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Abstract

We test whether a simple measure of corporate insolvency based on equity return volatility -
and denoted as Distance to Insolvency (DI) - delivers better predictions of corporate default
than the widely-used Expected Default Frequency (EDF) measure computed by Moody’s.
We look at the predictive power that current DIs and EDFs have for future defaults, both at
a firm-level and at an aggregate level. At the granular level, both DIs and EDFs anticipate
corporate defaults, but the DI contains information over and above the EDF, especially at
longer forecasting horizons. At an aggregate level the DI shows superior forecasting power
compared to the EDF, for horizons between 3 and 12 months. We illustrate the predictive
power of the DI measure for the aggregate default rate by examining how corporate defaults
would have evolved during the period marked by the spreading of the COVID-19 pandemic
had the ECB not implemented the pandemic emergency purchase programme (PEPP).

JEL codes: C53; C58; G33.
Keywords: default probability; equity volatility; distance to insolvency;
expected default frequency.
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Non-Technical Summary

Corporate defaults are painful events for an economic area, especially when they occur in an

economic downturn and involve a large fraction of firms and sectors, thereby aggravating the

decline in real activity. Also for this reason there has always been a strong interest among

academics and practitioners in forecasting firms’ defaults. In this paper we consider whether

a simple proxy for a firm’s health - called Distance to Insolvency (DI) - leads to a better

anticipation of corporate defaults relative to traditional indicators. Specifically, we compare

the prediction of defaults based on our proposed indicator (which is directly linked to equity

returns’ volatility) to that of two well-established measures: the Expected Default Frequency

(EDF), developed by Moody’s and based on the Merton model, and the Altman’s Z-score, which

employs balance sheet data rather than market-based information. Beyond these two indicators

we also consider selected financial market information in our econometric analysis, to the aim of

minimising the risk of overlooking developments which could also be behind the deterioration in

the health of a given set of firms. Due to data unavailability on actual defaults we build a proxy

for a firm’s default which is defined as having experienced a very large decline in its equity value

over a short interval of time. Our sample consists of an unbalanced panel of around 7,500 euro

area firms spanning the period from 1999 to 2020.

Our key result is that at a granular, firm-level, level of analysis, both the EDF and the DI

are key to forecast defaults. However, the EDF loses its forecasting power when horizons are

longer than three months, while the DI remains an important conditioning information also

at longer horizons. The EDF and the DI maintain their role of predominant predictors even

controlling for other financial market variables which have been reported by the literature to

have a role in predicting defaults or negative economic out-turns more generally. As for another

traditional indicator of corporate health, the Altman Z-score, we find that it is only weakly

significant in predicting future defaults when it is used alone in a regression; furthermore, its

importance becomes negligible when considered together with the DI and EDF variables. The

Z-score becomes insignificant also when considered together with the financial market controls

mentioned above.

Last, we consider whether it remains true that the information content of the DI is compa-

rable or better than the EDF when one takes an aggregate corporate sector standpoint. To this

aim we cast the two indicators in a Vector Autoregressive (VAR) model together with the ag-
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gregate default rate of the firms in our sample and other financial market control variables. We

then use a predictive ability test, at forecast horizons between 1 and 12 months, to assess their

relative performance. Overall, with the exception of the 1-month horizon, a VAR model which

includes the DI shows a smaller error in predicting the default rates, relative to a similar VAR

model where instead the DIs are replaced by the EDFs. Thus, the evidence from macro data

seems to largely support the previous findings based on granular data, as the DI turn out to be

a better predictor of aggregate default rates at all relevant horizons. To illustrate the relevance

of the DI in macro-financial applications, we present a counterfactual exercise that considers the

level at which corporate defaults in the euro area would have settled if the Eurosystem had not

implemented the pandemic emergency purchase programme (PEPP). We show that the presence

of such an intervention reduced defaults during the crisis - relative to a scenario where such an

intervention does not take place - by mitigating the impact of financial shocks (as captured by

the DI) on euro area non-financial firms.
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1 Introduction

Economists are interested in corporate defaults because such events, especially when they oc-

cur simultaneously for many firms and over a short interval of time, can lead to a significant

deterioration in future economic growth. Weaker economic activity stems primarily from the

financial turbulence and the loss in business confidence that corporate defaults tend to gener-

ate. As a matter of fact, there is an ample literature that explores the predictive content of

corporate credit spreads (a common default-risk indicator) for economic activity.1 Furthermore,

both academics and practitioners have been actively developing indicators and models aimed

at measuring firms’ financial fragility as well as forecasting corporate defaults. A seminal work

in the literature is Altman (1968), who developed the Z-score, an indicator that uses multiple

corporate income and balance sheet information to measure the financial health of a company.

The Z-score became widely popular and represents, with various modifications since its original

development, a standard measure reported by industry analysts. Another important indicator

is the Distance-to-Default measure which underpins the Merton’s model (Merton (1974)), pop-

ularized by Moody’s in their proprietary product Expected Default Frequency (EDF). Up to

date, both Z-scores and EDFs are routinely employed by investors and academics to study credit

market developments and assess the financial soundness of firms.

More recently, Atkeson et al. (2017) proposed a new indicator of a firm’s financial soundness,

the so-called Distance to Insolvency (DI). This measure is also based on Merton’s Distance-to-

Default (DD) model, but the authors propose a set of simplifications which make it very easy to

compute, basically boiling it down to the inverse of the volatility of a firm’s equity return. An

additional advantage of this measure is that the DI is not dependent on any modelling choices

and as such it is easy to be used and compared across firms, time and studies.

This paper examines the default forecasting ability of the DI measure comparing it to the

other two aforementioned widely used measures, with a special focus on the EDF.2 The purpose

of the paper is to show whether such a simplified measure of default risk has better forecasting

performance for future defaults than more complex indicators which rest upon an extra set of

assumptions. In the remainder of the paper we identify defaults as cases in which firms lose

almost all their market value in a few months. We provide further motivation for this choice in
1See for example, Gilchrist and Zakraǰsek (2012).
2The EDF is a daily measure with also very broad coverage. In later sections we also provide comparisons

with the Altman Z-score, which is only available at a lower quarterly frequency.

ECB Working Paper Series No 2749 / November 2022 4



the next sections.

Our findings show that, at the granular level, both the EDF and the DI are relevant mea-

sures to forecast defaults. However, the EDF loses its forecasting power once we look at horizons

beyond 3 months, while the DI preserves its forecasting properties at longer horizons. Further-

more, also when dealing with aggregate data, the DI indicator performs better than the EDF

for predictive horizons beyond 3 months. In both analyses we control for relevant covariates,

i.e. the comparison between EDF and DI also takes into account other variables which have

been reported by the literature to have a role in predicting either defaults or negative economic

out-turns more generally. Finally, to show the use of the DI indicator in macro-financial appli-

cations, we present a counterfactual exercise that considers the level at which corporate defaults

in the euro area would have settled if the ECB had not implemented the pandemic emergency

purchase programme (PEPP). We show that the ECB intervention reduced defaults during the

crisis, relative to a counterfactual scenario, by mitigating financial shocks (as captured by the

DI) on euro area non-financial firms.

