¡¿ :

Thus, the most fundamental di¤erence with respect to the discretion case is that,

under the optimal commitment, xtjt is no longer a linear function of the current

estimate of the predetermined variable alone, Xtjt, but instead depends upon past

estimates Xt¡¿ jt¡¿ as well. The inertial character of optimal policy that this can

result in is illustrated in Woodford [41] and [42] and in Svensson and Woodford

[35].

Svensson and Woodford [35] also show that the socially optimal equilibrium

can be achieved under discretion, if the intertemporal loss function in period t is

9



modi�ed to equal

Et

1X
¿=0

±¿Lt+¿ +¥t¡1(xt ¡ xtjt¡1): (3.4)

That is, the central bank internalizes the cost of letting the forward-looking vari-

ables, xt, deviate from previous expectations, xtjt¡1, using the Lagrange multi-

plier ¥t¡1 for (5.1) in period t¡ 1, thus determined in the previous period, as a
measure of that cost.7

As explained in detail in Svensson and Woodford [37], the matrices F , G, S,

©, ¡ and § depend on A;B;C;Ci;W and ±; but that they are independent of

§uu: Thus, these coe¢cients are the same as in the optimal plan under certainty.

This is the certainty-equivalence result for the case of partial information.

Using the same reasoning as in the derivation of (2.12) and substituting in

(3.2) for xtjt, we obtain

xt = G
1Xt +G

2Xtjt + ¡¥t¡1; (3.5)

where G1 and G2 again are given by (2.13) and (2.14). Again, the matrices G1

and G2, like the others, are independent of the speci�cations of D, §uu; and §vv:

Substitution of (3.1), (3.2) and (3.5) into the �rst row of (2.1) furthermore

yields

Xt+1 = HXt + JXtjt +ª¥t¡1 + ut+1; (3.6)

where H and J are again given by (2.17) and (2.18), and

ª ´ A12¡ +B1©: (3.7)

Equations (3.3) and (3.5)�(3.6) then describe the evolution of the predetermined

and forward-looking variables, Xt and xt, once we determine the evolution of the

estimates Xtjt of the predetermined variables.

3.1 Optimal �ltering

Substituting (3.5) into (2.4), we obtain

Zt = LXt +MXtjt +¤¥t¡1 + vt; (3.8)

7 Adding a linear term to the loss function is similar to the linear in�ation contracts discussed
in Walsh [39] and Persson and Tabellini [23]. Indeed, the term added in (3.4) corresponds to a
state-contingent linear in�ation contract, which, as discussed in Svensson [28], can remedy both
stabilization bias and average-in�ation bias.
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where L and M are again given by (2.19) and (2.20), and

¤ ´ D2¡: (3.9)

Equations (3.6) and (3.8) are then the transition and measurement equations for

an optimal �ltering problem. Again the transformation into a problem without

forward-looking variables allows us to derive the estimation equations in a manner

that is simpler than that used in Pearlman, Currie and Levine [20].

The optimal linear prediction of Xt is again given by a Kalman �lter,

Xtjt = Xtjt¡1 +K(Zt ¡ LXtjt¡1 ¡MXtjt ¡¤¥t¡1); (3.10)

analogously to (2.21). From (3.6) we get

Xt+1jt = (H + J)Xtjt +ª¥t¡1; (3.11)

and a complete system of dynamic equations for the model is then given by (3.3),

(3.5), (3.6), (3.10) and (3.11).

It remains to �nd an expression for the Kalman gain matrix K: Again, as in

appendix B, it is practical to work in terms of the prediction errors Xt ¡Xtjt¡1
and Zt¡Ztjt¡1, and equations (B.1)�(B.13) and (2.24)�(2.25) continue to apply,
exactly as in the discretion case. Note that this implies that the Kalman gain

matrix K is exactly the same matrix as in the discretion equilibrium; in fact, it

depends only upon the matrices A1, §uu, D1 and §vv:

4 Optimal weights on indicators: General remarks

In this section, we o¤er some general conclusions about the way in which the

vector of observed variables Zt, the indicators, is used to estimate the current

state of the economy. As in sections 2 and 3, we assume that the central bank

and the private sector have the same information, but our comments apply both

to the discretion equilibrium and the commitment equilibrium. In either case, the

observed variables matter only insofar as they a¤ect the central bank�s estimate

Xtjt of the predetermined states.

11



Let us restate (2.4) and (3.8),

Zt = D11Xt +D
1
2xt +D

2
1Xtjt +D

2
2xtjt + vt

= LXt +MXtjt +¤¥t¡1 + vt;

where we note that the second equation applies also in the discretion case, if

we set ¤ ´ 0 in that case. When D12 6= 0, the observable variables include

or depend on the forward-looking variables. Then there is a contemporaneous

e¤ect of Xtjt on Zt, due to the e¤ect of Xtjt on both expectations xt+1jt and the

equilibrium choice of the instrument it. If D21 6= 0, there is a direct e¤ect of Xtjt
on the observable variables; if D22 6= 0, there is an e¤ect of Xtjt on the observable
variables via xtjt. In the commitment case, if ¤ 6= 0, there is also a lagged e¤ect,
through the e¤ect on ¥t¡1 of Xtjt¡j on for j ¸ 1 (due to (3.3)), which in turn

a¤ects Zt through its e¤ect upon it and xtjt (due to (3.1) and (3.2)).

In order to estimate Xt using a Kalman �lter, we would like to �nd an in-

dicator with the property that its innovation is a linear function of the forecast

error, Xt ¡Xtjt¡1, plus noise. The contemporaneous e¤ect on Zt means that its
innovation does not meet this condition, since

Zt ¡ Ztjt¡1 = L(Xt ¡Xtjt¡1) +M(Xtjt ¡Xtjt¡1) + vt;

which also includes the terms M(Xtjt ¡ Xtjt¡1) (we have used that ¥t¡1 =
¥t¡1jt¡1). Thus, the contemporaneous e¤ect enters via MXtjt. In order to elim-

inate these e¤ects of the estimated state upon the indicators, we might consider

the vector of �ideal� indicators ¹Zt, de�ned by the condition

¹Zt ´ Zt ¡MXtjt ¡ ¤¥t¡1; (4.1)

where the contemporaneous e¤ect is subtracted (the redundant component ¤¥t¡1

is also subtracted to get a more parsimonious indicator). These ideal indicators

then have the desired property that their innovation is a linear function of the

forecast error of the predetermined variables plus noise,

¹Zt = LXt + vt;

¹Zt ¡ ¹Ztjt¡1 = L(Xt ¡Xtjt¡1) + vt:

12



However, these ideal indicators do not provide an operational way of eliminat-

ing the contemporaneous in�uence. Indeed, (4.1) is only an implicit de�nition,

in the sense that the estimates Xtjt that depend on the observable variables still

enters into the identity and is assumed to be known. The ideal indicators can

nonetheless provide a useful representation of the �ltering problem for computa-

tional purposes, as we illustrate in the next section.

