Disagreement About Monetary Policy

Karthik Sastry

Massachusetts Institute of Technology

November 11, 2021 ECB and FRBNY Conference Expectations Surveys: A Tool for Research and Monetary Policy

Fed Sifts Options As Rate Cut Fails To Cheer Market December 12, 2007, Wall Street Journal

Some on Wall Street vesterday criticized the Fed's actions so far as inadequate. "From talking to clients and traders, there is in their view no question the Fed has fallen way behind the curve." said David Greenlaw, economist at Morgan Stanley, "There's a growing sense the Fed doesn't get it."

Suddenly, Critics Are Taking Aim at Greenspan April 1, 2001, New York Times

year, a sudden chorus of critics is recently told its clients. saying, and he has not cut them enough this year.

WASHINGTON, April 1 - He Under his leadership, the Fed is raised interest rates too much last "behind the curve," Merrill Lynch Markets and central banks always seem to disagree about where economy is going and how policy will respond. Why?

And what does the answer imply about the power—or futility—of central bank communication as a tool for moving markets?

This Paper (I): How to Distinguish Observationally Close Models

Very simple signal-extraction model with Market and Fed who may have

- different signals
- Ø different "model equations" (i.e., for monetary rule)
- 3 different priors (i.e., from differently reading public data)

Key idea: to disentangle these, need to study interest rate and real activity forecasts together

Theoretical results: "sign tests" to determine correct model

This Paper (II): Strong Evidence of "Agreeing to Disagree"

Main Results. In US since 1995, "bad macro news" in leading indicators predicts

- Surprise monetary loosening according to futures markets ($R^2 \approx 15\%$)
- Negative forecast errors (optimism) about employment in Blue Chip survey
- Relative optimism about employment for Blue Chip survey relative to the Fed

Model says: because "optimism" correlates with surprise cuts, heterogeneous priors are necessary, or asymmetric information + mis-specified policy rule is insufficient

Quantification. In calibrated model,

- "Fed information effects," or market learning about demand from Fed, almost negligible
- Heterogeneous priors are not: if Fed and Market agreed about value of public data, latter's beliefs would be 25% more sensitive to fundamentals.

Related Literature

- Persuasion, information effects, and signaling channels of policy. Theory: Morris and Shin (2002); James and Lawler (2011); Baeriswyl and Cornand (2010); and follow-up. Applications: Campbell, Evans, Fisher, and Justiniano (2012); Campbell, Fisher, Justiniano, and Melosi (2016); Nakamura and Steinsson (2018); Melosi (2016)
- Omitted variables and monetary surprises. Miranda-Agrippino (2015), Gertler and Karadi (2015), Miranda-Agrippino and Ricco (2021), Cieslak (2018), Karnaukh (2019), Bauer and Swanson (2020), Jarocinski and Karadi (2020)
- **Disagreement and heterogeneous priors.** Mankiw, Reis, and Wolfers (2003); Andrade, Crump, Eusepi, and Moench (2016); Andrade, Gaballo, Mengus, and Mojon (2019); Caballero and Simsek (2020)
- Imperfect expectations in macro. Coibion and Gorodnichenko (2012, 2015); Carroll (2003); Bordalo, Gennaioli, Ma, and Shleifer (2018); Broer and Kohlhas (2018); Angeletos, Huo, and Sastry (2020)

Outline

1 Model

2 Empirical Results

3 Quantification

4 Conclusion

Set-up: Learning About Aggregate Demand

		t = 0	t = 1	<i>t</i> = 2	later	
		Policymaking and Prediction	Policy Announcement	Subsequent Learning	Realization of Output	
Fed	sees	Z,F		S	$Y = a\theta - r$	
i eu	chooses	$r = \mathbb{E}_{F,0}[\theta]$				
Market	sees	Ζ	$r = \mathbb{E}_{F,0}[\theta]$	S	$Y = a\theta - r$	
	chooses	$P = \mathbb{E}_{M,0}[r]$				
		$=\mathbb{E}_{M,0}[\mathbb{E}_{F,0}[0]]$	9]]		restriction: $a \ge 1$ (incomplete stabilization)	