As mentioned before, our paper is linked to a large literature that focuses on the prediction

of corporate bankruptcies. This literature varies in the preferred indicator used to predict

bankruptcies as well as in the methodology used to estimate the likelihood of such events.

For example, Beaver (1966), Altman (1968), Ohlson (1980) and Campbell et al. (2008) use

accounting variables to estimate the probability of bankruptcy in a static model. Despite its

longevity, Altman’s Z-score is arguably still the most widely used measure of firms’ financial

distress and a benchmark to evaluate the ability of any other measure. Another strand of the

literature examines the predictions of the Merton model. The first authors to carry out a detailed

examination of the performance of the model were practitioners employed by either KMV or

Moody’s. A number of papers including Sobehart and Keenan (1999, 2002a,b) and Kealhofer and

Kurbat (2001) analyze Merton DD models and argue that the Merton DD-like model originally

developed by the KMV corporation captures both the information in traditional agency ratings

and in the accounting variables typically used to derive these ratings. An academic literature

has also recently developed that critically assesses the model. Hillegeist et al. (2004) examine

whether the Z-score developed by Altman effectively summarises publicly available information

about the probability of bankruptcy. Based on over 500 bankruptcies between 1979 and 1997,

they conclude that reliance on accounting-based measures of bankruptcies is not appropriate and

that information from the Merton’s model has relatively more explanatory power for subsequent
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default events. However, they also find that the Z-score has significant incremental information

and therefore the information derived from the Merton’s model is not a sufficient statistic.

Bharath and Shumway (2008) examine the predictive power of the Merton model in a way that

we follow in our paper. More specifically, they compare the DD model to a naive model whose

functional form is the same as in Merton’s model but without solving for an implied probability

of default. Overall they find that the naive model performs slightly better than the original DD

model in hazard models as well as in out of sample forecasts.

Finally, as our default measure is inherently linked to equity returns, our paper is also related

to some research in the asset pricing literature focused on the distress puzzle. This anomaly

relates to the observation that firms with high credit risk forecast low expected equity returns,

even when accounting for risk adjustments (Dichev (1998), Griffin and Lemmon (2002)). This

stands in contrast to the standard rational framework. Some advocates of this puzzle, such as

Campbell et al. (2008), Shleifer and Vishny (1997) and Gao et al. (2018), also show that this

anomaly is concentrated in small and scarcely liquid stocks.

The rest of this paper is organized as follows. The next section describes the data and con-

cepts used through the paper. Section 3 shows results of forecast accuracy based on Cumulative

Accuracy Paths, while Section 4 extends the analysis to an econometric framework through the

use of hazard models. Section 5 looks at the role of DI vs EDF in a macro setting and also

discusses the policy relevance of the DI measure. Finally, Section 6 concludes.

2 Data and Definitions

Our analysis uses all listed non-financial firms in euro area countries, as available in Refinitiv

Eikon, between 1999 and 2020. This amounts to an unbalanced panel of 7,490 firms. Out

of these, 929 firms defaulted at some point according to our default definition, which will be

explained in detail further below. Along with daily equity prices for each of the 7,490 firms

(the key ingredient to compute the equity volatility that defines the DIs), we also collect other

financial market variables as well as selected pieces of information for the panel of firms which

are illustrated in detail throughout the analysis in the following subsections and whose summary

statistics are reported in Table I.
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2.1 A Default Proxy

As the aim of this paper is to forecast corporate defaults, we need to try to accurately measure

and define this event. This task is not straightforward since the moment in which a company

defaults is subject to various alternative definitions. It can be identified with the time when the

firm is late or misses payments on a debt obligation, or with the moment in which a firm officially

declares bankruptcy. The former case, however, might only be a temporary setback which the

firm can subsequently successfully deal with, while the latter usually takes place a long time

after the firm has actually ended up in serious financial trouble. In general, papers studying

corporate defaults make use of proprietary databases compiled by rating agencies or specialised

firms (e.g. Moody’s Default and Recovery database or the Altman default database). While

the resources invested in compiling these databases makes them the best available measure of

defaults, there is necessarily a certain degree of subjectivity in defining the default event. In

this paper we take a new and alternative approach and use equity price data in order to build

a proxy default measure.

We proxy defaults through strongly negative equity returns (i.e. returns lower than minus

80%) over a 3 months horizon. Historically, such strong equity price declines have usually been

associated with deep financial distress of the respective company, leading to a subsequent default.

While this development does not necessarily imply that the firm has defaulted on its debt, it is

a clear indication of the financial distress experienced around or ahead of a default event. If a

firm in our sample experiences a default as defined above, we remove it from the sample. Thus,

in our exercise, firms cannot experience more than a single default by construction. Also, it is

worth noting that more than 75% of firms that defaulted according to our measure were delisted

at some point afterwards, which highlights the high correlation of our measure to bankruptcy.

Comparing the aggregate measure of default based on our definition to historical default

rates obtained from S&P Ratings suggests broadly similar dynamics (see Fig 1).3 In general,

our return-based default proxy tends to lead spikes in actual defaults, which is consistent with the

forward-looking nature of our market-based indicator. Furthermore, we also check the specific

balance sheet characteristics of the firms at the time of default in our sample. We split the firms

into deciles according to the Altman Z-score, profitability (EBIT/total sales), size (log of assets)

and leverage (1-book equity/total assets) and we count the number of observed defaults in each
3We thank Nick Kraemer from S&P ratings for sharing this data with us.
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decile over the total. Figure 2 shows the results of this exercise. In our sample, and in line with

the aggregate evidence, defaults tend to happen more frequently to firms that are smaller, less

profitable, more leveraged and with lower Altman Z-scores.

All in all, our proposed measure identifies firms in deep financial distress and it serves as a

proxy for the more widely used concept of firm default.

2.2 Distance to Insolvency (DI) indicator

In the pioneer credit risk models of Merton (1974) and Leland (1994) a key state variable

summarizing a firm’s financial soundness is the Distance to Insolvency (DI), i.e. a measure of

the firm’s leverage adjusted by the volatility of the market value of its assets. DI is a key state

variable since it summarizes the probability that the firm will become insolvent in the future.

However, calculating a firm’s DI in practice is a challenging task, as it requires one to measure

separately the market value and the volatility of a firm’s underlying assets, and the value of its

liabilities. This requires both assumptions and the use of accounting data.

