Public Liquidity and Bank Lending: Treasuries, Quantitative Easing, and Central Bank Digital Currency

Roberto Robatto

University of Wisconsin-Madison

November 2020

Outline

Introduction

Facts

Theory

Conclusions

Motivation: Public Liquidity

- What is the optimal supply of public liquidity?
- Treasury securities
- (Traditional) central bank reserves: quantitative easing (QE)
- Central bank digital currency (i.e., allowing firms and households to hold deposits at the central bank)
- Focus here: medium- and long-run average supply of public liquidity

Main results (1/2)

1. Empirical evidence: Structural VAR

An increase in public liquidity (= debt/GDP) causes

- Share of credit to firms that is intermediated by banks \downarrow
- GDP \downarrow
- No statistically significant effects on investments

2. Simple model to rationalize evidence

Banks have better technology, but are subject to moral hazard
Welfare analysis. Public liquidity \uparrow [Treasuries/QE/Digital Currency]

- Public liquidity is safer than bank debt \Rightarrow welfare \uparrow
- Households hold less deposits (consistent with evidence in literature) to economize on costs induced by moral hazard Banks' investments $\downarrow \Rightarrow$ welfare \downarrow

Optimal policy balances these two effects

Main results (2/2)

- Central bank can achieve the same outcomes using QE or digital currency
- Formally, equivalence result
- Key difference in implementation

$$
\begin{gathered}
\text { interest rate on reserves } \\
\text { created by QE (held by banks) }
\end{gathered}>\begin{gathered}
\text { interest rate on digital } \\
\text { currency (held by households) }
\end{gathered}
$$

- Treasury and central bank interaction
- Size of optimal central bank balance sheet is non-monotonic in the stock of Treasury debt
- Optimal joint policy
- Assume central bank chooses size of balance sheet optimally
- Multiple levels of Treasury debt supply (within a range) are optimal, as opposed to a single value

(Some) related literature

- Public liquidity injections reduce deposits at banks Greenwood, Hanson, and Stein (2015); Krishnamurthy and Vissing-Jorgensen (2015); Li (2019)
- Optimal supply of public liquidity

Holmstrom and Tirole (1998); Lagos and Rocheteau (2008); Benigno and Robatto (2019); Angeletos et al. (2020)

- Quantitative easing with government bonds Gertler Karadi (2013)
- Central bank digital currency

Bordo and Levin (2017); Keister and Sanches (2020); Williamson (2020)

Outline

Introduction

Facts

Theory

Conclusions

Overview

- U.S. Debt-to-GDP: Privately-held gross federal debt (excludes government accounts, Federal Reserve)
- Share of bank credit to firms (from Flow of Funds):

$$
\text { share }=\frac{\text { bank loans }}{\text { bank loans }+ \text { commercial paper }+ \text { corporate bonds }+ \text { other loans }}
$$

bank $=$ depository institutions

VAR

- What is the effect of higher debt/GDP on the share of bank lending?
- Reduced-form VAR

$$
Y_{t}=\left[\begin{array}{c}
\Delta \log (\text { debt } / G D P)_{t} \\
\Delta \log (\text { share })_{t}
\end{array}\right], \quad Y_{t}=A_{1} Y_{t-1}+\ldots+A_{p} Y_{t-p}+\left[\begin{array}{c}
\varepsilon_{t}^{1} \\
\varepsilon_{t}^{2}
\end{array}\right]
$$

Baseline: $p=2$ lags

- Long-run restriction (Blanchard Quah, 1989): Two orthogonal shocks

1. One shock has transitory effects on debt/GDP
2. One shock has permanent effects on debt/GDP Interpretation: variation in policymakers' attitude toward the long-run average level of debt to GDP

Results

- Long-term effect: 1% permanent increase in debt to GDP $\Rightarrow 0.25 \%$ reduction in the share of credit intermediated by banks 90\% confidence interval: [$-0.692 \%,-0.046 \%$]
- Results robust (almost unchanged) to using (i) Cholesky identification, any ordering, (ii) 4 lags, (iii) annual data
- Higher debt to GDP reduces GDP too but has no statistically significant effects on investments/GDP

Outline

Introduction

Facts

Theory

Conclusions

Simple model (Treasury securities only)

(Builds on Benigno and Robatto, 2019)