 $\begin{array}{l} \theta \sim \mathcal{N}(0,\tau_{\theta}^{-1}) = \text{AD or natural rate of interest} \\ Z \mid \theta \sim \mathcal{N}(\theta,\tau_{Z}^{-1}) = \text{pre-announcement public signal} \\ F \mid \theta \sim \mathcal{N}(0,\tau_{F}^{-1}) = \text{Fed's signal} \\ S \mid \theta \sim \mathcal{N}(\theta,\tau_{S}^{-1}) = \text{post-announcement public signal} \end{array}$

Set-up: Three Sources of Belief Differences

- Asymmetric information. Fed observes F, but Market does not.
 Private signal in games (Morris and Shin, 2002); "informational advantage" (Romer and Romer, 2000)
- e Heterogeneous confidence in public data. Fed and Market can differently perceive precision of public data, and have beliefs

$$\mathbb{E}_{F,0}[\theta] = (\delta_Z^F - q^F)Z + \delta_F^F F \qquad \mathbb{E}_{M,0}[\theta] = (\delta_Z^M - q)Z$$

where the δ 's are correct precision weights. Heterogeneous priors (Harrison and Kreps, 1978)

O Different beliefs about the monetary rule. Market perceives monetary rule as

$$\mathbb{E}_{M,0}[r] = (\delta_Z^F - q^F - w)Z + \delta_F^F F$$

As if from adaptive learning (Bullard and Mitra, 2002; Bauer and Swanson, 2020)

Result 1: Monetary Surprises

Let the market's surprise about monetary policy be $\Delta := r - P$. The surprise can be written as

$$\Delta = \delta_F^F(F - \delta_Z^M Z) + \delta_F^F q Z + w Z$$

What's the disagreement about?

Not knowing F, being wrong on average about content of F, not knowing reaction to Z

Proposition: Monetary Surprises and Public Signals

The following are true:

- q = 0 and $w = 0 \Rightarrow Cov[\Delta, Z] = 0$
- $q \ge 0$ and $w \ge 0 \Rightarrow \mathsf{Cov}[\Delta, Z] \ge 0$
- $q \leq 0$ and $w \leq 0 \Rightarrow \mathsf{Cov}[\Delta, Z] \leq 0$

Asymmetric info: only non-systematic errors

Deviations: necessary for systematic errors...

... but not informative about type

Result 2: Forecast Errors and Revisions

$$Y - \mathbb{E}_{0,M}[Y] = (a - \delta_F^F)(\theta - \delta_Z^M Z) + \delta_F^F \epsilon_F + (a - \delta_F^F)qZ - wZ$$

Why are there forecast errors? Not knowing F and θ , bias in predicting business cycle, bias in predicting policy (opposite sign)

Can show for all periods forecast errors + post-announcement revisions:

Proposition: Forecast Errors (or Revisions) and Public Signals

Let
$$\mathcal{X} = \{\mathbb{E}_{M,2}[Y] - \mathbb{E}_{M,1}[Y], (Y - \mathbb{E}_{M,t}[Y])_{t \in \{0,1,2\}}\}$$
. Then, for all $X \in \mathcal{X}$,

•
$$q = 0$$
 and $w = 0 \Rightarrow \operatorname{Cov}[Z, X] = 0$

•
$$q \ge 0$$
 and $w \le 0 \Rightarrow \operatorname{Cov}[Z, X] \ge 0$

•
$$q \leq 0$$
 and $w \geq 0 \Rightarrow \operatorname{Cov}[Z, X] \leq 0$

Result 3: Measured Disagreement about Y

$$\Delta^{Y} := \mathbb{E}_{F,0}[Y] - \mathbb{E}_{0,M}[Y] = a(\delta_{Z}^{F}Z + \delta_{F}^{F}F - \delta_{Z}^{M}Z) + a(q - q^{F})Z - \Delta$$

Why are there disagreements about Y?