Atkeson et al. (2017) show that the DI of a firm can be efficiently approximated by the

inverse of its equity volatility.4 This provides a very simple measure of the DI, not subject to

the inconsistencies of accounting data and independent of any ad-hoc assumptions.

We estimate the equity price volatility as the realized volatility computed from daily equity

returns for each firm and each month from January 1999 to June 2020. As can be seen in Chart

3 panel a, there is a clear relationship between the DI measure and our proxy for firms’ default.

For the full sample period, firms whose DI is in the first quintile of the DI distribution are

three times more likely to default than those in the second quintile. For the other quintiles the

probability of default is less than half that of the second quintile.

As outlined before, our default proxy is based on the equity return. Therefore it could be

argued that it trivially relates to information coming from the return itself, which is the sole

ingredient of the price volatility, i.e. of our expected default indicator. In other words, it could

be argued that our predictor and what we are predicting are somehow related entities. On this

respect, however, it should be noted that the EDF measure also relates to the firm’s volatility

and therefore the indicator produced by Moody’s would not be immune to the same critique.

Furthermore, as is also the case in Campbell et al. (2008), we look at default predictions over
4Atkeson et al. (2017) formally show that the inverse of equity volatility is an accurate measure of the DI if

the DI is close to the Distance to Default. This happens when creditors are quick in forcing insolvent firms into
default.
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short (3 months) and long (1 year) horizons. The potential mechanical link between the DI

measure and our default default proxy should become much weaker as the predictive horizon

lengthens. Therefore the critique of using a trivial predictive factor at the 3-month horizon

should be of a much lower importance when we look at how defaults evolved over the subsequent

year.

For ease of interpretation, we also transform the DI into a probability of default following

the transformation applied in the Merton model (i.e. applying a standard normal distribution

as z(t) = φ(DI(t)) where φ(.) is a normal cumulative density function). This is the same

transformation that it is used in the calculation of the EDF, and thus, the transformed DI, i.e.

the z(t), can be directly compared to the EDF measure that represents our benchmark.

2.3 Moody’s Expected Default Frequencies (EDF) and Altman’s Z-Score

EDFs are computed on a daily basis by Moody’s for a large set of firms worldwide and for a

number of predictive horizons. The computation of the EDF is based on the Merton (1974)

model whereby a firm is classified as defaulting when the market value of its assets drops below

its liabilities over a pre-specified interval of time. The key ingredients of this model are the

current market value of the firm, the level of the firm’s obligations and the assets’ volatility.

Using these three variables, it is possible to compute the distance to default – expressed in

units of asset volatility – and further the EDF, i.e. the likelihood that the asset value falls

below the value of outstanding debt over the chosen time interval. Note that while Moody’s

computes EDFs based on the model just described, it makes proprietary adjustments to some of

the model’s ingredients, such as allowing for various classes and maturities of debt, making use

of its historical default database to estimate the empirical distribution of changes in distance to

default or carrying out adjustments to the accounting information used to calculate the value of

the liabilities. Figure 3, lower panel, evidences a positive and monotonic relationship between

the EDF measure and subsequent firms’ default.

Coming to the other indicator of firm’s weakness, i.e. the Altman Z-score, it is computed

following Altman (1968). In particular, for firm i, the indicator is defined as:

Zi = 1.2 ∗Xi,1 + 1.4 ∗Xi,2 + 3.3 ∗Xi,3 + 0.6 ∗Xi,4 + 1.0 ∗Xi,5 (1)

Where for each firm i, Xi,1 = working capital / total assets, Xi,2= retained earnings / total
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assets, Xi,3= earnings before interest and taxes / total assets, Xi,4= market value of equity /

book value of total liabilities and Xi,5= sales / total assets. All balance sheet variables come

from the Compustat Global database and the market value of equity comes from Thomson

Reuters Datastream.

2.4 Control variables

For the econometric analysis in Section 4 we make use of a number of covariates in the regressions.

These include the 3-month Overnight Index Swap rate, the return on the Eurostoxx600 index,

euro area investment grade corporate bond spreads, the VIX volatility index, total firm’s assets,

equity to assets ratio and market capitalization. All data is retrieved from Eikon.

3 Cumulative Accuracy Path

The first predictive ability test we employ is the so-called Cumulative Accuracy Path (CAP),

which is based on the cumulative probability of default (using our proxy) of the entire population

of firms, where the population is ordered from riskiest to safest according to the observed

metric of interest (EDF or DI).5 These cumulative probabilities of default are compared to those

generated by a random forecast. The CAP is commonly used by banks and regulators to analyze

the discriminatory ability of rating systems that evaluate credit risks. In particular, it is one of

the key measures used by Moody’s to benchmark their credit default forecasts (Sobehart et al.

(2000)). Figure 4 shows CAP curves for the 3-month and 1-year predictive horizon, respectively.

Both the EDF and the DI have forecasting power for strongly negative equity returns (our proxy

for default) over a short horizon (3 months). As can be seen in Figure 4 both predictors forecast

3-month-ahead defaults significantly better than a random forecast.

However, EDFs appear less informative for longer predictive horizons while the DI metric

maintains its forecasting properties to a large extent over the longer horizon. While both in-

dicators lose forecasting power at the 1-year horizon, the DI maintains its predictive ability to

a higher degree than the EDF (as can be seen by the EDF-based curve lying somewhat below
5To better explain the test, for a given fraction x of the total number of observations, the CAP curve is

constructed by calculating the percentage y of the defaulters whose risk score is equal to or lower than the one
for the fraction x. A good model concentrates the defaulters at the riskiest scores and therefore the percentage
of defaulters identified, reported on the y-axis on the Chart showing the test, is expected to increase quickly as
one moves along the x-axis. If the model assigns risk scores in a random way we would expect a 45-degree line
outcome. So models whose CAP curve lies above the 45-degree line improve predictability over a random model.
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the corresponding curve for the DI in Figure 4). Both predictors, however, still fare better

than a random classification of defaults. Despite its widespread use for credit default measures

assessment, CAPs present several shortcomings. First, they are an ordinal measure and thus

do not allow for estimating risk based on a standalone number. Second, the time aggregation

embedded in a CAP does neither allow to control for time varying factors nor to perform a

multivariate analysis. Third, it is not possible to precisely quantify the economic significance of

the results. For these reasons in the next section we employ a formal econometric analysis as

our main tool to evaluating the DI as a measure for predicting future firms’ defaults.

