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1 Introduction

Money markets in the U.S. have changed dramatically since the 2007-08 financial crisis.

One of the most striking changes is the decrease in the size of the interbank market. Before

the financial crisis the size of the interbank market was estimated to be about $100 billion

per day. Today (2018) it is less than $5 billion. The change in the size of the interbank

market can be attributed in part to both the Federal Reserve’s monetary policy measures to

stimulate the economy and new Basel III requirements that have been imposed on banks.

The reasons that underlie the significant decline in the size of the U. S. interbank market

are well understood. Before the crisis the Fed relied on scarce reserves and reserve require-

ments to implement monetary policy.1 As payment shocks affected banks’ reserve holdings

throughout the day they would trade with each other to ensure that they held just enough

reserves to satisfy their reserve requirements and no more. Starting in 2009 the Fed increased

the supply of reserves through large-scale asset purchases ultimately injecting almost $3 tril-

lion of reserves into the banking system. As a consequence almost all banks held reserves

that far exceeded what was required. This essentially eliminated the need for banks to trade

with each other to offset their payment shocks.

In this paper we ask if and under what conditions the U.S. interbank market can be

revived. Contrary to what is commonly believed, draining reserves by reducing the Fed’s

balance sheet will not necessarily revive the interbank market. We argue that although

a small increase in the volume of interbank trading will likely appear at the early stage of

reserve draining it is uncertain whether the market revival will continue with further draining

of reserves. Indeed we show that in some circumstances interbank trading volumes could

completely disappear as reserves are drained further. These results indicate that regulatory

and monetary frameworks that need a revival of the interbank market—because they rely on

benchmark rates generated largely from interbank activity—may no longer be viable even if

the Fed’s balance sheet shrinks to pre-crisis levels.

The key insight that underlies these results is related to stricter banking regulations

which impose increased “balance sheet” costs on banks. We think of these costs as being

primarily related to the size and not the composition of banks’ balance sheets. Examples of

such balance sheets costs are the Basel III leverage ratio and the Federal Deposit Insurance

Corporation’s (FDIC) assessment fee.

1See Ennis and Keister (2008) for a theoretical exposition.
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The patterns of trade in money markets influence the size of banks’ balance sheets which

in turn affect those banks’ balance sheet costs. To understand the link between balance

sheets costs, the size of the balance sheets and money market activities, consider a simple

example with one cash-rich non-bank and two banks. Suppose the non-bank does not renew

a loan it made to bank 1 and instead lends to bank 2. Everything else being equal bank 1

will see its reserves decrease and bank 2 will see its reserves increase by the amount of the

loan. The movement in reserves changes the size of the balance sheet of each bank but not

the aggregate size of balance sheet of the banking system. Hence the non-bank loan to bank

2 (away from bank 1) does not affect the aggregate balance sheet cost of the banking system.

Consider now a different set of transactions that result in the same movement of reserves

from bank 1 to bank 2. In this case the non-bank renews its loan with bank 1 and bank 1

makes an interbank loan to bank 2. This set of transactions increases the size of the balance

sheet for the banking system. As above the balance sheet of bank 2 increases by the amount

of reserves it has received. However the balance sheet of bank 1 does not decrease since the

interbank loan replaces the reserves lent to bank 2 on the asset side of its balance sheet.

Since the aggregate size of the balance sheet of the banking system increases by the amount

of interbank trades, money market participants have an incentive to avoid these trades if

they can collectively benefit from reducing balance sheet costs.

We develop a model in the spirit of Poole (1968) to formalize this argument. Consistent

with actual market practice non-banks make loans to banks before interbank trading takes

place. Interbank trades can partially offset payment shocks by redistributing reserves among

banks. What is new compared to the basic Poole (1968) environment is the idea that non-

banks can also delay lending to the banks until after the payment shock is realized but it

is costly to do so. For simplicity we assume that this delayed lending happens at the same

time as the interbank market operates. If banks’ balance sheet costs are zero then interbank

trading is costless and banks can completely offset payment shocks by relying solely on the

interbank market. In this situation non-banks do not have an incentive to pay the cost

associated with delaying a loan to a bank. When balance sheet costs are strictly positive

interbank trades become costly. Since interbank trading increases the aggregate balance

sheet cost of the banking sector, banks will not fully offset payment shocks just through

interbank trades. Late loans from non-banks made after payment shocks can help offset the

shocks more fully and thus are more valuable to banks than early loans made before the
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shocks. Therefore banks are willing to pay higher interest for late borrowing. At the same

time a higher rate provides an incentive for non-banks to incur the delay cost and provide

late loans to the bank.

