Future Technology Hubs or Backwater? Lessons on Structural Change from Germany's Coal Regions

Wolfgang Keller University of Colorado & NBER

Hâle Utar Grinnell College Simon Janssen IAB Nuremberg Ehsan Vallizadeh IAB Nuremberg

1/30

ECB 2019, Nuremberg

December 1, 2019

Motivation

- Economic activities are spatially concentrated in most countries (e.g., Blanchard and Katz, 1992; Greenstone, Hornbeck and Moretti, 2010; Helm, 2017)
- Shifts from industry to knowledge-based growth and increasing international trade let to large regional disruptions, particularly, in regions with industrial clusters (e.g., rust belt; Autor, Dorn and Hanson, 2013)
- Governments frequently target policies and public resources toward disadvantaged industrial (and agricultural) areas (Kline and Moretti, 2013)

Motivation cont.

Example: U.S. Energy Policy "We are going to continue to expand energy production, and we will also create more jobs in infrastructure, trucking, and manufacturing." (President Donald J. Trump)

- Win elections
- Independence of foreign imports
- Agglomeration spillovers to push the economic development of disadvantage regions and avoid social hardship

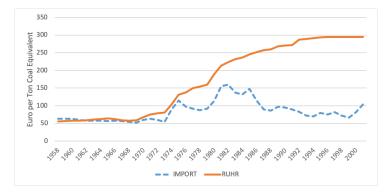
What we do...

Objective

- Do traditional subsidized blue-collar industries indeed generate positive externalities for local economies and labor markets?
- How do they influence structural change?

Approach

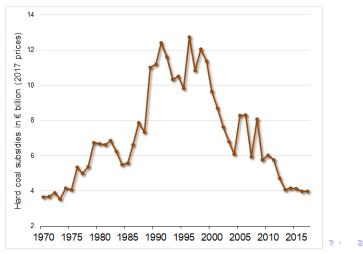
- Examining the effect of closures of German coal mines on structural transformation of local economies and labor markets
- Combining three unique data sources: i) German administrative data from Establishment History Panel (BHP), ii) historical data on all German coal mines, iii) (Patent data (PATSTAT))


Why German coal mining?

- One of the most heavily subsidized industrial sectors within all OECD countries
- Substantial time and spatial variation allowing to analyze the effects on the micro level under different economic conditions

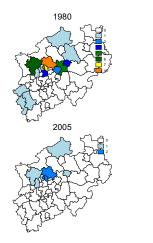
German Coal Mining

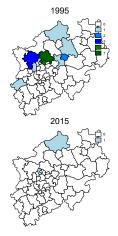
Heavily shielded & subsidized industry


Domestic versus Imported Price of Coal in Germany

German Coal Mining

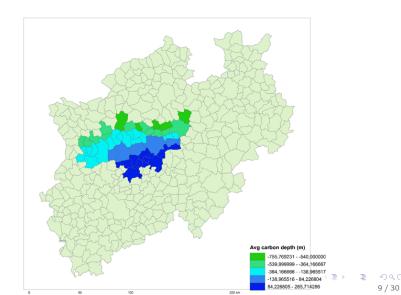
Heavily shielded & subsidized industry

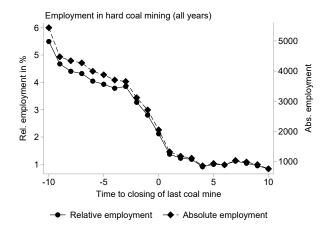

Hard Coal Subsidies in Germany, 1970-2017



7 / 30

German Coal Regions


Coal mines in the Ruhr area



German Coal Regions

Carbon depth in the Ruhr region

Mine Closure & employment effects in mining sector

Data

German coal mine data

- Geo-coded of all coal mines in Germany
- Opening and closing dates
- Exclude coal mines that closed before 1975
- (Exclude coal mines from East-Germany for most of our analysis)

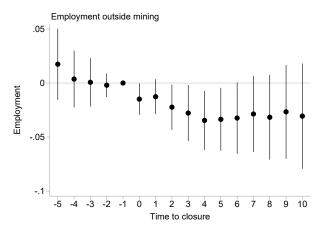
Establishment History Panel

- Establishment History Panel (Betriebshistorikpanel, BHP)
- Entire population of German firms for more than 40 years
- Approximately 2.7 milliom establishments per year

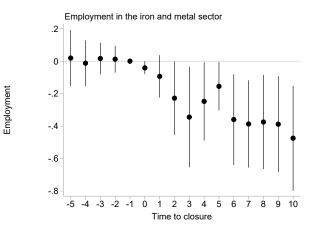
Empirical Approach I

$$lnY_{it} = \alpha_i + \lambda_t + \lambda_t \cdot State + x_{it}\beta + \sum_k D_{it}^k \delta^k + \epsilon_{it}$$
(1)

- *lnY_{it}*: dependent variable of municipality *i* at time *t*, e.g., employment, wages etc.
- D^k_{it} set of dummies 1 in the k'th year before after closure of last coal mine
- λ_t time fixed effects
- $\lambda_t \cdot State$ time x state fixed effecs
- α_i municipality fixed effects
- x_{it} control variables