4 Hazard Models

We employ a Cox proportional hazard model to assess if and to what extent EDFs and DIs

are statistically relevant in explaining our proxy of corporate default. In this context, we will

also compare how the two predictors fare in relation to each other. Hazard models have been

extensively used in the literature on corporate defaults and are considered one of the main

reduced-form tools used to forecast defaults, as shown in Shumway (2001), Chava and Jarrow

(2004) and Campbell et al. (2008).6 In this class of models, the so-called hazard rate λ(t), i.e.

the probability of default at time t conditional on survival until time t, is

λ(t) = θ(t)[exp(x(t)β)] (2)

where the term exp(x(t)β) allows the expected time to default to vary across firms according

to covariates and θ(t) is the baseline hazard rate, which is common to all firms. As already

detailed, our sample comprises all publicly listed firms in the euro area between January 1999

and July 2020. As is customary in the literature, we exclude financial firms from our sample7.

While our initial dataset contains 7490 unique firms that have been listed at some point during

our sample period, we do not have an EDF or DI observation for all our firm-months observations,

thus leading to a reduction in the total amount of data points.8 First, we estimate our model

separately for EDFs and DIs. We run different specifications in which we add further controls
6Further, Bauer and Agarwal (2014) find that hazard model with time-varying covariates provide a superior

performance compared to static accounting based models.
7The existing literature on corporate defaults excludes financial firms because default in this industry is usually

treated differently from other industries
8In total, we have 571,069 month-firm EDF observations and 410,560 month-firm DI observations.
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each time we estimate the model. As explained in Section 2, we employ a different set of

market-based and accounting covariates, in order to check other possible factors that could

jointly explain firm’ defaults. We then also pool together the EDF and DI to check whether one

variable dominates the other in a horse-race regression. In this specification, we also add the

same controls used before.

In our analysis we test the predictive ability of EDFs and DIs at two different horizons, 3

months and 12 months ahead, in order to detect variations in the predictive content of these

variables as the forecasting horizon changes. Therefore, all our results report regressions where

the EDF and DI indicators are always lagged, by 3 or 12 months, compared to the observed

default. One of the key assumptions of the Cox model is the proportional hazard function

assumption. This assumption states that each covariate has a multiplicative effect in the hazard

function that is constant over time. Our covariates are all time-varying, but we also test whether

or not the proportionality assumption underlying the hazard models is respected. If not, this

would mean that the impact of some covariates is not constant through our sample but varies

with time. We test this assumption by looking at scaled Schoenfeld residuals. We reject the

null hypothesis of proportionality for the EDF variable (χ2 = 12.06, p-value=0.0005), while

we accept the null for the DI indicator (χ2 = 0.54, p-value=0.46). We also show the scaled

residuals in Figure 5, where a non-random increasing pattern across our sample can be observed

for the EDF. We address this issue with the standard procedure in the literature, by adding an

interaction term between the EDF and time in our regressions.

4.1 Hazard model results

Table II shows the hazard ratios obtained when we study the explanatory effect of the EDF on

our measure of corporate default. We run the same model on two different time horizons (3

and 12 months) to also test if the explanatory power of the EDF changes over different time

frames. Columns 1 and 4 report univariate regressions at both predictive horizons. Further,

the other columns report multivariate estimates, once we control for several market and ac-

counting variables that might help forecast corporate bankruptcies. In the case of the EDF, the

interpretation of the hazard ratios is not straightforward, as the effect of the EDF on corporate

defaults changes over our sample due to the interaction term of this variable with time. More

specifically, the impact of this variable increases with time. The value of the hazard ratio in
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Column 1 (1.069) means that a unit increase in the EDF increases the probability of default by

6.9 percent in the first period of our sample. This effect then rises up to 12 percent at the end

of the sample (i.e. as: exp(log(1.069)+260∗log(1.0002))). The coefficient of the EDF is significant in

all our estimations at the 3 months horizon, even when the model is estimated with different

sets of controls.

The coefficients associated with the EDF are more than halved relative to their 3-months

value when we look at the 12-months horizon. Moreover, once we add all our controls to the

regression estimates the EDF turns out to be not significant (Column 6 of Table II). Overall,

this suggests that the explanatory power of the EDF decays at longer horizons, while it seems to

be useful as a predictor at the shorter 3-month horizon. It is also important to note that most

of our control variables are significant and with the expected sign. For example, increases in the

3-month yield and in the corporate bond spread increase the probability of a default, while an

increase in leverage increases the probability of adverse outcomes at both horizons, even though

not significantly. At the same time, higher market returns and bigger firm size are associated

with lower default probabilities.

Table III reports estimates for the same Cox model as shown in Table II, but based on the

DI indicator. In this case our estimates find that the DI measure is highly significant at both

horizons, even after adding all the market and accounting based controls previously considered.

Most importantly, the magnitude of the coefficient is twice as large for this variable relative to

the comparable EDF coefficient9 (1.14 vs 1.064) at the 3-months horizon. The result is even

more striking once we look at a longer horizon, where the coefficient associated to the DI is

very similar to the one presented for the 3-month ahead regression, while the comparable EDF

coefficient is not significant and very close to one.

Finally, we compare the performance of the EDF with our own DI measure in horse-race

regressions, to check whether or not one of the measures dominates the other as a predictor

of corporate defaults. The results are shown in Table IV. Our simple DI measure dominates

the EDF, both with and without controls. The EDF coefficient is very close to one and not

significant in any of the regressions, thus implying a very small effect on corporate defaults, as

the DI leads to a strong decline in the significance of the EDF coefficient in all the specifications

where the two variables are present. If we focus on the regressions where we do not employ
9The two variables are directly comparable as both our EDF and DI measure track a probability of default

over a particular horizon
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any controls, an increase by 1 unit in the DI measure implies an increase in the probability of

default by 15 and 14 percent at the 3- and 12-month horizon, respectively. At the same time,

the EDF coefficient implies an increase in bankruptcy’ probability of 0.6 percent 3-month ahead,

and even a negative effect one year ahead. This finding is also confirmed once we add all the

controls used before in the regression.

We also test whether or not another traditional indicator such as the Altman Z-score pos-

sesses any explanatory power for corporate defaults. We report the results of such regressions

in Table V. While the Altman Z-score appears marginally significant at 10 percent when used

alone in a regression, its magnitude is negligible compared to the DI and EDF variables. In

fact, a rise of 1 unit in this variable would increase the probability of default by 0.5% 3 months

ahead. Further, the variable becomes insignificant when we add the controls used in the previous

regressions. In the last two columns we also add the EDF and DI as further controls, and we

show that the DI keeps its magnitude and significance even in this specification.