We show that if non-banks face a per dollar cost of loan delay some interbank trading

can reappear when reserves become scarce. However the level of interbank trade will fall

short of the pre-crisis levels due to both higher post-crisis regulatory costs and the existence

of late loans. We also consider a case where there is a system-wide fixed cost associated with

delaying loans. The fixed cost could for example represent the cost of establishing market

standards or infrastructure that facilitates late day trading for non-banks with banks. In this

case as the supply of reserves decreases interbank trade will reappear initially. However if

the supply continues to decrease, the system-wide benefit of making late loans to banks will

exceed the fixed cost at some point. If the fixed cost is paid, then the volume of interbank

market trading will shrink to zero since banks can obtain needed reserves from non-banks.

Generally our analysis indicates that it may be difficult for the U.S. to have an active

interbank market even if excess reserves are significantly drained. The main reason is that

due to the new post-crisis regulations interbank trading activity has become expensive. We

argue that it may not help policymakers to experiment with small changes in the level of

reserves to assess whether the interbank market can be revived because interbank market

volume can either respond non-monotonically to a draining of reserves or may can initially

increase and remain relatively constant as reserves are further drained.

This result is important for monetary policy because it shows that implementation relying

on the revival of the interbank market may not be feasible. In addition it is relevant for the

ongoing debate regarding the desirability of interbank trading activity over trading between

banks and non-banks for monetary policy implementation purposes. For example Bindseil

(2016) argues that a central bank’s “operational framework should not undermine incentives

for active interbank [...] markets.” Similarly the Norges Bank changed its monetary policy

implementation framework in part to generate more interbank activity (see Norges Bank

(2011)).

Our main contribution is to create a parsimonious framework that shows how a simple

increase in balance sheet costs can affect activities in the fed funds market and broader

money markets. As far as we know, we are the first to seriously evaluate the prospect of

the revival of the interbank market with a theoretical model that can explain important
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features of money markets before and after the 2008 financial crisis. Our paper is related

to a growing literature on money markets and monetary policy implementation. Recent

contributions include Chen et. al. (2016) which focus on monetary policy implementation

in a model with preferred habitat features. Martin et. al. (2013) focus on tools available to

the Federal Reserves to implement monetary policy with a large supply of reserves. Afonso

and Lagos (2015) develop a search model to understand trade dynamics in the Federal Funds

market. Finally, Armenter and Lester(2017) use a model with directed search to study the

Federal Reserve’s overnight reverse repurchase agreement facility.

The remainder of the paper is structured as follows. Section 2 describes the baseline

model. Section 3 characterizes and discusses the equilibrium in the baseline model. Through

the lens of the baseline model, section 4 discusses money market activity before and after

the 2008 financial crisis as well as the markets’ response to a reduction in the supply of

reserves. In section 5 we extend the baseline model by allowing non-bank lenders to lend in

the late market, and discuss its implications for the future of the interbank market. Section

6 concludes.

2 Baseline model

There are three types of agents—a non-bank or investor, two commercial banks and a

central bank—and three periods that can be viewed as unfolding over a day. The periods are

interpreted as morning, early afternoon and late afternoon/evening to resemble actual U.S.

money markets. In period 1 (the morning) the investor decides how to allocate resources

between the two banks over periods 1 and 2 by making deposits with the banks. In period

2 (the early afternoon) banks trade in the interbank market and may receive additional

deposits from the investor. In period 3 (the late afternoon and extending into the beginning

of the next day) banks borrow from the discount window if needed, receive interest on

reserves from the central bank and repay interbank loans.

We first describe the endowments, feasible actions and behavior of each type of agent.

Then we characterize the shocks that hit the economy.
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2.1 Investor

The investor is endowed with M units of funds. At the beginning of period 1 the investor

decides how to allocate M between the two banks by making deposits in periods 1 and 2.2

The investor can, for example, allocate all of M to period 1 bank deposits or can allocate

some of M to period 1 deposits and the remainder to period 2 deposits. Since a deposit is

a loan we will use these two terms interchangeably.

The deposit markets in periods 1 and 2 are competitive. The returns to the investor’s

deposits are realized at the end of period 3. There is a cost associated with delaying a bank

deposit until period 2. In the baseline model we assume this cost is prohibitive which implies

that the investor deposits the entire endowment M in period 1. We relax the prohibitive

cost assumption in section 5.

The investor is risk neutral and allocates funds to maximize its net expected payoff.