To get a recursive updating equation that is operational, we instead need one

that only has current observable variables and previous estimates on the right

side. We can use the prediction equation (3.10) ((2.21) in the discretion case)

and solve for Xtjt to get

Xtjt = (I +KM)¡1[(I ¡KL)Xtjt¡1 ¡K¤¥t¡1 +KZt]; (4.2)

where the matrix I +KM must be invertible. We can then use (3.11) and (3.3)

(where ¥t¡1 ´ 0 in the discretion case) to express the dynamic equation for Xtjt
in terms of Xt¡1jt¡1 and ¥t¡2,

Xtjt = (I +KM)¡1f(I ¡KL)[(H + J)Xt¡1jt¡1 +ª¥t¡2]¡K¤(SXt¡1jt¡1 +§¥t¡2) +KZt]
= (I +KM)¡1f[(I ¡KL)(H + J)¡K¤S]Xt¡1jt¡1 + [(I ¡KL)ª¡K¤§]¥t¡2 +KZtg:

(4.3)

Solving the system consisting of this equation and (3.3) backwards, we can express

Xtjt as the weighted sum of current and past observable variables,

Xtjt =
1X
¿=0

Q¿KZt¡¿ ; (4.4)

where the matrix Q¿ is [(I +KM)¡1(I ¡KL)(H + J)]¿ in the discretion case

and the upper left submatrix of the matrix264 (I +KM)¡1[(I ¡KL)(H + J)¡K¤S] (I +KM)¡1[(I ¡KL)ª¡K¤§]
S §

375
¿

in the commitment case. The consequence of the contemporaneous e¤ect via

the matrix M only shows up in the premultiplication of the matrix (I +KM)¡1

above.
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Thus, the evolution over time of the central bank�s estimate of the prede-

termined states, and of the Lagrange multipliers needed to determine its action

under the commitment equilibrium, can be expressed as a function of the ob-

servable variables. Furthermore, the Kalman gain matrix K gives the optimal

weights on the vector of observable variables.. Row j of K gives the optimal

weights in updating of element j of Xt. Column l of K gives the weights a

particular observable variable Zlt receives in updating the elements of Xt.

Since the estimate is a distributed lag of the observable variables, the estimate

is updated only gradually. Thus, even under discretion, the observed policy will

display considerable inertia, the more the noisier the current observables and the

less the weight on current observations relative to previous estimates.

The elements of the Kalman gain matrix K depend upon the information

structure (by (2.24) and (2.25) they depend on L, which by (2.19) depends on D1,

and on the covariance matrix §vv). They also depend on part of the dynamics

of the predetermined variables (by (2.25), they depend on H, which by (2.17)

and (2.13) depends only on A1, and on the covariance matrix §uu). However,

the elements of K are independent of the central-bank�s objective, described by

the matrices C1, C2, Ci, W and the discount factor ±, or, alternatively, of the

central bank�s reaction function (F;©) in (3.1) (where © = 0 in the discretion

case). This again illustrates the separation of the estimation problem from the

optimization problem that arises under certainty-equivalence.

Suppose that, in row j of L, only one element is nonzero, say element (j; j).

Then

Zjt = Xjt +Mj¢Xtjt +¤j¢¥t¡1 + vjt

corresponds to an observation of Xjt with measurement error vjt (we let j¢ denote

row j of a matrix, and we assume that element (j; j) ofM , mjj , ful�lls mjj 6= ¡1;
this is now a necessary condition for the matrix I+KM to be invertible). Suppose

the variance of the measurement error approaches zero. Then the elements of row

j in the Kalman gain matrix will approach zero, except the element (j; j) which

approaches unity. This corresponds to Xjt being fully observable, resulting in

14



Xjtjt = Xjt. Suppose instead the variance of vjt becomes unboundedly large.

Then Zjt is a useless indicator, and the Kalman gain matrix will assign a zero

weight to this indicator; that is, all the elements in column j of K will be zero.

5 Example: Optimal monetary policy with unobservable poten-

tial output

Consider the following simple model, a variant of the model used, for example, in

Clarida, Galí and Gertler [4], Woodford [41] and [42] and Svensson and Woodford

[35]. The model equations are

¼t = ±¼t+1jt + ·(yt ¡ ¹yt) + ºt; (5.1)

yt = yt+1jt ¡ ¾(it ¡ ¼t+1jt); (5.2)

¹yt+1 = °¹yt + ´t+1; (5.3)

ºt+1 = ½ºt + "t+1; (5.4)

where ¼t is in�ation, yt is (log) output, ¹yt is (log) potential output (the natural

rate of output), ºt is a serially correlated �cost-push� shock, and it is a one-

period nominal interest rate (the central bank�s monetary-policy instrument). In

our speci�cation of the exogenous disturbance processes, the shocks ´t and "t are

iid with means zero and variances ¾2´ and ¾
2
", and the autoregressive coe¢cients

° and ½ satisfy 0 · °; ½ < 1. In our structural equations, the coe¢cient 0 < ± < 1
is also the discount factor for the central bank�s loss function, and the coe¢cients

· and ¾ are positive.8

We assume a period loss function of the kind associated with �exible in�ation

targeting with a zero in�ation target,9

Lt =
1

2
[¼2t + ¸(yt ¡ ¹yt)2]: (5.5)

8 Note that yt ¡ ¹yt and ºt here corresponds to xt and ut, respectively, in Svensson and
Woodford [35]. Furthermore, current in�ation and output are here forward-looking variables,
whereas they are predetermined one period in [35]. The assumption that in�ation and output
are predetermined is arguably more realistic, but in the present context would not allow us to
present a simple example in which one of the observables is a forward-looking variable. A more
elaborate example (for instance, along the lines of Svensson [34]), that would be more realistic
but less transparent in its analysis, would allow in�ation and output to be predetermined, but
introduce other forward-looking indicator variables, such as the exchange rate, a long bond rate,
or other asset prices.