We conduct a couple of robustness checks on our main result. First, we run the Cox model

using a DI measure that is computed by looking at equity returns realized over a quarter of daily

data rather than over a month, as is the case in our baseline. We report these results in Table

VI. Similarly to our previous results, our DI measure is economically and statistically significant

in all specifications. At the same time, when we run horse-race regression between the EDF and

this version of the DI, the EDF is not significant at both horizons. However, the magnitude of

the hazard ratios for the quarterly DI at the 12-months horizon are smaller compared to our

preferred monthly DI measure (1.068 compared to 1.15 when we add all controls). This might

signal that computing the DI using a longer time period, and thus more dated values of equity

returns, might decrease its forecasting power at longer horizons.

Second, we exclude firms whose equity price does not move during 20% or more of the trading

days in the sample. These can be reasonably identified as low-liquidity stocks with a significant

fraction of stale prices. The conclusion of our analysis still holds for this smaller sample, as

reported in Table VII.

These findings, combined together, allow us to draw the following conclusions. First, EDFs

do have some predictive ability for corporate defaults, but mostly at short horizons. This fact

seems to confirm the results obtained from the cumulative accuracy paths presented in the

previous section. Second, our DI measure is significant as a predictor of bankruptcies at both

short and longer horizons, and its magnitude is bigger than the estimated coefficients for the
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EDF. This is a striking result, as the EDF is usually considered a benchmark when predicting

future corporate distress and default. At least for the sample and the set of euro area firms we

look at, this is clearly not the case, as our simple DI measure outperforms the EDF.

4.2 Out-of-sample forecasts

In this sub-section we evaluate the forecasting performance of the indicators in an out-of-sample

exercise, following Bharath and Shumway (2008) in the particular type of exercise performed.

Columns 2 through 5 of Table VIII report the out-of-sample predictive ability of our two

main indicators of interest. In order to perform this test, we proceed as follows. First, for each

month, we sort firms in EDF and DI deciles. Then, we count the number of defaults that occur

within each decile in the following 3 and 12 months, for each of the two indicators. For example,

at the 3-months horizon 54% of defaulted firms were in the highest two deciles of the EDF

distribution, while this number increases to 71.5% when we sort firms according to their DI.

This percentage decreases to 49% and 64% at the 12-months horizon, respectively. Remarkably,

the DI measure shows better results than the EDF at both horizons, which seems to confirm

the in-sample results presented before and based on hazard models.

Further, we also test the out-of-sample properties of our Cox model estimates. We first

estimate our Cox model10 up to December 2007, and then sort our firms into deciles according

to their predicted hazard ratio. Next, we compute how many defaults happen at the 3 and 12-

months horizon (outside our estimation window) for each decile of our predicted hazard ratio.

We then repeat this process by re-estimating the model adding one more period to the estimation

sample and sorting again firms according to our estimated hazard rations. We proceed this way

until we reach the end of our sample.

Columns 6 through 9 of Table VIII report the results of this exercise. They show that the

DI has a better out-of-sample predictive ability compared to the EDF. In fact, the percentage of

defaults observed in the last two deciles of the DI is 10 percentage points higher than the EDF at

the 3-month horizon (77% compared to 67%) and 12 percentage points higher at the 12-months

horizon, even if both numbers understandably decrease when we look at a longer horizon. It

appears that the DI, once again, outperforms the EDF at both short and long horizons even

when we look at the out-of-sample performance of these variables.
10We run model (1) and (4) of II for the EDF and model (1) and (4) of Table III for the DI
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5 Aggregate data results

As pointed out in the previous sections, the DI indicator can be easily computed for listed firms

from their return volatility. This feature is especially attractive as it avoids resorting to expensive

or non-timely information, as is the case with the proprietary EDF data or with balance sheet

indicators, the latter only available with a significant delay. The DI therefore provides a quick-

to-compute and reliable assessment, as our findings so far have evidenced, about the fragility of

a given firm. 11

In this section we aim to transpose the good default forecasting performance of the DI -

evidenced through our granular analysis - to aggregate data, thus aiming to check whether the

information content of the DI still remains valid in this lower frequency setting. The aggre-

gate setting is particularly relevant for the macro-finance literature as well as, for example, for

applications evaluating the effect of monetary policy shocks on corporations and ultimately on

key macro variables. Indeed, in this Section we also show how the DI could be employed to

inform policy, by assessing the impact of the non-standard policy measures put in place by the

Eurosystem since the burst of the COVID-19 pandemic on the fragility of listed firms.

Specifically, we include the median DI and EDF values for euro area firms into a monthly

VAR together with the euro area industrial production index (IP), the VIX volatility index,

the corporate (BBB rating) bond spread for euro area non-financial corporations (SP) and the

default rate (DR) for euro area non-financial speculative grade corporations, as computed by

Moody’s. Our specification has six lags for the vector Y(t) = [DR(t), IP(t), SP(t), DI(t), EDF(t),

VIX(t)]. We order the variables by the speed with which they react to the information flow,

with the default rate being the slowest - as empirically it takes time for firms to go bankrupt

after a given shock - and the VIX being the fastest. The main results of the VAR estimation are

highlighted through the impulse response functions (IRF) of the corporate default rate, which

are identified through a Choleski factorization of the covariance matrix based on ordering the

six variables in Y(t) as described above. Focusing on the response of the euro area DR to the

four financial shocks (i.e. a spread shock, a DI shock, an EDF shock and a VIX shock) Figure

6 shows that the corporate bond spread and DIs shock have similar effects on the default rate.

The latter rises almost monotonically over time and the increase remains always significant in

the case of the non-financial corporate bond spread and significant from around 6 to 12 months
11In addition, DIs can be computed at a daily frequency so even from this standpoint there is no loss of

information relative to the EDFs.
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after the shock in the case of the DI. Interestingly, the response of the default rate to a DI

shock is significant despite the DI being ordered after the corporate spread, indicating that its

explanatory power is not fully subsumed by the spread. By contrast, the IRF of the DR to a

EDF and a VIX shock is rather flat or decreasing across time and remains significant only for

around half a year after the shock. Overall these findings confirm the results based on firm-

level data, i.e. that the information in the DI cannot be subsumed by other relevant financial

indicators and that the best strategy from a forecasting standpoint is to consider such pieces of

information jointly, as they convey different information across forecast horizons.

Further, we consider whether it remains true that the information content of the DI is

comparable or better than the EDF at the aggregate level. To this end we employ again the

VAR described above and perform the forecasting ability comparison test proposed by Diebold

and Mariano (1995)). We estimate two versions of the VAR, the first one with the following five

variables: the default rate, the industrial production index, the VIX, the corporate bond spread

and the EDF. In our second specification the EDF is replaced by the DI. The two models are

estimated from January 1999 on expanding samples, the first of which ends in January 2005.

We look at forecast horizons between 1 and 12 months. Table IX shows the mean absolute error

(MAE) for the two VAR models at four horizons together with the Diebold and Mariano test.