2.2 Banks

There are two banks indexed by i = 1, 2. Regulation requires that bank i hold at least

Ri reserves at the end of period 3. Reserves can only be held by the banks and for simplicity

we assume that the only assets that banks hold are reserves and interbank loans. Banks

buy reserves by borrowing in competitive deposit markets in both periods 1 and 2 and by

borrowing in the competitive interbank market in period 2. Denote the period 1 bank deposit

rate as rD. We denote the period 2 interbank rate rR. Below we show that the period 2

interbank rate must be equal the period 2 deposit rate. In period 3 a bank can borrow at

the central bank’s discount window. A bank must borrow from the discount window if its

reserve holdings at the beginning of period 3 falls short of what is required Ri or in other

words if its excess reserves are negative. The discount window borrowing rate is rW and the

interest paid on positive excess reserves held at the Fed is rE.

Banks are risk neutral and maximize profits. A bank’s profit is given by the total return

on its assets minus the sum of the cost of its liabilities and balance sheet costs that result from

regulations. We assume that balance sheet costs depend only on the size of the bank’s balance

sheet and not for example on the composition of the its assets and liabilities. Modeled in

this way balance sheet costs are similar to the costs incurred by banks that face the leverage

2The period 2 deposit has to physically rest somewhere in period 1. We can think of the funds as sitting
at the two banks but not be renumerated for period 1. When the funds are allocated in period 2 they will
receive the period 2 deposit rate.
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ratio constraint imposed by recent Basel III regulations or the revised FDIC assessment fee

that domestic deposit-taking institutions pay. For simplicity we assume that if bank i’s total

asset holdings are Ai, then it incurs a balance sheet cost equal to cBAi where cB is a positive

constant. In this formulation balance sheet costs are linear where marginal and average

balance sheet costs are equal to one another.

2.3 Central bank

The central bank does not make any optimizing decisions. The central bank determines

the supply of reserves, sets interest on excess reserves rE and the cost of borrowing reserves

from the discount window rW where rE < rW . We assume that the economy has M reserves

at the beginning of period 1 which is equal to the endowment of the investor. This assumption

is not essential but it does simplify the presentation. None of our results are affected if we

instead assume that the supply of reserves differs from the investor’s endowment.3

2.4 Payment/reserve shocks

Banks are hit by shocks that affect the distribution of reserve holdings between periods

1 and 2 and periods 2 and 3. Between periods 1 and 2 bank i receives a shock ηi to its

reserve holdings. We assume that ηi is uniformly distributed over [−η̄, η̄]. This assumption

greatly simplifies the analysis but relaxing it does not qualitatively affect our results.4 We

interpret the η shock as a movement in reserves between banks 1 and 2 which means that

η1 = −η2.5 In a richer model one could imagine that agents initiate wire transfers between

their accounts at the two banks for idiosyncratic reasons at the end of period 1 and the

transfers are settled in between periods 1 and 2.

Between periods 2 and 3 banks receive another reserve shock νi. This shock is similar to

the shock to reserves in the Poole (1968) model. We assume that νi is uniformly distributed

3If the supply of reserves exceeds M the difference can be held by banks in the form of endowed equity.
If the supply is smaller than M bank liabilities/assets exceed M and the difference can be held as securities
by banks.

4The assumption that the support of ηi has finite lower and upper bounds is sufficient for most results.
This assumption is realistic because it is hard to imagine a shock that is too large relative to the stock of
reserves M .

5Relaxing this assumption complicates the model while somewhat preserving the results. We can think
of η1 + η2 as a shock to total reserve supply and η1 − η2 as a differential flow from bank 2 to bank 1. The
correlation between η1 + η2 and η1 − η2 is generally not zero so it is not possible to cleanly separate their
effects.
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over [−ν̄, ν̄]. These assumptions greatly simply the equilibrium expressions and deliver clear

interpretations of the model.6

From the banks’ point of view there is a conceptual difference between the η shocks and

the ν shocks. Since the interbank and loan markets operate after the η shock is realized

banks are able to trade with one another or raise additional deposits to offset this shock. In

contrast the money market is closed after the ν shock is realized. As a result banks respond

to ν shocks passively by either borrowing reserves at the discount window or holding excess

reserves at the Fed.

3 Equilibrium in the baseline model

The equilibrium is described and characterized by solving the model backward starting

with the last period.

3.1 Period 3: late afternoon/evening

A bank’s profit depends in part on its excess reserve holdings after the ν shock which is

realized between periods 2 and 3. The excess reserve holdings of bank i at the beginning of

period 3 are the sum of four components and denoted by ei:

1. Excess reserves held at the end of period 1 denoted xi;

2. The interbank shock ηi realized between periods 1 and 2;

3. Reserves borrowed in the period 2 interbank market denoted yi; and

4. The νi shock to reserve holdings realized between periods 2 and 3.

Hence ei ≡ xi + ηi + yi + νi. Notice that yi < 0 means that bank i lends in the interbank

market.