9 See Woodford [40] for a welfare-theoretic justi�cation of this loss function, in the case of
exactly the microeconomic foundations that justify structural equations (5.1)�(5.2).
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We assume that there is an imperfect observation, ~yt, of potential output,

~yt = ¹yt + µt; (5.6)

where the measurement error µt is iid with zero mean and variance ¾2µ. We also

assume that in�ation is directly observable. Then the vector of observables is

Zt =

264 ¹yt + µt

¼t

375 : (5.7)

Since we assume that there are no unobservable shocks in the aggregate-

demand equation, (5.2), in equilibrium output will be perfectly controllable.

Then, we can consider a simpli�ed variant of your model, with output as the

control variable and consisting of the equations (5.1), (5.3) and (5.4). For the

resulting equilibrium stochastic processes for yt, yt+1jt and ¼t+1jt, we can then use

the aggregate-demand equation to infer the corresponding interest rates according

to

it = ¼t+1jt +
1

¾
(yt+1jt ¡ yt): (5.8)

We can now rewrite the model (5.1), (5.3) and (5.4) in the form (2.1),

264 Xt+1

xt+1jt

375 ´
266664

¹yt+1

ºt+1

¼t+1jt

377775 =
266664

° 0 0

0 ½ 0

·=± ¡1=± 1=±

377775
266664
¹yt

ºt

¼t

377775+
266664

0

0

¡·=±

377775 yt+
266664
´t+1

"t+1

0

377775 ;
(5.9)

where we let thin lines denote the decomposition of A1 and B into its submatrices.

We note that E = 1 and A2 = 0. We can write the equation for the observables,

(2.4), as

Zt =

264 1 0 0

0 0 1

375
266664
¹yt

ºt

¼t

377775+
264 µt

0

375 ;
which allows us to identify D1, where the thin lines denotes its decomposition

into D11 and D
1
2, and vt. We observe that D

2 = 0.

In this model, the central bank needs to form an estimate of the current po-

tential output and cost-push shock, ¹ytjt and ºtjt, in order to set policy, the output
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level yt. It observes an imperfect measure of potential output, ~yt, and in�ation,

¼t, exactly. Since potential output is predetermined and independent both of

current expectations and of the current instrument setting, noisy observation of

it does not raise any special problems. In contrast, the observed in�ation is here

a forward-looking variable, which depends both on current expectations of future

in�ation and the current instrument setting. Current expectations and the in-

strument setting, furthermore, depend on the estimates of both current potential

output and the current cost-push shock. These depend on the observation of

in�ation, completing the circle. Thus the central bank must sort through this

simultaneity problem. Consequently our special case, in spite of its simplicity,

incorporates the gist of the signal-extraction problem with forward-looking vari-

ables.

5.1 Equilibrium under discretionary optimization and under an opti-

mal commitment

Due to the certainty-equivalence, in order to �nd the optimal policy, we can

directly apply the solution of the full-information version of this model in Clar-

ida, Galí and Gertler [4] and Svensson and Woodford [35]. Under discretionary

optimization, the solution is10

yt = ¹ytjt ¡
·

·2 + ¸(1¡ ±½)ºtjt;

¼t =
¸

·2 + ¸(1¡ ±½)ºtjt

(where ¼t = ¼tjt since in�ation by assumption is directly observable). Under an

optimal commitment, the solution is11

yt = ¹ytjt ¡
·

¸

¹

1¡ ±½¹ºtjt ¡
·

¸
¹¥t¡1; (5.10)

¼tjt =
¹

1¡ ±½¹ºtjt ¡ (1¡ ¹) ¥t¡1; (5.11)

¥t =
¹

1¡ ±½¹ºtjt + ¹¥t¡1: (5.12)

10 See section 3.2 of Svensson and Woodford [35]. Recall that yt¡¹yt and ºt here corresponds to
xt and ut, respectively, in [35]. Since the present model has an output target equal to potential
output in the period loss function, (5.5), it corresponds to the case x¤ = 0 in [35].
11 See section 2.1 of Svensson and Woodford [35]. Note that ¥t¡1 here corresponds to 't¡1

in [35]. Because the present model corresponds to the case x¤ = 0 in [35], '¤ = 0.
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In the commitment case, ¥t is the Lagrange multiplier of the constraint corre-

sponding to (5.1), the last row of (5.9), and ¹ (0 < ¹ < 1) is a root of the

characteristic equation of the di¤erence equation for ¥t that results from substi-

tution of the �rst-order conditions into (5.1).

5.2 An optimal targeting rule

The above characterization of the optimal commitment allows us to derive a sim-

ple targeting rule, that represents one practical approach to the implementation

of optimal policy, as discussed in Svensson and Woodford [35]. By (5.10) and

(5.12), we have

yt ¡ ¹ytjt = ¡
·

¸
¥t; (5.13)

and by (5.11) and (5.12), we have

¼t = ¥t ¡ ¥t¡1. (5.14)

These are just the �rst-order conditions under commitment, the combination of

which with the dynamic equations (5.1), (5.3) and (5.4) then result in (5.10)�

(5.12). We can furthermore eliminate the Lagrange multipliers from (5.13) and

(5.14) and get a consolidated �rst-order condition

¼t = ¡ ¸
·
[(yt ¡ ¹ytjt)¡ (yt¡1 ¡ ¹yt¡1jt¡1)]: (5.15)

In the full-information case, ¹yt and ¹yt¡1 would be substituted for ¹ytjt and

¹yt¡1jt¡1 in (5.15). As discussed in detail in [35], the full-information analogue of

(5.15) can be interpreted as a targeting rule, which if followed by the central bank

will result in the full social optimum under commitment (when the intertemporal

loss function with the period loss function (5.5) is interpreted as the social loss

function). Thus, in�ation should be adjusted to equal the negative change in the

output gap, multiplied by the factor ¸=·.

This targeting rule is remarkable in that it only depends on the relative weight

on output-gap stabilization in the loss function, ¸, and the slope of the short-

run Phillips curve, ·. In particular, the targeting rule is robust to the number

and stochastic properties of additive shocks to the aggregate-supply equation (as
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witnessed by the lack of dependence on the AR(1) coe¢cient of the cost-push

shock, ½, and the variances of the iid shock, ¾2") and (as long as the interest rate

does not enter the loss function) completely independent of the aggregate-demand

equation (5.2).