This test is the t-stat of the intercept in a regression of the difference in the absolute values of

the errors between the competing models, and a constant. Overall, with the exception of the 1-

month horizon, the VAR which includes the DI shows a smaller error in predicting default rates

relative to the VAR that instead includes the EDF, the difference being statistical significant

as indicated by the test. Hence, the evidence from macro data seems to largely support our

previous findings based on granular data, as the DI turn out to be preferred as predictor of

aggregate default rates at all relevant horizons.

5.1 A policy application during the COVID-19 crisis

To illustrate how the information contained in the DIs can be used to characterise the effect of

non-standard policy measures on the financial fragility of non-financial corporations, we use the

VAR model described above to run a counterfactual exercise. We focus on the initial period of

the COVID-19 pandemic, in which default rates remained largely subdued in partly thanks to

the sizable monetary policy easing put in place by central banks across the globe. To put the

exercise in context, it may be worth recalling that the unfolding of the COVID-19 pandemic
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since early 2020 had a significant impact on the euro area (as well as the global) economy and to

counter its effects the European Central Bank (ECB) started the pandemic emergency purchase

programme (PEPP) in March 2020. The PEPP is a temporary asset purchase programme

of private and public sector securities. Eligible assets for purchasing include sovereign bonds,

corporate bonds and asset-backed securities. Sovereign bonds represent the lion’s share of the

purchases. The programme was designed in order to counteract an unwarranted tightening of

financial conditions and to support a smooth transmission of monetary policy. The PEPP was

originally allocated 750 euro billion for asset purchases and later increased by 600 euro billion

in June 2020 and by an additional 500 euro billion in December 2020 to a total of 1850 billion.

With this in mind, our policy application will be based on comparing the actual developments

in DIs to three counterfactual paths that assume i) no policy support, i.e. no PEPP-related

bond purchases at all, ii) purchases limited to what contained in the initial decision taken by

the Eurosystem (March 18th 2020) and iii) support limited to what was initially decided plus the

June 2020 Governing Council decision. In order to run this exercise we first translate the amount

at disposal for purchases into a counterfactual 10-year interest rate and a counterfactual VIX

value, and subsequently into a counterfactual DI value. The VIX is chosen as an instrument to

this aim as it measures equity market volatility, which is basically the same type of information

underlying the DI. More specifically, we employ the policy shocks identified in Altavilla et al.

(2019) in a daily VAR to compute the response of 10-year OIS rates to such shocks. We cumulate

these shocks over an horizon of one month. The impulse response functions of the VAR are also

used to measure the cross-elasticity of the VIX with respect to the OIS. With these pieces

of information we can compute the counterfactual development of the OIS 10-year rate, and

therefore of the VIX, given the estimated cross-elasticity, relative to a situation where the policy

shock (the amounts to be purchased) would have not been observed. Last, we transform the

counterfactual values of the VIX into the DI counterfactual path by using the same percent

deviations between the actual and counterfactual VIX values. 12 The VAR is estimated until

March 2020 and from that date on we run three counterfactual exercises based on three different

DI paths, each of them reflecting one of the three different hypotheses specified above for the

amounts of bond purchases. The exercise is run up to July 2022 by using an unconditional DI

forecast from the VAR (estimated up to July 2021) and then computing counterfactual DI paths

between August 2021 and July 2022 in the same way as was done before April 2020 and July
12We thank Giulio Nicoletti for these computations.
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2021.

Figure 7 shows the actual default rate values up to July 2021 and its unconditional forecast

from the VAR, alongside with the three counterfactual default rate paths. Overall, if PEPP-

related purchases would have not been implemented at all, default rates would have peaked at

around 7 percent instead of the realised 5 percent. Further, the default rate path would have been

persistently higher throughout the entire anaysed period. The other two counterfactual paths

lie between the no-PEPP case and the actual default rate and overall show that all decisions

taken by the Eurosystem to step up the PEPP did indeed contribute to alleviate the weight of

the financial shock on the set of euro area non-financial firms.

6 Conclusion

We have analysed whether a simple measure of insolvency - called Distance to Insolvency (DI)

and based on the inverse of the equity return’s volatility - can anticipate corporate defaults

as accurately as, or better, than the commonly used Moody’s Expected Default Frequency

(EDF) indicator for a large set of euro area firms since 1999. We explore both the firm-level

dimension and aggregate data. Overall we find that, using Cox’s hazard rate regressions, our

simpler distress indicator performs better than the EDF, controlling for a number of covariates,

especially at longer horizons. We show that the DI performs better than the EDF in forecasting

corporate defaults also in an out of sample exercise. At the aggregate level, the DI shows

once again superior forecasting power compared to the EDF, for horizons between 3 and 12

months. Lastly, we use the DI measure to simulate the evolution of corporate defaults during

the COVID-19 crisis if the Eurosystem had not implemented the pandemic emergency purchase

programme.
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7 Figures

Figure 1: Cumulative 12-month trailing default rates
Default rates from S&P show the 12-month trailing default rate for European non-financial firms provided
by S&P. Default 3m-80% shows the 12-month trailing default rate computed based on assigning default
to firms which see an 80% or more decline in their stock price in a time interval of 3 months.
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Figure 2: Number of observed defaults and firm characteristics
The chart shows the balance sheet characteristics of defaulted firms in our sample. Firms are splitted in
deciles. We count the relative number of defaults in each decile of the variables over the total. Zscore is
the Altman Z-score. Profitability is EBIT/total sales. Size is the logarithm of total assets. Leverage is
calculated as (1 - book equity/total assets).
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Figure 3: Default rates by DI and EDF quintiles
Bars show default rates (computed based on assigning default to firms which experience an
80% - or larger - decline in their stock price in a time interval of 3 months) for the
group of firms classified in each EDF or DI quintile based on the full sample (1999-2020).
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Figure 4: Cumulative Accuracy Paths (3- and 12-month ahead)
Based on default events (computed based on assigning default to firms which experience an 80% - or
larger - decline in their stock price in a time interval of 3 months) in the full sample (1999-2020). The
CAP curve shows the percentage of the defaulters whose risk score (EDF or DI) is equal to or lower than
the one for the fraction x in the population, where the population is ordered from most to least risky
based on the particular measure. The upper panel shows the CAP 3-month ahead, while the lower panel
shows the 12-month ahead CAP.
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Figure 5: Proportionality Assumptions
The chart shows the results of the test on the proportionality assumption by using scaled Schoenfeld
residuals on function of time in hazard models. A non-zero slope is an indication of a violation of the
proportional hazard assumption.
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Figure 6: Impulse Response Functions
The chart shows the dynamic response of actual default rates of euro area non-financial speculative grade
corporations to four shocks identified from a monthly VAR: a bond spread shock, a VIX shock, an EDF
shock and a DI shock. Shocks are identified via a Choleski factorization of the VAR’s covariance matrix.
The x-axis denotes months after the shock.
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Figure 7: The effect of PEPP on mitigating corporate defaults
The chart shows actual and counterfactual default rates for euro area non-financial corporations. The
counterfactuals are all based on simulations performed via a monthly VAR model and start in April 2020,
each of them reflecting different assumptions about the amount of PEPP purchases carried out at selected
points in time. Actual default rates are projected beyond July 2021 using the unconditional forecast from
the VAR.
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8 Tables