Efficiently used asymmetric information, differences in predicting demand, differences in predicting in predicting policy (opposite sign)

Proposition: Disagreement and Public Signals

The following are true:

•
$$q = q^F = 0$$
 and $w = 0 \Rightarrow \operatorname{Cov}[Z, \Delta^Y] = 0$

•
$$q \geq rac{a}{a-\delta^F_F}q^F$$
 and $w \leq 0 \Rightarrow \operatorname{Cov}[Z,\Delta^Y] \geq 0$

•
$$q \leq q^F$$
 and $w \geq 0 \Rightarrow \mathsf{Cov}[Z, \Delta^Y] \leq 0$

Taking Stock: An Empirical Roadmap

Theory says: we should jointly run regressions of

- Market interest rate forecast revisions
- Market output forecast errors (or revisions)
- Fed-to-Market output forecast disagreements

on pre-determined public signals to determine right model

Also in paper: interpretation of signaling or the "information effect" (Campbell, Evans, Fisher, and Justiniano, 2012; Nakamura and Steinsson, 2018) **Bottom line**: regression in literature does not identify signaling, could be biased up or down

Outline

1 Model

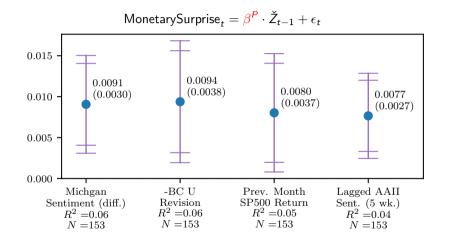
2 Empirical Results

3 Quantification

4 Conclusion

Test 1: Do Public Signals Predict Surprises?

Test of Proposition 1:


$$\mathsf{MonetarySurprise}_t = \beta^{\boldsymbol{P}} \cdot \check{Z}_{t-1} + \epsilon_t$$

- MonetarySurprise_t is "policy news shock" of Nakamura and Steinsson, 1995 to 2014
- \check{Z}_{t-1} are each of the candidate public signals, normalized to zero mean + unit std. dev.
 - Change in consumer sentiment about labor market from Michigan Survey
 Definition
 - Revisions in Blue Chip forecasts about unemployment (next 3Q)
 - Monthly change in closing price of S&P 500
 - Bullishness about stocks from American Association of Individual Investors survey
 Definition

• Sign predictions

- $\beta^{p} = 0$ under pure asymmetric information
- $\beta^{\rho} > 0$ if markets under-weight \check{Z} for predicting fundamentals and/or policy
- $\beta^{p} < 0$ if markets over-weight \check{Z} for predicting fundamentals and/or policy
- Sample of 153 scheduled FOMC meetings; standard errors HAC robust

Result: Public Signal Upticks \Rightarrow Surprise Tightening

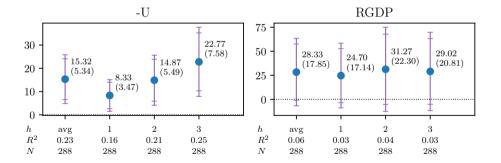
Bars: 90 and 95% confidence intervals

Test 2: Public Signals and Forecast Errors

Test of Proposition 2:

$$\underbrace{Y_{t+h} - \mathbb{E}_{BC,t}[Y_{t+h}]}_{\text{Forecast error}} = \alpha + \beta^{FCE} \cdot \hat{Z}_{t-1} + \epsilon_t$$

- Y_{t+h} is h-quarter ahead (i) negative unemployment rate or (ii) annualized real GDP growth
- $\mathbb{E}_{BC,t}[\cdot]$ denotes the Blue Chip Economic Indicators consensus forecast in t
- $\hat{Z}_{t-1} =$ "first-stage" predicted Surprise
 - Convenient for interpretation: one unit of \hat{Z} = one basis point of surprise tightening