An alternative formulation of the targeting rule is in terms of a target for the

price level, rather than the in�ation rate. We observe that (5.15) implies that

pt ¡ p¤ = ¡ ¸
·
(yt ¡ ¹ytjt); (5.16)

where pt is the (log) price level (¼t ´ pt ¡ pt¡1) and p¤ is a constant that can
be interpreted as an implicit price-level target. Similarly, (5.16) implies (5.15),

so these are equivalent targeting rules, each equally consistent with the optimal

commitment. (It is worth noting that under our informational assumptions, pt

is also public information at date t.) This illustrates the close relation between

in�ation targeting under commitment and price-level targeting, further discussed

in Vestin [38], Svensson [31] and [33] and Woodford [41] and [42]. We also note

that under the optimal commitment, the Lagrange multipliers satisfy

¥t = pt ¡ p¤:

This is useful below as an empirical proxy for variation in the Lagrange multipli-

ers.

An interesting feature of both of these characterizations of optimal policy is

that, under partial information, the targeting rule has exactly the same form as

under full information, except that the estimated output gap, yt ¡ ytjt, is consis-
tently substituted for the actual output gap, yt¡¹yt). Thus, policy should respond
to exactly the same extent to the estimated output gap under partial informa-

tion as to the actual output gap under full information. This is an important

illustration of the certainty-equivalence result demonstrated earlier in the paper.

However, it is important to note that the targeting rules (5.15) and (5.16)

are written in terms of the optimal estimate of the output gap, yt ¡ ¹ytjt, not in
terms of the output gap measure yt ¡ ~yt implied by the imperfect observation
of potential output, ~yt. As we shall see, the optimal degree of response to an
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imperfect observation of the output gap does indeed depend on the degree of

noise in the observation.

5.3 Ideal indicators and optimal �ltering

Let us return to the solutions under discretion and commitment. It follows that

we can write these as

yt =

·
1 f

¸264 ¹ytjt

ºtjt

375+©(pt¡1 ¡ p¤); (5.17)

¼t =

·
0 g

¸264 ¹ytjt

ºtjt

375+ ¡(pt¡1 ¡ p¤); (5.18)

¥t =

·
0 g

¸264 ¹ytjt

ºtjt

375+§(pt¡1 ¡ p¤); (5.19)

where pt = ¼t + pt¡1. Under discretion, we have

f = ¡ ·

·2 + ¸(1¡ ±½) ; g = ¡
¸

·
f =

¸

·2 + ¸(1¡ ±½) ; © = ¡ = § = 0:

This allows us to identify the matrices F and G in (2.7) and (2.8). Under com-

mitment, we have

f ´ ¡ (·=¸)[¹=(1¡±½¹)]; © ´ ¡(·=¸)¹; g = ¡¸
·
f = ¹=(1¡±½¹); ¡ = ¡(1¡¹); § = ¹:

This allows us to identify the matrices F , ©, G and ¡ in (3.1)�(3.3).

Furthermore, ¼t will be given by

¼t =

·
¡· 1

¸264 ¹yt

ºt

375+ · · g ¡ 1
¸264 ¹ytjt

ºtjt

375+ ¡(pt¡1 ¡ p¤); (5.20)

where ¡ ´ 0 under discretion. The last equation allows the identi�cation of the
matrices G1 and G2 in (2.12) and (3.5). We are then able to compute the matrices

H =

264 ° 0

0 ½

375 ; J = 0; L =
264 1 0

¡· 1

375 ; M =

264 0 0

· g ¡ 1

375 : (5.21)
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Furthermore, the matrices ª and ¤ in the commitment case are given by

ª = 0; ¤ =

264 0

¡

375 :
In order to solve the estimation problem in this special case, we need to �nd

the 2 £ 2 Kalman gain matrix, K, given by (2.24), where the 2 £ 2 matrix of
forecast errors, P , is given by (2.25). The updating equation (3.10) can then be

written264 ¹ytjt

ºtjt

375 =
264 ¹ytjt¡1

ºtjt¡1

375+K
0B@
264 ¹yt + µt

¼t

375¡ L
264 ¹ytjt¡1

ºtjt¡1

375¡M
264 ¹ytjt

ºtjt

375¡ ¤(pt¡1 ¡ p¤)
1CA ;

(5.22)

where ¤ ´ 0 under discretion. This can be written more simply as264 ¹ytjt

ºtjt

375 =
264 ¹ytjt¡1

ºtjt¡1

375+K h
¹Zt ¡ ¹Ztjt¡1

i

in terms of the ideal indicators ¹Zt given by

¹Zt ´
264 ¹yt + µt

¼t

375¡M
264 ¹ytjt

ºtjt

375¡¤(pt¡1¡p¤) =
264 ¹yt + µt

¼t ¡ ·¹ytjt ¡ (g ¡ 1)vtjt ¡ ¡ (pt¡1 ¡ p¤)

375 :
(5.23)

Combining (5.20) and the second row in (5.23), we see that the ideal indicators

in fact correspond to

¹Zt =

264 ¹yt + µt

¡·¹yt + ºt

375 : (5.24)

Thus, the �ltering problem may be reduced to one of observing a noisy measure

of potential output along with a linear combination of potential output and the

cost-push shock. That observation of the forward-looking in�ation rate implies

the observability of this linear combination of the potential output and cost-push

shock is quite intuitive. From the aggregate supply equation (5.1) we see that in

equilibrium observability of ¼t, ¼t+1jt and yt implies that the remainder ¡·¹yt+ºt
must be observable as well.

The ideal indicators are not operational, as their construction presumes that

¹ytjt and ºtjt are already known. However, consideration of the simple problem that
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would result if these indicators were available is useful, as a way of determining the

Kalman gain matrixK. This estimation problem consists of the simple transition

equation 264 ¹yt+1

ºt+1

375 = H
264 ¹yt

ºt

375+
264 ´t+1
"t+1

375 ; (5.25)

where H is given by (5.3) and (5.21), and the measurement equation (5.24). (The

transition equation is this simple because the predetermined variables, ¹yt and ºt,

are exogenous, that is, A112 = 0, A
2
11 = 0, A

2
12 = 0, B1 = 0.) In appendix C, we

derive an analytical expression for the Kalman gain matrix and show that it is of

the form

K =

264 k11 k12

·k11 ·k12 + 1

375 : (5.26)

Here

k11 ´ q

¾2µ
(5.27)

and q is the positive root of a quadratic equation, which depends on ·, °, ½ and

the variances ¾2´, ¾
2
" and ¾

2
µ. The element k12 is also reported as a function of

these parameters in the appendix.