Table I: Summary Statistics
The table shows the summary statistics for the main variables in our study. 3-month returns are the firm-
specific 3-month equity returns, DI is the modified distance to insolvency, EDF is the expected default
frequency, Market Return is the 3-month return of the Eurostoxx 600, 3m OIS is the 3-month OIS rate,
Corporate Spread is the overall spread between government bonds and investment grade corporate bonds
(bps), VIX Index is the log of the VIX index, Size is the log of total assets (ebn), leverage is total
liabilities/total assets, Market cap is the total market capitalisation (emn) and Z-score is the Altman
Z-score. The sample period is January 1999-July 2020.

Mean Std. dev. Min 0.25 Median 0.75 Max
3-month return (%) 0.26 21.5 -62.50 -10.07 0.00 8.59 112.69
DI 1.91 4.74 0 0.0001 0.056 1.20 48.77
EDF 2.89 5.97 0.01 0.13 0.53 2.53 50.00
Market Return 0.004 0.08 -0.35 -0.03 0.01 0.05 0.31
3m OIS 1.59 1.71 -0.50 0.05 1.2 3.16 4.91
Corporate Spread 89.82 45.51 26.64 61.37 81.73 104.75 241.87
VIX Index 19.89 8.14 9.51 14.02 17.75 23.65 59.89
Size 5.45 2.63 -6.31 3.63 6.90 12.84 20.28
Leverage 0.57 0.23 0 0.41 0.59 0.75 1
Market cap 1381.87 5766.70 0 19.97 85.92 458.42 203511.8
Z-score 1.90 9.56 -4.72 0.54 1.16 2.12 981
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Table II: Cox model estimates for Expected Default Frequency
The table shows the hazard ratio estimates obtained by the Cox proportional hazard model. The depen-
dent variable is the time to default. T-stats are reported in square brackets. Standard errors are clustered
at the firm level. Hazard ratios in bold are significant at the 5% level. EDF*Time is an interaction term
in which the Expected Default Frequency is multiplied by Time. A hazard ratio above one implies an
increase in the probability of an adverse outcome for an increase of one unit in the underlying explanatory
variable. Likewise, a hazard ratio below one implies a reduction in the probability to observe a default.

Expected Default Frequency
3M 3M 3M 12M 12M 12M
(1) (2) (3) (4) (5) (6)

EDF 1.069 1.077 1.064 1.026 1.030 1.011
[13.8] [11.34] [5.02] [3.32] [2.76] [0.52]

Mkt return 0.065 0.024 0.050 0.030
[-4.33] [-3.43] [-3.52] [-3.36]

3m yield 1.654 1.608 1.689 1.762
[8.64] [5.14] [8.38] [5.42]

Corporate Spread 1.009 1.012 1.013 1.012
[4.92] [2.73] [5.47] [3.14]

VIX index 0.966 0.982 0.966 0.975
[-2.91] [-1.10] [-2.84] [-1.44]

EDF*Time 1.0002 1.0001 1.0005 1.0004 1.0004 1.0007
[3.25] [1.87] [4.13] [7.24] [5.85] [7.56]

Size 0.75 0.73
[-4.99] [-5.15]

Leverage 1.98 3.01
[1.20] [1.84]

Market cap 0.99 1.00
[-0.51] [0.50]

Obs 621,710 409,267 134,275 572,595 388,864 127,857
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Table III: Cox model estimates for the Distance to Insolvency
The table shows the hazard ratio estimates obtained by the Cox proportional hazard model. The de-
pendent variable is the time to default. T-stats are reported in square brackets. Standard errors are
clustered at the firm level. Hazard ratios in bold are significant at the 5% level. A hazard ratio above one
implies an increase in the probability of an adverse outcome for an increase of one unit in the underlying
explanatory variable. Likewise, a hazard ratio below one implies a reduction in the probability to observe
a default.

Distance to Insolvency
3M 3M 3M 12M 12M 12M
(1) (2) (3) (4) (5) (6)

DI 1.15 1.16 1.14 1.16 1.15 1.14
[24.62] [22.38] [11.09] [24.58] [20.35] [10.83]

Mkt return 0.06 0.05 0.02 0.03
[-3.25] [-2.39] [-4.20] [-2.76]

3m yield 1.35 1.26 1.30 1.31
[5.09] [2.46] [3.95] [2.82]

Corporate Spread 1.02 1.01 1.01 1.00
[1.75] [1.06] [2.52] [0.59]

VIX index 0.96 0.98 0.98 0.99
[-2.67] [-0.77] [-1.32] [-0.19]

Size 0.85 0.83
[-1.79] [-2.12]

Leverage 2.32 2.77
[1.39] [1.63]

Market Cap 1.00 1.00
[-0.76] [0.33]

Obs 393,623 245,317 109,522 364,168 235,513 106,601
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Table IV: Cox model estimates for horse-race regressions between EDF and DI
The table shows the hazard ratio estimates obtained by the Cox proportional hazard model. The depen-
dent variable is the time to default. T-stats are reported in square brackets. Standard errors are clustered
at the firm level. Hazard ratios in bold are significant at the 5% level. EDF*Time is an interaction term
in which the Expected Default Frequency is multiplied by Time. A hazard ratio above one implies an
increase in the probability of an adverse outcome for an increase of one unit in the underlying explanatory
variable. Likewise, a hazard ratio below one implies a reduction in the probability to observe a default.

Horse-Race Regressions
3M 3M 12M 12M
(1) (2) (3) (4)

DI 1.150 1.136 1.141 1.108
[11.73] [5.71] [10.03] [3.90]

EDF 1.006 0.972 0.990 1.000
[0.55] [-1.19] [-0.42] [0.13]

Mkt return 0.062 0.042
[-2.00] [-2.36]

3m yield 1.33 1.35
[2.79] [2.94]

Corporate Spread 1.006 1.005
[1.10] [1.00]

VIX index 0.98 0.99
[-0.70] [-0.22]

Size 0.87 0.79
[-1.48] [-2.87]

Leverage 1.83 2.20
[0.88] [1.38]

Marketcap 1.00 0.99
[-0.57] [-0.56]

EDF*Time 1.0004 1.0006 1.0004 1.0007
[5.19] [3.18] [3.10] [6.58]

Obs 390,804 86,783 363,662 83,541
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Table V: Cox model hazard ratios for Altman’s Z-score
The table shows the hazard ratio estimates obtained by the Cox proportional hazard model. The de-
pendent variable is the time to default. T-stats are reported in square brackets. Standard errors are
clustered at the firm level. Hazard ratios in bold are significant at the 5% level. A hazard ratio above one
implies an increase in the probability of an adverse outcome for an increase of one unit in the underlying
explanatory variable. Likewise, a hazard ratio below one implies a reduction in the probability to observe
a default.