Empirical Approach II

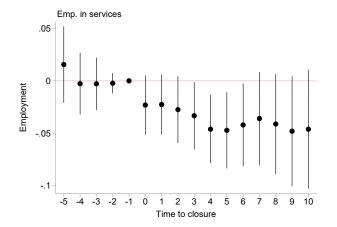
$$lnY_{it} = \alpha_i + \lambda_t + \lambda_t \cdot State + x_{it}\beta + \delta \sum MineClosures + \epsilon_{it}$$
(2)


- lnY_{it} : dependent variable of municipality i at time t, e.g., employment, wages etc.
- D^k_{it} set of dummies 1 in the k'th year before after closure of last coal mine
- λ_t time fixed effects
- $\lambda_t \cdot State$ time x state fixed effecs
- α_i municipality fixed effects
- x_{it} control variables

Main Results: General outcomes

Mine closure & employment effects outside mining sector

Mine Closure & Employment Effects in Iron and Steel Production



Mine closure & employment effects in construction sector

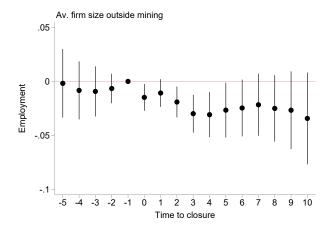
・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ で
17 / 30

Mine Closure & Employment Effects in Services

□ ▶ ◀ ⓓ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 월 ∽ ९... 18 / 30

Cumulative mine closures (empirical approach II)

In(Employment variables)						
	(1)	(2)	(3)	(4)		
	Outside mining	Metal	Construction	Services		
CumMineClose	-0.075*** (0.018)	-0.278*** (0.088)	-0.099*** (0.015)	-0.077*** (0.015)		
Municipality f.e.	YES	YES	YES	YES		
State x Time f.e.	YES	YES	YES	YES		
N=354,602 Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1						

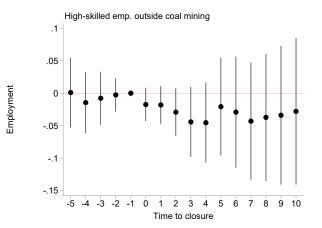

SEs are clustered at Municipality level.

Main results: effects on structural change

Effects on structural change

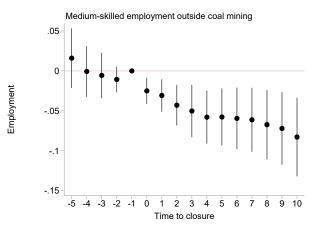
- Coal mining attracts large resource-intensive companies that crowd out innovation and entrepreneurship (e.g., Chinitz (1961) and Glaeser, Kerr, and Kerr (2015))
- Polarization of the labor market -> returns to high (non-routine) skills (e.g., Autor, Levy and Murnane, 2003; Deming, 2017)

Mine Closure & Average firm size

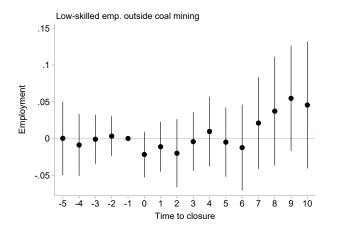


Effects on structural change

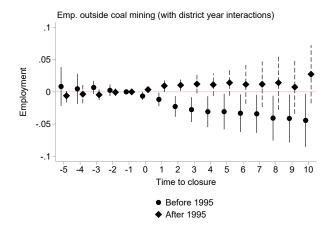
In(Employment variables)					
	(1)	(2)	(3)	(4)	
(5)	IT	R&D	# IT estab.	# R&D estab.	
CumMineClose	0.172** (0.076)	0.330** (0.153)	0.165*** (0.032)	0.166*** (0.043)	
Municipality f.e. State × Time f.e.	YES YES	YES YES	YES YES	YES YES	
N=87,331 Robust standard errors in parentheses					

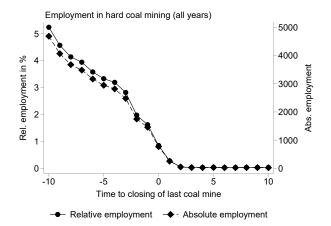

*** p<0.01, ** p<0.05, * p<0.1 SEs are clustered at Municipality level.

Mine Closure & Employment effects high skilled



□ ▶ < 圕 ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ < 은 24 / 30


Mine closure & Employment effects medium skilled


Mine closure & Employment effects low skilled

Mine closure & inter-temporal effects

Mine closure & mining employment after 1995

Conclusion

- Evidence for spillover effects of mine closure
- Mine closure lowers overall employment, especially in energy-intensive industries (manufacturing, iron & steel)
- No spillovers to knowledge-based industries
- Spillovers depent on overall economic conditions

Next Steps...

- Diving into the mechanisms of large spillover effects and regional adjustment
 - Individual data to account for sectoral and regional labor mobility

- Patent and university data to elaborate entrepreneurship innovation spillovers
- Quantify aggregate implications via a theoretical model:
 - combining elements of specific-factors model and Rosen-Roback model