If excess reserves are negative then the bank must borrow reserves equal to −ei from the

central bank. Bank i’s total reserve holdings will then equal what is required, Ri. Notice

6Our assumptions eliminate heterogeneity and nonlinearity in marginal values making the two banks’
preferences basically identical. The uniform distribution assumption introduces linearity in the marginal
value of reserves because the density of νi is constant over [−ν̄, ν̄].
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the bank has no incentive to borrow more than −ei since rE < rW . The final payoff or profit

for bank i that enters period 3 with negative excess reserves ei < 0 is given by

RirRR − (Ri + xi + ηi + νi)rD − yirR + eirW − (Ri + [−yi]+)cB (1)

where rRR represents the interest earned on required reserves, [x]+ = x if x ≥ 0 and [x]+ = 0

if x < 0.7 The first term RirRR represents the interest income the bank earns from its

required reserve holdings. The next three terms −(Ri + xi + ηi + νi)rD, −yirR and eirW

represent the cost of the bank’s liabilities and depend on whether the liability is a deposit,

an interbank loan or a discount window loan respectively. If yi is negative, meaning that

the bank lends in the interbank market, then −yirR represents the interest income from an

interbank loan which is an asset. The final term −(Ri + [−yi]+)cB represents the bank’s

balance sheet cost since the only assets that banks hold are reserves and interbank loans. If

ei < 0 bank i will ultimately hold Ri reserves—since it will borrow −ei at the central bank’s

discount window. If yi < 0 then bank i has an interbank loan which is an asset and generates

a balance sheet cost.

If a bank’s excess reserves are positive then it earns rE on its excess reserves ei > 0. The

final payoff (or profit) for bank i is

RirRR + eirE − (Ri + xi + ηi + νi)rD − yirR − (Ri + ei + [−yi]+)cB. (2)

The first two terms represent the interest income the bank earns on the required and excess

reserves respectively. The next two terms are the costs associated with the bank’s liabilities

(if yi < 0 then −yirR represents interbank interest income). The last term is the bank’s

balance sheet cost: Holding excess reserves ei > 0 adds to the bank’s balance sheet costs.

Notice that (2) does not have a term associated with the discount window rate rW since the

bank does not borrow from the central bank.

The terms in (1) and (2) that include Ri, ηi or νi are from the banks’ point of view ex-

ogenous. For simplicity and without loss of generality we suppress them.8 The banks’ period

3 payoff functions (1) and (2)—net of the exogenous terms—can be compactly expressed as

−xirD − yirR + [ei]
+rE − [−ei]+rW − ([ei]

+ + [−yi]+)cB. (3)

7Currently in the U.S. the interest on required reserves is equal to the interest on excess reserves. But in
principle the two rates could be different.

8Prices or rates are not exogenous to the model but are exogenous to banks because markets are assumed
to be competitive.
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3.2 Period 2: interbank market

In period 2 banks trade with each other in an interbank market. Bank i chooses the

amount of reserves it wants to borrow yi so as to maximize its expected period 3 payoff.

Bank i enters period 2 with excess reserves xi + ηi: It obtained excess reserves equal to xi in

period 1 via investor deposits and experienced a payment shock equal to ηi between periods

1 and 2. We now describe a bank’s optimal behavior.

With the help of (3) bank i’s period 2 interbank borrowing/lending problem can be

described by

max
yi

{
− xirD − yirR − [−yi]+cB + E{[ei]+(rE − cB)− [−ei]+rW}

}
where ei = xi + ηi + yi + νi. Since −xirD is exogenous from a period 2 perspective—it was

determined in period 1—it is irrelevant for the bank’s period 2 decision problem. It will be

convenient to write the bank’s problem as

max
yi

[−yirR − [−yi]+cB + vi(zi)], (4)

where zi ≡ xi + ηi + yi, and

vi(zi) ≡
ν̄∫

−ν̄

{[zi + νi]
+(rE − cB)− [−(zi + νi)]

+rW}(2ν̄)−1dνi.

Since νi is uniformly distributed on [−ν̄, ν̄] its probability density function is (2ν̄)−1 on

[−ν̄, ν̄] and zero otherwise. We assume that ν1 and ν2 have the same distribution, which

implies that the functional form of vi(z) does not depend on i. Therefore we can drop the

subscript i from vi(z) and let v(zi) represent the expected benefit of having zi excess reserves

at the end of period 2.