- Timing
- Two periods $(t=0,1)$

Time $t=1$ is divided into two subperiods

- Two aggregate states at $t=1$:
- High state h, probability $1-\pi$
- Low state l, probability π
- Agents
- Continuum of households
- Continuum of intermediaries (i.e., banks)
- Government
[and central bank, in the full model]

Technology

- Households are less productive than banks

One unit of investment at $t=0$ produces, at $t=1$:

- $\begin{cases}A_{h} & h \text { state } \\ A_{l} & l \text { state }\end{cases}$
if the investment is made by banks
- $\begin{cases}(1-\phi) A_{h} & h \text { state } \\ (1-\phi) A_{l} & l \text { state }\end{cases}$
if the investment made by households
- Normalizations:
- Average output $=(1-\pi) A_{h}+\pi A_{l}=1$
- Output in low state: $A_{l}=0$

Households

Notation:
Upper-case variables with no subscript: $t=0$
Variables with subscript h and $l: t=1$

- Utility

$$
(1-\pi)\left[\log C_{h}+X_{h}\right]+\pi\left[\log C_{l}+X_{l}\right]
$$

- C_{h}, C_{l} : first subperiod of $t=1$ need to be financed with liquid assets (next slide)
- X_{h}, X_{l} : second subperiod of $t=1$
- Budget constraint at $t=0$

- D and B : zero-coupon debt securities, face value $=1$
- Q^{D}, Q^{B} : prices

Households: constraints at $t=1$

- First subperiod: C_{h}, C_{l} financed with debt securities

- Banks debt D : payoff $=0$ in state l
- Second subperiod: budget constraint for X_{h} and X_{l}

$$
\begin{aligned}
& X_{h} \leq \underbrace{\bar{Y}_{h}}_{\begin{array}{c}
\text { time-1 } \\
\text { endowment }
\end{array}}+\underbrace{\left(B+D-C_{h}\right)}_{\begin{array}{c}
\text { liquid asset not used } \\
\text { to finance } C_{h}
\end{array}}+\underbrace{A_{h}(1-\phi) K}_{\begin{array}{c}
\text { output of } \\
\text { investments made at } t=0
\end{array}}+\underbrace{\Pi_{h}}_{\begin{array}{c}
\text { profits } \\
\text { of banks }
\end{array}}-\underbrace{T_{h}}_{\begin{array}{c}
\text { lump-sum } \\
\text { taxes }
\end{array}} \\
& X_{l} \leq \bar{Y}_{l}+\left(B-C_{l}\right)+\underbrace{A_{l}}_{=0}(1-\phi) K+\Pi_{l}-T_{l}
\end{aligned}
$$

Households: optimality conditions

- Consumption

- Portfolio of debt securities

Choice of B :

Choice of $D: \quad \underbrace{1 \times(1-\pi)}_{\begin{array}{c}\text { Expected payoff } \\ \text { (payoff }=1 \text { only in } h \text {) }\end{array}}+\underbrace{(1-\pi) \mu_{h}}_{\text {Liquidity value }}=(1-\phi) Q^{D}$

Intermediaries (banks)

- Budget constraint, $t=0$

$$
\underbrace{K^{I}}_{\text {investments }} \leq Q^{D} \underbrace{D}_{\text {debt }}
$$

- Profits, $t=1: \quad \Pi_{h}=A_{h} K^{I}-D, \quad \Pi_{l}=0$
- Moral hazard friction (standard in macro-finance literature):
- Intermediaries can extract private benefits $\theta A_{h} K^{I}$
- To avoid misbehavior, intermediaries must earn rents

$$
\Pi_{h} \geq \theta A_{h} K^{I}
$$

- Parameter restriction: Moral hazard θ is sufficiently severe, in comparison to technological advantage ϕ of banks

$$
\theta>\phi
$$

\Rightarrow Households prefer to manage some investments directly (If $\theta<\phi \Rightarrow$ all investments are made by banks)

Government

- Taxes finance repayment of government debt \bar{B}

$$
\begin{array}{cl}
T_{h}=\bar{B} & (\text { state } h) \\
T_{l}=\bar{B} & (\text { state } l)
\end{array}
$$

Equilibrium (simplified)

Focus on case $B<1$ [i.e., public liquidity does not satiate liquidity demand] (but allow for any \bar{B} in the policy analysis)

- Consumption at $t=1$, first subperiod:

$$
\underbrace{C_{h}=\bar{B}+D=1}_{\text {first-best level }}, \quad \underbrace{C_{l}=\bar{B}<1}_{\text {< first-best level }}
$$