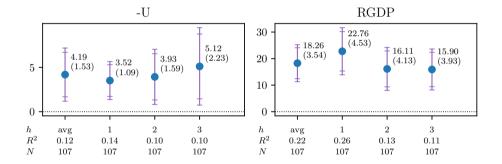

• Sign predictions

- $\beta^{FCE} = 0$ under pure asymmetric information
- $\beta^{FCE} > 0$ if markets only under-weight Z in their forecasts
- $\beta^{FCE} < 0$ if markets only under-estimate Z in monetary rule
- 288 months from 1995 to Present; HAC-robust standard errors

Result: Good News \Rightarrow Underestimate Output

Test of Proposition 3:

$$Y_{t+h} - \mathbb{E}_{BC,t}[Y_{t+h}] = \alpha + \beta^{FCE} \cdot \hat{Z}_{t-1} + \epsilon_t$$



Bars: 90 and 95% confidence intervals

PCE, Treasuries GB - BC Revisions Stock Prices Top + Bottom

Test 3: Bias Drives Greenbook to Blue Chip Disagreement

$$\mathbb{E}_{GB,t}[Y_{t+h}] - \mathbb{E}_{BC,t}[Y_{t+h}] = \alpha + \beta^{Di} \cdot \hat{Z}_{t-1} + \epsilon_t$$

Bars: 90 and 95% confidence intervals

Taking Stock: Empirical Results

Direct reading of results:

markets are half-step behind Fed in predicting both business cycle and monetary response

Via "sign tests" of the model:

- 1 Reject pure asymmetric information (as in classic signaling literature)
- 2 Reject pure mis-estimation of monetary rule (wrong sign for output errors, disagreements)
- (3) Suggest some heterogeneous priors necessary (Fed more "data sensitive")

Additional evidence:

- No evidence of large "information effects" after controlling for public signals Link
- Further upward revision in subsequent months of Blue Chip survey Link
- Limited discerning power in same-day stock returns and also (weak) evidence of a post-announcement drift Link

Outline

1 Model

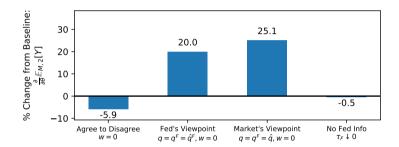
2 Empirical Results

3 Quantification

4 Conclusion

Parameter Estimates

Fit model to match key moments Link


q	Bias for fundamentals	0.121
w	Bias for rule	0.007
q^F	Bias for Fed	0.089
а	$Y = a\theta - r$	1.100
$ au_{F}$	Precision: Fed	0.194
$ au_{Z}$	Precision: first public signal	20.99
$ au_{S}$	Precision: second public signal	6.849

Immediate take-aways

- q ≫ w: fundamentals bias is "bigger" in common units
- q^F + w < q, w/(q-q^F) = 0.22: Market knows that Fed is more data sensitive, but not by how much
- Solution 3 The set of the se

Counterfactuals: How Much Does Each Mechanism Matter?

How much do market beliefs $\frac{\partial}{\partial \theta} \mathbb{E}_{M,2}[Y]$ (\approx stock price) vary with θ ?

Key takeaways:

- · Disagreement lowers volatility, since market expects Fed to over-stabilize
- Info effect tiny, and disagreement is "50x more important" in terms of belief effects

Outline

1 Model

2 Empirical Results

3 Quantification

4 Conclusion

How and why does the public disagree with central banks about future monetary policy? The path of the economy?

This paper: theory, evidence, quantification focusing on the US and Fed since 1995.

- Market and Fed differ in reaction to public signals, with former less data-sensitive
- Disagreement matters for beliefs and asset prices, while Fed info essentially does not

Thank you!

Consumer Sentiment about Labor Markets 🚥

Michigan Survey of Consumers

- Once per month
- 500 respondents by telephone
- Various questions about own situation, macroeconomy, financial markets
- Survey-weighted to be nationally representative
- Survey highlights released to public by end of month; full micro-data available after about a month (or sooner if requested)

Labor market question

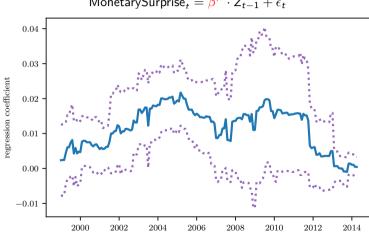
Question: How about people out of work during the coming 12 months-do you think that there will be more unemployment than now, about the same, or less?