Having determined K, we may return to the consideration of an operational

procedure for computing the optimal estimates of the underlying exogenous dis-

turbances. For this the central bank can use the operational recursive updating

equations (4.2) and (4.3), which can be written264 ¹ytjt

ºtjt

375 = (I +KM)¡1

0B@(I ¡KL)
264 ¹ytjt¡1

ºtjt¡1

375¡K¤(pt¡1 ¡ p¤) +KZt
1CA

= (I +KM)¡1

0B@(I ¡KL)H
264 ¹yt¡1jt¡1

ºt¡1jt¡1

375¡K¤(pt¡1 ¡ p¤) +KZt
1CA(5.28)

This last equation is simpler than (4.3) because in this example, J = 0 and ª = 0.

Equation (5.28) allows us to solve for the optimal estimates ¹ytjt and ºtjt as

functions of the history of observables (~y¿ and ¼¿ or, equivalently, ~y¿ and p¿ )

up through period t. This solution for ¹ytjt can then be substituted into (5.16),

to obtain an equation for yt as a function of the history of ~y¿ and p¿ . If yt
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were actually the central bank�s instrument, this would then represent a rule for

setting that instrument as a function of the observables. However, in practice, a

central bank has no direct control over current output, and instead typically uses

a short-term nominal interest rate as its instrument. Derivation of an instrument

rule then requires that we consider the evolution of nominal interest rates implied

by the above characterization of the optimal commitment.

5.4 An optimal instrument rule

We consider the evolution of the interest rate it under the optimal commitment.

The solution for output and in�ation are given by (5.17) and (5.18). Combining

these with (5.8) results, after simpli�cation, in the instrument rule

it = ~F

264 ¹ytjt

ºtjt

375+ ~©(pt¡1 ¡ p¤) (5.29)

in terms of responses to the current estimates of the predetermined variables and

the lagged price level, where

~F = GH + FS +
1

¾
[F (H ¡ I) + ©S]

~© = ¡§+
1

¾
©(§¡ I):

(Note that discretionary optimization corresponds to a similar instrument rule,

in which however ~© = 0.) Certainty equivalence implies that the matrices ~F and

~© are independent of the variances of the shocks, ¾2´, ¾
2
" and ¾

2
µ.

As in the previous subsection, we can utilize (5.28) to express the instrument

rule in terms of current observables, lagged estimates and the lagged price level.

Let us focus on the response of the interest rate to the current observables, for

given levels of lagged estimates and price level. This response is by (4.3) and

(5.29) given by

~F (I +KM)¡1(K1~yt +K2¼t);

where we have partitioned the Kalman gain matrix according to K = [K1 K2],

so K1 is the �rst column in (5.26).
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Of course, this response to the observables, via the Kalman gain matrix,

depends on the variances of the shocks. In particular, we can examine how the

response to the observation of the potential output, ~yt, depends on its noise, i.e.,

the variance of its measurement error ¾2µ. In appendix C, we show that the root

q in (5.27) remains positive and bounded for all positive ¾2µ. This means that k11

approaches zero when degree of noise becomes large. Thus, the optimal weights

on the observation of potential output in the submatrix K1 goes to zero when

its information content goes to zero. This is an example of the Kalman �lter

assigning zero weight to useless indicators, mentioned in section 4.

Again, this does not mean that the response to the optimal estimate of po-

tential output, ¹ytjt, changes. By certainty-equivalence, it stays the same. It is

only that the direct observation of potential output, ~yt, is disregarded in the con-

struction of the optimal estimate. Instead, in this case the central bank will rely

only on the observed in�ation rate.

6 Conclusions

In this paper, we have restated the important result that, under symmetric partial

information, certainty-equivalence and the separation principle continue to hold

in the case of linear rational-expectations models and a quadratic loss function.

Then optimal policy as a function of the current estimate of the state of the

economy is the same as if the state were observed.

However, policy as a function of the observable variables (and the actual,

as distinct from the estimated, state of the economy) will display considerable

inertia, since the current estimate will be a distributed lag of the current and

past observable variables (and actual states of the economy). Thus,discretionary

policy�which as discussed in Woodford [41] and [42] and Svensson and Wood-

ford [35], often lacks the history-dependence that characterizes optimal policy

under commitment�will in this case display a certain inertial character as a con-

sequence of partial information. It seems likely that this inertial character will

be more pronounced the noisier the information in the observable variables, as
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this should lead to slower updating of the current estimate of the state of the

economy. To what extent this may a¤ect the welfare comparison between discre-

tionary policy and the optimal policy under commitment (which represents the

social optimum), is a topic for future research.

Even given certainty-equivalence and the separation principle, the estimation

problem with forward-looking observable variables presents a challenge, due to

the circularity in the way that the observable variables both a¤ect and depend

on the current estimate. The optimal operational Kalman �lter under these

circumstances needs to be modi�ed to circumvent that circularity, as we have

shown.

Our results have been derived under the assumption of symmetric information

between the central bank and the aggregate private sector, as a result of which

certainty-equivalence and the separation between optimization and estimation

hold. This case seems to us to be of practical interest, since we believe that any

informational advantage of central banks consists mainly of better information

about their own intentions (as in the papers of Cukierman and Meltzer [5] and

Faust and Svensson [9]). Any such private information is nowadays increasingly

being eroded by the general tendency toward increased transparency in monetary

policy, whether willingly adopted by the central banks or, in some cases, forced

upon them by irresistible outside demands. Nevertheless, it is of interest to

understand how these results are modi�ed when there is asymmetric information

(especially in the direction of central banks having less information than parts of

the private sector); this topic is taken up in Svensson and Woodford [36].

We have illustrated our general results in terms of a forward-looking model of

monetary policy with unobservable potential output and a partially observable

cost-push shock, where the observable variables both a¤ect and depend on the

current estimates of potential output and the cost-push shock. This situation is

obviously highly relevant for many central banks, including the recently estab-

lished Eurosystem. We note that our analysis of optimal policy does imply an

important role for an estimate of current potential output, and that the proper

weight to be put on such an estimate under an optimal policy rule is una¤ected
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by the degree of noise in available measures of potential output. Thus the lack

of more accurate measures is not a reason for policy to respond less to perceived

�uctuations in the output gap (though inaccuracy of particular indicators can be

a reason for a bank�s estimate of potential output to be less in�uenced by those

indicators).