- Bank debt

$$
D=1-\bar{B}
$$

- Both households and banks invest:

$$
\underbrace{K^{I}=\frac{(1-\bar{B})(1-\pi)}{1-\phi}}_{\text {investments by banks }}>0, \quad \underbrace{K=\bar{Y}-K}_{\text {investments by households }}>0
$$

Equilibrium (simplified)

Focus on case $B<1$ [i.e., public liquidity does not satiate liquidity demand] (but allow for any \bar{B} in the policy analysis)

- Consumption at $t=1$, first subperiod:

$$
\underbrace{C_{h}=\bar{B}+D=1}_{\text {first-best level }}, \quad \underbrace{C_{l}=\bar{B}<1}_{\text {< first-best level }}
$$

- Bank debt

$$
D=1-\bar{B}
$$

- Both households and banks invest:

$$
\underbrace{K^{I}=\frac{(1-\bar{B})(1-\pi)}{1-\phi}}_{\text {investments by banks }}>0, \quad \underbrace{K=\bar{Y}-K}_{\text {investments by households }}>0
$$

- Price of liquid securities

$$
\begin{aligned}
Q^{B} & =\frac{1}{1-\phi}\left[(1-\pi)+\pi \frac{1}{\bar{B}}\right] \\
Q^{D} & =\frac{1-\pi}{1-\phi}
\end{aligned}
$$

- Intermediaries earn profits (to avoid moral hazard): $\Pi_{h}=\phi \frac{1-\bar{B}}{1-\phi}>0$.

Policy: higher supply of government debt

- Government debt \uparrow

Households' liquidity needs met using banks debt \downarrow (households economize on the cost of the moral hazard friction)

1. Households hold less deposits, more public debt
\Rightarrow Welfare \uparrow because public debt is safer
2. Households invest more directly, hold fewer deposits Banks invest less (disintermediation)
\Rightarrow Welfare \downarrow because households have worse technology

- Optimal supply of government debt trades off (1) and (2)
- A too-large supply is not optimal
- Under optimal policy: Liquidity premium on government debt >0 (i.e., Friedman-like rule is not optimal)

Central Bank Digital Currency (overview)

- Central bank purchases government debt $B^{C B}$, issues reserves R Reserves R [= digital currency] can be held by households
- Liquidity
- Reserves R provides the same liquidity as deposits
- Treasury debt is only partially liquid
- Results:
- Central bank "transforms" partially-liquid $B^{C B}$ into fully-liquid R Welfare \uparrow
- Households' deposits \downarrow, banks' investments \downarrow Welfare \downarrow

Quantitative easing (overview)

- Central bank purchases government debt $B^{C B}$, issues reserves R

Reserves are held by banks

- Federal Reserve: 2010-2014, 2019, 2020
- Euro Area: Public Sector Purchase Program
(80% of ECB asset purchases)
- Liquidity: Treasury debt is only partially liquid
- Equivalence result: Every allocation that is achieved by QE can be achieved with central bank digital currency, and vice-versa Key differences:
- Reserves are now intermediated by banks
- Implementation (to deal with bank moral hazard) Interest rate on reserves created by QE (held by banks)
$>$ Interest rate on digital currency (held by households)

Joint Treasury \& central bank policies

 Numerical example

- Supply of government debt \bar{B} taken as exogenous
- Central bank chooses $B^{C B}$ to maximize welfare
- \bar{B} is very low: QE is good (increases "effective" public liquidity)
- \bar{B} is very high: optimal $\mathrm{QE}=0$

Disintermediation is too large, QE would worsen it

- Intermediate \bar{B} : welfare is maximized \& flat in this region Optimal "effective" liquidity \& share of bank credit

Outline

Introduction

Facts

Theory

Conclusions

Conclusions

- Empirical evidence:
- More public liquidity reduces GDP and the fraction of credit to firms that is intermediated by banks
- No statistically significant effect on investments
- Theoretical analysis
- Optimal policy balances positive, direct benefits of public liquidity against the reduction of credit supplied by banks
- Results hold under various definition of "public liquidity": Treasury securities, traditional central bank reserves, central bank digital currency (i.e., reserves accessible to public)
- Digital currency equivalent to quantitative easing, but difference implementation related to interest on reserves
- Size of optimal QE policy is non-monotonic in the supply of Treasury debt

Outline

Appendix

Appendix