Answers: 1. More unemployment; 2. About the same; 3. Less unemployment **Coding**: (Share = 3) - (Share = 1)

Investor Confidence from AAII Survey

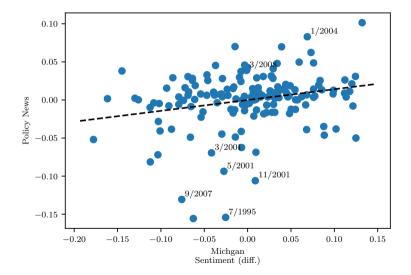
American Association of Individual Investors Survey

- Common indicator for optimism in financial press (e.g., *Wall Street Journal*)
- (Opposite-signed) significant predictor of future excess returns (Greenwood and Shleifer, 2014)

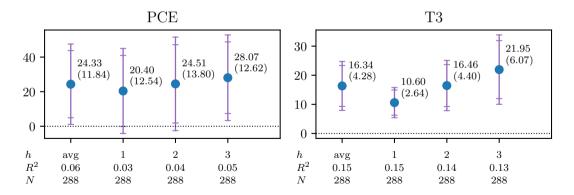


Survey Results for Week Ending 8/28/2019 Data represents what direction members feel the

Note: Numbers may not add up to 100% because of rounding.

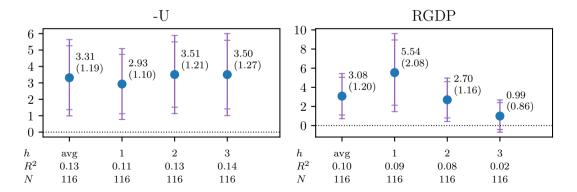

Rolling Regression **Back 1**

Re-estimate regression using last 60 months of data

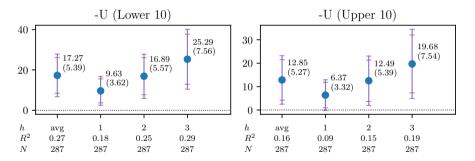

MonetarySurprise_t = $\beta^{P} \cdot \check{Z}_{t-1} + \epsilon_{t}$

Scatterplot: Sentiment and Surprises (Back 1)

Similar Story for Consumption, Treasuries 🚥

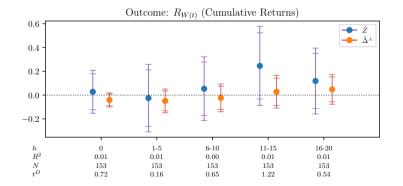

Outcome: $Y_{Q(t)+h} - \mathbb{E}_{B,t}[Y_{Q(t)+h}]$

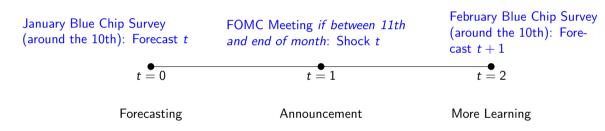
Later Revisions of Blue Chip Surveys Back


$$\mathbb{E}_{BC,t+2}[Y_{t+h}] - \mathbb{E}_{BC,t+1}[Y_{t+h}] = \alpha + \beta^{Dr} \cdot \hat{Z}_{t-1} + \epsilon_t$$

Outcome: $E_{B,t+2}[Y_{Q(t+1)+h}] - E_{B,t+1}[Y_{Q(t+1)+h}]$

Effects on Tails of Distribution Back


Outcome: $Y_{Q(t)+h} - \mathbb{E}_{B,t}[Y_{Q(t)+h}]$


Stock Price Effects (Back

$$R_{W(t)} = \alpha + \beta^{Z} \cdot \hat{Z}_{t-1} + \beta^{\Delta} \hat{\Delta}_{t}^{\perp} + \epsilon_{W(t)}$$

where t denotes the day of the relevant FOMC meeting and $R_{W(t)}$ is the cumulative return (sum of log returns) in a window W(t) on or after t