On the other hand, in the case of pure indicator variables�variables that are

neither target variables (variables that enter the loss function) nor direct causal

determinants of target variables, and that accordingly would not be responded

to under an optimal policy in the case of full information�the degree to which

monetary policy should take account of them is de�nitely dependent upon how

closely they are in fact associated with the (causal) state variables that one seeks

to estimate. This precept does not always play as large a role in current central

banking practice as it might.

As an example, the Eurosystem has put special emphasis on one particular

indicator, the growth of Euro-area M3 relative to a reference value of 4.5 per-

cent per year, elevating this money-growth indicator to the status of one of two

�pillars� of the Eurosystem monetary strategy (in addition to �a broadly-based

assessment of the outlook for future price developments�).12 Money growth in

excess of the reference value is supposed to indicate �risks to price stability.�

As discussed by commentators such as Svensson [30], Rudebusch and Svensson

[21] and Gerlach and Svensson [11], it is di¢cult to �nd rational support for this

prominence of the money-growth indicator. Instead, monetary aggregates would

seem to be properly viewed as just one set of indicators among many others,

the relative weight on which should exclusively depend on their performance in

predicting the relevant aspects of the current state of the economy; more speci�-

cally, how useful current money growth is as an input in conditional forecasts of

in�ation some two years ahead.

Under normal circumstances, the information content of money growth for

in�ation forecasts in the short and medium term seems to be quite low.13 Only

12See, for instance, European Central Bank [8].
13 See Estrella and Mishkin [7] and Stock and Watson [26]; Gerlach and Svensson [11] �nd, for

reconstructed Euro-area data, information for future in�ation in another monetary indicator,
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in the long run does a high correlation between money growth a in�ation result.

Under the special circumstances of the introduction of a new common currency,

the demand for money is likely to be quite unpredictable and possibly very un-

stable, since important structural changes are likely to occur in �nancial markets

and banking. Under such circumstances, the information content of money is

likely on theoretical grounds to be even lower than under normal circumstances.

Thus the uncertainty associated with the introduction of the new currency should

provide an argument for relying less, rather than more, on monetary aggregates

as indicators.

the �real money gap,� but little or no information in the Eurosystem�s money-growth indicator.
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A Optimization under discretion and certainty-equivalence

Consider the decision problem to choose it in period t to minimize (2.6) (with

0 < ± < 1) under discretion, that is, subject to (2.1)�(2.5) and

it+1 = Ft+1Xt+1jt+1 (A.1)

xt+1jt+1 = Gt+1Xt+1jt+1; (A.2)

where Ft+1 and Gt+1 are determined by the decision problem in period t+ 1.

For the full information case, Oudiz and Sachs [17] have derived an algorithm

for the discretionary equilibrium, which is further discussed in Backus and Dri¢ll

[2] and Currie and Levin [6].14 Following Pearlman [19], but with a more explicit

proof, this appendix shows that this algorithm, appropriately adapted, is valid

also for the partial-information case.

First, using (A.2), taking expectations in period t of the upper block of (2.1),

and using (2.10), we get

xt+1jt = Gt+1Xt+1jt = Gt+1(A11Xtjt +A12xtjt +B1it): (A.3)

Taking the expectation in period t of the lower block of (2.1), we get

Ext+1jt = A21Xtjt +A22xtjt +B2it (A.4)

(recall that E is a matrix and not the expectations operator). Multiplying (A.3)

by E, setting the result equal to (A.4) and solving for xtjt gives

xtjt = ~AtXtjt + ~Btit; (A.5)

where

~At ´ (A22 ¡EGt+1A12)¡1(EGt+1A11 ¡A21);
~Bt ´ (A22 ¡EGt+1A12)¡1(EGt+1B1 ¡B2)

(we assume that A22 ¡ EGt+1A12 is invertible). Using (A.5) in the expectation
of the upper block of (2.1) then gives

Xt+1jt = A¤tXtjt +B
¤
t it; (A.6)

14 See Söderlind [25] for a detailed presentation.
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where

A¤t ´ A11 +A12 ~At;

B¤t ´ B1 +A12 ~Bt:

Second, by (2.2) and (2.3) we can write

Ltjt =

264 Xtjt
xtjt

375
0

Q

264 Xtjt
xtjt

375+ 2
264 Xtjt
xtjt

375
0

Uit + i
0
tRit + lt; (A.7)

where

C ´ C1 +C2; Q ´ C 0WC; U ´ C 0WCi; R ´ C 0iWCi

lt ´ E
8><>:
264 Xt ¡Xtjt
xt ¡ xtjt

375
0

C10WC1

264 Xt ¡Xtjt
xt ¡ xtjt

375 jIt
9>=>; : (A.8)

Using (A.5) in (A.7) leads to

Ltjt = X 0
tjtQ

¤
tXtjt + 2X

0
tjtU

¤
t it + i

0
tR
¤
t it + lt; (A.9)

where

Q¤t ´ Q11 +Q12 ~At + ~A0tQ21 + ~A0tQ22 ~At;

U¤t ´ Q12 ~Bt + ~A0tQ22 ~Bt + U1 + ~A0tU2;

R¤t ´ R+ ~B0tQ22 ~Bt + ~B0tU2 + U
0
2
~Bt;

and Q and U are decomposed according to Xtjt and xtjt.

Third, since the loss function is quadratic and the constraints are linear, it

follows that the optimal value of the problem will be quadratic. In period t + 1

the optimal value will depend on the estimate Xt+1jt+1 and can hence be written

X 0
t+1jt+1Vt+1Xt+1jt+1 + wt+1, where Vt+1 is a positive semide�nite matrix and

wt+1 is a scalar. Then the optimal value of the problem in period t is associated

with the positive semide�nite matrix Vt and the scalar wt, and ful�lls the Bellman

equation

X 0
tjtVtXtjt +wt ´ minit

n
Ltjt + ±E[X 0

t+1jt+1Vt+1Xt+1jt+1 +wt+1jIt]
o
; (A.10)
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subject to (A.6) and (A.9). Indeed, the problem has been transformed to a

standard linear regulator problem without forward-looking variables, albeit in

terms of Xtjt and with time-varying parameters. The �rst-order condition is, by

(A.9) and (A.10),

0 = X 0
tjtU

¤
t + i

0
tR
¤
t + ±E[X

0
t+1jt+1Vt+1B

¤
t jIt]

= X 0
tjtU

¤
t + i

0
tR
¤
t + ±(X

0
tjtA

¤0
t + i

0
tB

¤0
t )Vt+1B

¤
t :