Z-Score
3M 3M 12M 12M
(1) (2) (4) (5)

Z-score 0.995 0.999 0.995 0.999
[-1.68] [-0.22] [-1.35] [-0.35]

Mkt return 0.14 0.21 0.20
[-1.52] [-0.62] [-0.68]

3m yield 1.41 1.41 1.39
[2.82] [1.39] [1.31]

Corporate Spread 1.005 0.998 0.997
[0.87] [-0.16] [-0.16]

VIX index 1.001 0.956 0.958
[0.03] [-0.76] [-0.73]

Size 1.05 1.11
[0.70] [0.95]

Leverage 2.41 1.90
[1.25] [1.90]

Market cap 1.00 1.00
[-1.02] [-0.57]

DI 1.14 1.15
[3.88] [4.54]

EDF 1.03 1.03
[0.74] [0.95]

Obs 40,005 33,835 18,672 18,008
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Table VI: Cox model hazard ratios for modified DI variable
The table shows the hazard ratio estimates obtained by the Cox proportional hazard model. The de-
pendent variable is the time to default. T-stats are reported in square brackets. Standard errors are
clustered at the firm level. Hazard ratios in bold are significant at the 5% level. A hazard ratio above one
implies an increase in the probability of an adverse outcome for an increase of one unit in the underlying
explanatory variable. Likewise, a hazard ratio below one implies a reduction in the probability to observe
a default. This modified version of the DI is estimated with quarterly equity returns.

Quarterly DI measure
3M 3M 3M 12M 12M 12M
(1) (2) (3) (4) (5) 6)

DI 1.14 1.118 1.101 1.130 1.068 1.047
[18.63] [6.15] [2.94] [16.22] [3.02] [1.65]

Edf 1.040 1.015
[1.390] [0.580]

Mkt return 0.081 0.088 0.065 0.057
[-1.76] [-1.61] [-1.96] [-1.92]

3m yield 1.138 1.16 1.17 1.248
[1.02] [1.07] [1.23] [1.59]

Corporate Spread 0.996 0.995 0.998 1.001
[-0.53] [-0.71] [-0.22] [0.12]

VIX index 1.022 1.027 1.022 1.017
[0.84] [0.98] [0.9] [0.63]

Size 0.804 0.820 0.745 0.739
[-2.58] [-1.96] [-4.08] [-3.75]

Leverage 1.843 0.682 3.505 2.535
[0.77] [-0.41] [1.44] [0.88]

Market cap 0.999 0.999 0.999 1.000
[-0.31] [-0.24] [-0.27] [-0.15]

Obs 155,186 94,157 94,157 160,096 95,460 91,802
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Table VII: Cox model hazard ratios for DI variable of more liquid firms
The table shows the hazard ratio estimates obtained by the Cox proportional hazard model. The de-
pendent variable is the time to default. T-stats are reported in square brackets. Standard errors are
clustered at the firm level. Hazard ratios in bold are significant at the 5% level. A hazard ratio above one
implies an increase in the probability of an adverse outcome for an increase of one unit in the underlying
explanatory variable. Likewise, a hazard ratio below one implies a reduction in the probability to observe
a default. The sample includes only more liquid stocks in which equity prices move at least during 80
percent of trading days.

DI measure excl. less liquid firms
3M 3M 12M 12M
(1) (2) (3) (4)

DI 1.13 1.12 1.13 1.06
[9.99] [4.79] [9.73] [2.90]

EDF 1.00 0.98 0.99 1.02
[-0.34] [-0.88] [-0.75] [1.01]

Mkt return 0.04 0.05
[-2.36] [-2.27]

3m yield 1.35 1.36
[2.89] [3.03]

Corporate Spread 1.00 1.00
[0.27] [0.22]

Vix Index 1.00 1.00
[-0.20] [0.12]

Size 0.89 0.83
[-1.27] [-2.08]

Leverage 2.01 1.67
[0.96] [0.73]

Marketcap 1.00 1.00
[-0.74] [-0.65]

Observations 342,210 211,247 320,506 205,102
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Table VIII: Defaults by EDF and DI decile and out-of-sample forecasts
The table reports the fraction of defaults that correspond with each decile of the forecast variable.
The last row sums up the last two deciles for each variable. Columns 2-5 report the share of defaults
corresponding each EDF and DI deciles 3 and 12-months before the default took place. Columns 6-10
report out-of-sample forecasts for the models in Columns 2 and 5 of Tables 2 and 3, respectively. In
particular, the columns show the share of defaults corresponding to each decile of the predicted hazard
ratio, estimating the models first up to December 2007 and then repeating the process adding one more
month at a time to the estimation until the end of the sample

3m 12m 3m 12m
Decile EDF DI EDF DI EDF model DI model EDF model DI model

1 3.8 4.2 4.7 4.2 3.6 2.4 6.1 3.1
2 4.3 1.7 5.3 2.7 3.6 2.2 6.0 2.0
3 4.3 1.7 5.6 1.2 2.7 1.6 4.9 1.7
4 4.0 1.4 4.5 1.2 4.1 1.1 3.2 3.4
5 3.8 2.0 5.6 3.0 1.8 1.6 3.9 3.4
6 5.4 3.1 7.0 7.8 2.3 1.1 8.3 6.4
7 7.5 6.8 7.9 6.9 6.8 6.6 8.2 6.8
8 12.1 7.6 10.1 9.6 9.0 6.4 8.4 10.2

09-10 54.7 71.5 49.0 64.0 67.0 77.0 51.0 63.0

Table IX: Diebold Mariano tests
The table shows the results of the Diebold Mariano test to check the predictive ability of the EDFs
and the DIs for the defult rate (DR) of euro area non-finacial corporations. The test is based on DR
projections obtained from two non-nested VAR models estimated on expanding samples. The DM test is
performed as the t-stat of the intercept in a regression of the difference in mean absolute errors (MAE)
between the two competing VAR model and a constant.

MAE EDF MAE DI DM-test (t-stat)
1-month horizon 1.38 1.27 -0.79
3-month horizon 6.10 5.03 -1.92
6-month horizon 20.16 15.50 -2.67
12-month horizon 99.96 74.78 -2.09
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