Timeline for Calibration Back

CARA-Normal Model **back**

- Trader (or continuum of clones) can invest position x in security with price P and payoff r
- Can submit limit orders or contingent demands x(P)
- Payoff $U = -\exp(-\alpha W)$, for $\alpha > 0$
- Standard result: can reduce to mean-variance problem

$$\max_{P \mapsto x} \mathbb{E}[E + x_i(r - P)] - \frac{\alpha}{2} \mathbb{V}[E + x_i(P - r)]$$

where \mathbb{E}, \mathbb{V} respectively return mean and variance under trader's beliefs.

Demand is

$$x(P) = \frac{\mathbb{E}[r] - P}{\alpha \mathbb{V}[r]}$$

from which it is clear only market clearing price, irrespective of α or perceived variance, is $P = \mathbb{E}[r]$.

Sketch of NK Micro-foundation •••

 Representative household with the following preferences over consumption C_t and labor supply N_t:

$$\exp(\theta_d)\left(\log C_0 - \exp(-\theta_s)\frac{N_0^2}{2}\right) + \sum_{t=1}^{\infty}\beta^t\left(\log C_t - \frac{N_t^2}{2}\right)$$

where (θ_d, θ_s) are respectively demand and supply shocks in period 0.

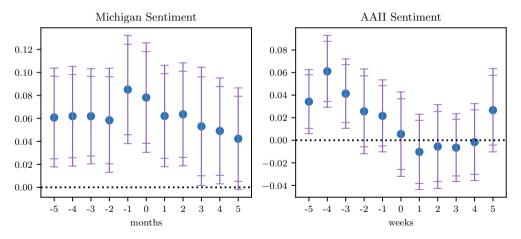
- Unconstrained natural rate is $r = \exp(\theta_d \theta_s)/\beta$ in period 0, $1/\beta$ in all other times.
- Central bank observes only signals of $\theta_s + \theta_d$ and hence, in expectation, wants to target

$$\theta := rac{\sigma_d^2 - \sigma_s^2}{\sigma_d^2 + \sigma_s^2} (heta_d + heta_s)$$

- Next observe Y = E[log Y₀ | θ, r] = aθ − r for a = σ²_d/(σ²_d − σ²_s) ≥ 1, assuming σ²_d > σ²_s (empirically reasonable).
- Higher $a \Rightarrow$ more trepidation about stabilizing θ because it may be a supply shock

Estimating Equation: More of the Autocorrelation Structure 🔤

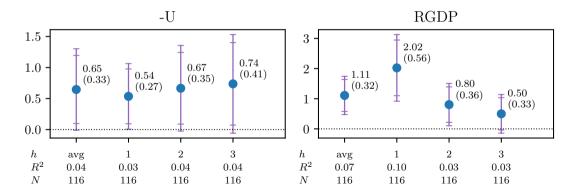
For Michigan and AAII surveys, zoom in on timing with "event study":


$$\mathsf{MonetarySurprise}_t = \beta_h^P \cdot \check{Z}_{t+h} + \epsilon_t$$

for $h \in \{-H, ..., H - 1, H\}$.

- Version 1: t are months; \check{Z}_t is *level* of Michigan sentiment
- Version 2: t are weeks; \check{Z}_t is AAII sentiment
- Previously described predictions hold for β_h^P for h < 0. I
- Sample of 153 scheduled FOMC meetings; standard errors HAC robust