Here we have assumed that lt is independent of it, which assumption is veri�ed

below. The �rst-order condition can be solved for the reaction function

it = FtXtjt; (A.11)

where

Ft ´ ¡ (R¤t + ±B¤0t Vt+1B¤t )¡1(U¤0t + ±B¤0t Vt+1A¤t )

(we assume that R¤t + ±B¤0t Vt+1B¤t is invertible). Using (A.11) in (A.5) gives

it = GtXtjt;

where

Gt ´ ~At + ~BtFt:

Furthermore, using (A.11) in (A.10) and identifying gives

Vt ´ Q¤t + U¤t Ft + F 0tU¤0t + F 0tR¤tFt + ± (A¤t +B¤t Ft)0 Vt+1 (A¤t +B¤t Ft) :

Finally, the above equations de�ne a mapping from (Ft+1;Gt+1; Vt+1) to

(Ft;Gt; Vt). The solution to the problem is a �xpoint (F;G; V ) of the mapping.

It is obtained as the limit of (Ft;Gt; Vt) when t!¡1. The solution thus ful�lls
the corresponding steady-state matrix equations. Thus, the instrument it and

the estimate of the forward-looking variables xtjt will be linear functions, (2.7)

and (2.8) of the estimate of the predetermined variables Xtjt, where the corre-

sponding F and G ful�ll the corresponding steady-state equations. In particular,

G will ful�ll (2.9).
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It also follows that F , G and V only depend on A ´ A1+A2, B, C ´ C1+C2,
Ci; E; W and ± and are independent of D1, D2, §uu and §vv. This demonstrates

the certainty-equivalence of the discretionary equilibrium.

It remains to verify the assumption that lt in (A.8) is independent of it. Since

by (2.12)�(2.13), xt¡xtjt = ¡ (A122)¡1A121(Xt¡Xtjt), it is su¢cient to demonstrate
that E[(Xt ¡Xtjt)(Xt ¡Xtjt)0jIt] is independent of it. By (2.22),

Xt¡Xtjt = Xt¡Xtjt¡1+K(L(Xt¡Xtjt¡1)+ vt = (I +KL)(Xt¡Xtjt¡1)+Kvt:

Since Xt and Xtjt¡1 are predetermined and vt is exogenous, the assumption is

true.

B The Kalman gain matrix and the covariance of the forecast

errors

It is practical to express the dynamics in terms of the prediction errors of Xt and

Zt, relative to period t¡ 1 information,

~Xt ´ Xt ¡Xtjt¡1;
~Zt ´ Zt ¡ Ztjt¡1 = Zt ¡ (L+M)Xtjt¡1;

where we have used (2.16). Then the prediction equation can be written

Xtjt = Xtjt¡1 +K(L ~Xt + vt): (B.1)

First, (2.16) implies that

Ztjt¡1 = (L+M)Xtjt¡1

and hence that

~Zt = L ~Xt +M(Xtjt ¡Xtjt¡1) + vt
Substitution of (B.1) into this then yields

~Zt = (I +MK)(L ~Xt + vt): (B.2)

Thus we get the desired expression

~Zt = N ~Xt + ºt; (B.3)
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where

N ´ (I +MK)L; (B.4)

ºt ´ (I +MK)vt: (B.5)

In order to �nd the dynamics for the prediction error ~Xt, we subtract (2.23)

from (2.15) and use (B.1), which gives

~Xt+1 = H(Xt ¡Xtjt) + ut+1 = H ~Xt ¡HK(L ~Xt + vt) + ut+1:

Hence we get the desired expression

~Xt+1 = T ~Xt + !t+1; (B.6)

where

T ´ H(I ¡KL); (B.7)

!t+1 ´ ut+1 ¡HKvt: (B.8)

Now, (B.6) and (B.3) can be seen as the transition and measurement equa-

tions, respectively, for a standard Kalman-�lter problem for the unobservable

variable ~Xt with ~Zt being the observable variable. Consequently, the prediction

equation for ~Xtjt can be written

~Xtjt = PN 0(NPN 0 +§ºº)¡1(N ~Xt + ºt) (B.9)

where 0 denotes transpose and where we have used ~Xtjt¡1 ´ 0 and P ´ Cov[ ~Xt¡
~Xtjt¡1] = Cov[ ~Xt] is the covariance matrix for the prediction errors (see appendix

D). By (B.6) we directly get

P = TPT 0 +§!!: (B.10)

We also have

§ºº = E[ºtº
0
t] = (I +MK)§vv(I +MK)

0; (B.11)

§!! = HK§vvK
0H 0 +§uu: (B.12)
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We expressXtjt in terms of the prediction error ~Zt by solving forXtjt in (2.21),

which gives

Xtjt = (I +KM)¡1[Xtjt¡1 +K(Zt ¡ LXtjt¡1)]
= Xtjt¡1 + (I +KM)¡1K[Zt ¡ (L+M)Xtjt¡1]
= Xtjt¡1 + (I +KM)¡1K ~Zt

= Xtjt¡1 +K(I +MK)¡1 ~Zt; (B.13)

where we have used the convenient identities (I+KM)¡1 ´ I¡(I+KM)¡1KM
and (I +KM)¡1K ´ K(I +MK)¡1.

Now, comparing (B.9) and (B.13), using (B.3) and ~Xtjt = Xtjt ¡Xtjt¡1, we
see that

K(I +MK)¡1 = PN 0(NPN 0 +§ºº)¡1:

Substituting (B.4) for N and (B.11) for in the right side, we get the �nal expres-

sion for K, (2.24).

Substituting (2.24) forK in T in (B.7) and (B.10) then gives the �nal equation

for P , (2.25).