Result: Spike Before Meeting Matters Most


Results with Economic Outcomes **Decon**

Predictor		No control	U Control	PC Control	NFP Control	
Mich. Sentiment β <i>L</i> -stat		0.0091 (0.0030) 2.97	0.0092 (0.0032) 2.91	0.0091 (0.0028) 3.31	0.0092 (0.0029) 3.14	
BC U Rev.	β	0.0094	0.0074	0.0036	0.0042	
	SE	(0.0038)	(0.0038)	(0.0050)	(0.0049)	
	<i>t</i> -stat	2.47	1.95	0.71	0.87	
S&P 500	β	0.0080	0.0077	0.0030	0.0050	
	SE	(0.0037)	(0.0036)	(0.0027)	(0.0029)	
	<i>t</i> -stat	2.18	2.20	1.40	1.74	
AAII Sentiment	β	0.0077	0.0078	0.0030	0.0045	
	SE	(0.0027)	(0.0026)	(0.0030)	(0.0027)	
	<i>t</i> -stat	2.89	2.94	1.01	1.70	

"Regular" Information Effect Regression 🚥

$$\mathbb{E}_{BC,t+1}[Y_{t+h}] - \mathbb{E}_{BC,t}[Y_{t+h}] = \alpha + \beta \cdot \Delta + \epsilon_t$$

Outcome: $E_{B,t+1}[Y_{Q(t)+h}] - E_{B,t}[Y_{Q(t)+h}]$

Revisiting the Information Effect

- Key question: what is causal effect of Fed signaling via its policy actions?
- Campbell, Evans, Fisher, and Justiniano (2012) and Nakamura and Steinsson (2018) try to answer this by interpreting following moment, the **F**easible information effect:

$$i^{\mathsf{F}} := rac{\mathsf{Cov}[\Delta, \mathbb{E}_{M,2}[Y] - \mathbb{E}_{M,0}[Y]]}{\mathsf{Var}[\Delta]}$$

bracketing the announcement.

• Observe, in light of previous discussion, it actually contaminates two things:

$$i^{F} := \underbrace{\frac{\text{Cov}[\Delta, \mathbb{E}_{M,1}[Y] - \mathbb{E}_{M,0}[Y]]}{\text{Var}[\Delta]}}_{\text{Update from learning } r} + \underbrace{\frac{\text{Cov}[\Delta, \mathbb{E}_{M,2}[Y] - \mathbb{E}_{M,1}[Y]]}{\text{Var}[\Delta]}}_{\text{Correlation with later learning}}$$
$$:= i^{T} \qquad \text{Model 1: correcting under-reaction}}_{\text{Model 2: correcting over-reaction}}$$

Result: Interpreting the Information Effect

Information effect could be smaller or larger than previously thought:

Proposition 3

Consider the regression-equation

$$\mathbb{E}_{M,2}[Y] - \mathbb{E}_{M,0}[Y] = \gamma^{\Delta} \Delta^{\perp} + \gamma^{Z} Z$$

where Δ^{\perp} is the residual of Δ from Z and $(\gamma^{\Delta}, \gamma^{Z})$ are the coefficients for a best linear predictor, and assume $Cov[\Delta, Z] > 0$. Then,

• q = 0 and $w = 0 \Rightarrow \gamma^{\Delta} = i^{F} = i^{T}$, $\gamma^{Z} = 0$ Efficient use of info

•
$$q \ge 0$$
 and $w \le 0 \Rightarrow \gamma^{\Delta} = i^T \le i^F$, $\gamma^Z \ge 0$ i^F is over-estimate (momentum)

•
$$q \leq 0$$
 and $w \geq 0 \Rightarrow \gamma^{\Delta} = i^{T} \geq i^{F}$, $\gamma^{Z} \leq 0$ i^{F} is under-estimate (mean-reversion)

Back

	Moment	Value
1	R ² from predicting surprises	0.15
2	β^{FCE} for BC	15.32
3	R ² for FCE reg. (BC)	0.23
4	β^{FCE} for GB	12.06
5	β^{Z} , for BC Revisions	3.69
6	β^{Δ} for BC Revisions	0.10
7	β^{γ} from reg. below	22.69

Additional regression for "scaling":

$$Y_{Q(t)+h} = \alpha + \beta^{Y} \cdot \hat{Z}_{t-1} + \epsilon_{t}$$

Counterfactuals: How Much Does Each Mechanism Matter?

			Percent Change from Baseline			
	Scenario Name	Parameter Case	$rac{\mathrm{d}}{\mathrm{d} heta}\mathbb{E}_{M,0}[Y]$	$\frac{\mathrm{d}}{\mathrm{d}\theta}\mathbb{E}_{M,2}[Y]$	$rac{\mathrm{d}}{\mathrm{d} heta}$ r	$\mathbb{V}[FCE_{M,0}^{Y}]$
1	Agree to disagree	<i>w</i> = 0	-11.8	-5.9	0.0	2.7
2	Fed's viewpoint	$q=q^{F}=\hat{q}^{F}$, $w=0$	45.5	20.0	0.0	-9.0
3	Market's viewpoint	$q=q^{ extsf{F}}=\hat{q},\ w=0$	40.7	25.1	-3.6	2.7
4	No errors	$q=q^{\sf F}=w=0$	59.1	5.3	10.3	-23.0
5	No Fed Info	$ au_{F}\downarrow 0$	-1.8	-0.5	0.0	1.1

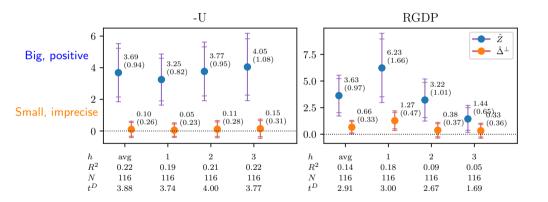
Back

Theory: "Information Effect" in Model

Define information effect and feasible estimator,

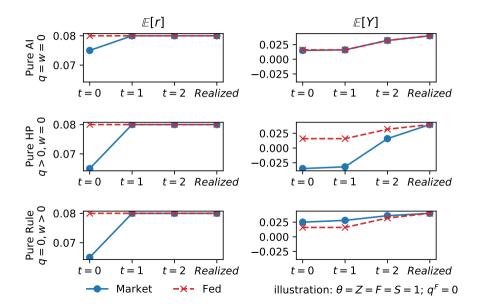
$$i := \frac{\mathsf{Cov}[\Delta, \mathbb{E}_{M,1}[Y] - \mathbb{E}_{M,0}[Y]]}{\mathsf{Var}[\Delta]} \qquad i^{\mathsf{F}} := \frac{\mathsf{Cov}[\Delta, \mathbb{E}_{M,2}[Y] - \mathbb{E}_{M,0}[Y]]}{\mathsf{Var}[\Delta]}$$

Corollary: Bias in the Information Effect


$$i^{F} = i + B$$
 where
1 If $w = q = 0$, then $B = 0$.
2 If $w \le 0$, $q \ge 0$, and $Cov[\Delta, Z] > 0$, then $B \ge 0$.
3 If $w \ge 0$, $q \le 0$, and $Cov[\Delta, Z] > 0$, then $B \le 0$

Augmented "information effect" regression (cf., CEFJ (2012), NS (2018)) Theory

$$\mathbb{E}_{BC,t+1}[Y_{t+h}] - \mathbb{E}_{BC,t}[Y_{t+h}] = \alpha + \beta^{\mathsf{Z}} \cdot \hat{Z}_{t-1} + \beta^{\mathsf{\Delta}} \cdot \hat{\Delta}_t^{\perp} + \epsilon_t$$


- $(\hat{Z}_{t-1}, \hat{\Delta}_t^{\perp})$ are predicted and unpredicted components of monetary surprise
- Timing. Sample restricted so FOMC meeting happens between Blue Chip waves Picture
- Sign predictions for β^Z :
 - $\beta^{Z} = 0$ under pure asymmetric information (literature is "right")
 - $\beta^{Z} > 0$ if markets only under-weight Z in their forecasts
 - $\beta^{Z} < 0$ if markets only under-estimate Z in monetary rule

Result: Positive Bias in Information Effect

Back

A Numerical Illustration of Opposite Biases