C The Kalman gain matrix in the example of section 5

The transition equation and measurement equations are given by264 ¹yt+1

ºt+1

375 = H
264 ¹yt

ºt

375+
264 ´t+1
"t+1

375 ;
¹Zt = L

264 ¹yt

ºt

375+ vt;
where H and L are given by (5.21) and vt ´

264 µt
0

375. Since L is invertible in
this case, it is practical to do a variable transformation of the predetermined

variables such that the corresponding L-matrix in the measurement equation is

the identity matrix. Thus,

¹Xt ´
264 ¹yt

¡·¹yt + ºt

375 = L
264 ¹yt

ºt

375 ;
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in which case the transition and measurement equations are

¹Xt+1 = ¹H ¹Xt + ¹ut+1;

¹Zt = ¹Xt + vt;

where

¹H ´ LHL¡1 =
264 ° 0

·(½¡ °) ½

375 ; ¹ut ´ L
264 ´t
"t

375 =
264 ´t

¡·´t + "t

375 ;

§¹u¹u =

264 ¾2´ ¡·¾2´
¡·¾2´ ·2¾2´ + ¾

2
"

375 ; §vv =
264 ¾2µ 0

0 0

375 :
In order to determine the Kalman gain matrix for the transformed variables,

we need to know the covariance matrix of the corresponding one-period-ahead

forecast errors, ¹P ´ Var[ ¹Xt ¡ ¹Xtjt¡1]. First, we note that the current forecast-

error covariance matrix Q ful�lls

Q ´ Var[ ¹Xt ¡ ¹Xtjt] =

264 q 0

0 0

375 ;
where q ´ Var[¹yt ¡ ¹ytjt] is the current forecast error for potential output and

remains to be determined, and we have used that ¡·¹yt+ ºt is observed without
error. Then ¹P depends on Q according to

¹P = ¹HQ ¹H 0 +§¹u¹u: (C.1)

Furthermore, Q depends on ¹P according to the updating equation

Q = ¹P ¡ ¹P ( ¹P +§vv)
¡1 ¹P: (C.2)

We can rewrite this equation as

Q(I + ¹P¡1§vv) = §vv:

Then we can exploit that Q and §vv are nonzero only in their (1,1) elements, so

the matrix equation reduces to the single equation

q
³
1 + ¹P¡111¾2µ

´
= ¾2µ; (C.3)
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where ¹P¡1ij denotes the (i; j) element of the inverse of ¹P (not the inverse of the

(i; j) element of ¹P ).

In order to solve this equation for q, we need to express this element of the

inverse in terms of q. Substitution of ¹H, Q and §¹u¹u in (C.1) results in

¹P = q

264 °2 °·(½¡ °)
°·(½¡ °) ·2(½¡ °)2

375+
264 ¾2´ ¡·¾2´
¡·¾2´ ·2¾2´ + ¾

2
"

375
=

264 °2q + ¾2´ °·(½¡ °)q ¡ ·¾2´
°·(½¡ °)q ¡ ·¾2´ ·2(½¡ °)2q + ·2¾2´ + ¾2"

375 :
We then have

¹P¡111 =
·2(½¡ °)2q + ·2¾2´ + ¾2"¯̄

¹P
¯̄ ; (C.4)

¹P¡112 = ¡
°·(½¡ °)q ¡ ·¾2´¯̄

¹P
¯̄ ;

where ¯̄
¹P
¯̄
= [°2¾2" + (·½)

2¾2´)]q + ¾
2
´¾
2
":

Using (C.4) in (C.3) results in the quadratic equation

aq2 + bq + c = 0; (C.5)

where

a ´ ·2(½¡ °)2¾2µ + (·½)2¾2´ + °2¾2" > 0; (C.6)

b ´ [·2(1¡ ½2)¾2´ + (1¡ °2)¾2"]¾2µ + ¾2´¾2" > 0; (C.7)

c ´ ¡¾2´¾2"¾2µ < 0: (C.8)

The signs of a, b and c imply that the quadratic equation has two real roots,

one positive and one negative. The positive root is the only possible value for the

forecast-error variance q, so we obtain

q =
¡ b+pb2 ¡ 4ac

2a
> 0: (C.9)

Having determined q, we can now express the Kalman gain matrix in terms

of q. The Kalman gain matrix ¹K for the estimation of the transformed variables

¹Xt is given by

¹K = ¹P ( ¹P +§vv)
¡1 = I ¡Q ¹P¡1;
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where we have used (C.2). Using the form of Q, we then get

¹K =

264 1¡ q ¹P¡111 ¡ q ¹P¡112
0 1

375 ´
264 k11 k12

0 1

375 :
From (C.3) we see that

k11 ´ q

¾2µ
: (C.10)

The Kalman gain matrix for the untransformed predetermined variables, K,

is �nally given by

K = L¡1 ¹K =

264 1 0

· 1

375
264 k11 k12

0 1

375 =
264 k11 k12

·k11 ·k12 + 1

375 : (C.11)

It remains to show the limit of K when ¾2µ ! 1, that is, when ~yt becomes
an unboundedly noisy indicator of ¹yt. We divide (C.5) by ¾2µ and observe in

(C.6)�(C.8) that

a

¾2µ
! ~a ´ ·2(½¡ °)2 > 0;

b

¾2µ
! ~b ´ ·2(1¡ ½2)¾2´ + (1¡ °2)¾2" > 0;

c

¾2µ
! ~c ´ ¡¾2´¾2" > 0;

when ¾2µ !1. It follows that q ! ~q > 0, where ~q is bounded. Thus, from (C.10)

follows that k11 ! 0.

D The Kalman �lter

As a convenient reference, we restate the relevant expressions for the Kalman �lter

(see Harvey [12] and [13]) in our notation. Let the measurement and transition

equations be, respectively,

Zt = LXt + vt;

Xt+1 = TXt + ut+1;

where E[utv0s] = 0 for all t and s. De�ne the covariance matrices of the one-

period-ahead and within-period prediction errors by

Ptjt¡1 ´ E[(Xt ¡Xtjt¡1)(Xt ¡Xtjt¡1)0];
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Ptjt ´ E[(Xt ¡Xtjt)(Xt ¡Xtjt)0]:

The covariance matrix of the innovations, Zt ¡Ztjt¡1, ful�lls

E[(Zt ¡ Ztjt¡1)(Zt ¡ Ztjt¡1)0] = LPtjt¡1L0 +§vv:

The prediction equations are

Xtjt¡1 = TXt¡1jt¡1;

Ptjt¡1 = TPt¡1jt¡1T 0 +§uu;

and the updating equations are

Xtjt = Xtjt¡1 +Kt(Zt ¡ LXtjt¡1);
Kt ´ Ptjt¡1L0(LPtjt¡1L0 +§vv)¡1;

Ptjt = Ptjt¡1 ¡ Ptjt¡1L0(LPtjt¡1L0 +§vv)¡1LPtjt¡1:

In a steady state, we have

Ptjt¡1 = P;

Ptjt = P ¡ PL0(LPL0 +§vv)¡1LP;
Kt = K;

K = PL0(LPL0 +§vv)¡1;

P = T [P ¡ PL0(LPL0 +§vv)¡1LP ]T 0 +§uu:
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