Notice that v(zi) is strictly concave over zi ∈ [−ν̄, ν̄] since v′(zi) is linear and decreasing.

To see this take the derivative of v(zi) with respect to zi to get

v′(zi) = (rE − cB) · Pr(ν ≥ −zi) + rW · Pr(ν ≤ −zi).

The probability Pr(ν ≥ −zi) is strictly increasing and Pr(ν ≤ −zi) is strictly decreasing in

zi over [−ν̄, ν̄]. Since ν is uniformly distributed over [−ν̄, ν̄], (3.2) can be rewritten as

v′(zi) =
rE − cB if zi ≥ ν̄

rE−cB+rW
2

− szi if − ν̄ ≤ zi ≤ ν̄
rW if zi ≤ −ν̄

, (5)
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Figure 1: demand for excess reserves in period 2.

where s = (rW − rE + cB)/(2ν̄). It is obvious from (5) that v′(zi) is linear and decreasing in

zi when −ν̄ ≤ zi ≤ ν̄. Figure 1 illustrates v′(zi). The middle expression in (5) describes a

situation that we define as scarce excess reserves in period 2. Here scarcity means there is a

strictly positive probability that the bank’s excess reserves will be negative at the beginning

of period 3 and a strictly positive probability that they will be positive.9 Intuitively as zi

approaches −ν̄ there is a high probability that bank i will have to borrow reserves from the

discount window and as a result has a marginal valuation of reserves that is close to discount

window rate rW . Similarly as zi approaches ν̄ there is a high probability that bank i will

have positive excess reserves and as result has a marginal valuation of reserves that is close

to the rate on excess reserves net of marginal balance sheet costs rE − cB.

After the banks receive their η shocks (between periods 1 and 2) one of the banks will

have more excess reserve holdings than the other. We assume without loss of generality that

it is bank 1. That is x1 + η1 ≥ x2 + η2. This inequality implies that bank 1 is the potential

lender in the interbank market and bank 2 is the potential borrower.

Lemma 1. In any equilibrium bank 1 lends to bank 2, y1 ≤ 0.10

Moreover bank 2 does not borrow too much from bank 1 in the following sense:

9We can say that a bank’s excess reserves are “really scarce” if zi < −ν̄ and “abundant” if zi > ν̄. If
reserves are really scarce then there is a zero probability that the bank will have positive excess reserves after
the ν shock; if they are abundant then there is a zero probability that the bank will have negative excess
reserves after the ν shock.

10All proofs can be found in the appendix.
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Lemma 2. In any equilibrium bank 2’s excess reserve holdings never exceed those of bank 1

after interbank trading, x1 + η1 + y1 ≥ x2 + η2 − y1.

Lemmas 1 and 2 imply that

x2 + η2 ≤ x2 + η2 − y1 ≤ x1 + η1 + y1 ≤ x1 + η1.

After interbank market closes the excess reserve holdings of both banks lie between their

pre-interbank-market excess reserves x2 + η2 and x1 + η1.

Given lemmas 1 and 2 excess reserves will always be scarce in period 2 if for all ηi ∈ [−η̄, η̄],

−ν̄ ≤ xi + ηi ≤ ν̄ for i = 1, 2. Hence we can now define excess reserve scarcity in period 2 as

Definition 1. Excess reserves are said to be scarce in period 2 if

−ν̄ + η̄ ≤ xi ≤ ν̄ − η̄ (6)

which implies that v′′(xi + ηi) < 0 for all ηi ∈ (−η̄, η̄).

Unless otherwise specified we shall assume condition (6) prevails.11

Bank 1’s lending decision y1 is given by the solution to the problem in (4) which is

v′(x1 + η1 + y1) + cB ≥ rR

with equality if y1 < 0. Bank 2’s borrowing decision y2 = −y1 is given by

v′(x2 + η2 − y1) ≤ rR (7)

with equality if y1 < 0. Notice that we have imposed the condition y2 = −y1 in (7).

If y1 < 0 in equilibrium then we have an active interbank market characterized by

v′(x2 + η2 − y1)− v′(x1 + η1 + y1) = cB. (8)

This outcome is possible if and only if v′(x2 + η2) − v′(x1 + η1) > cB. Hence the interbank

market will be inactive in equilibrium and y1 = y2 = 0 whenever

v′(x2 + η2)− v′(x1 + η1) ≤ cB. (9)

This inequality has a nice interpretation: The interbank market will shut down if the

marginal balance sheet cost cB exceeds the marginal gain from borrowing and lending

11Notice that xi is a period 1 endogenous variable. Below we will restate the definition of scarcity using
only model parameters and/or exogenous variables.
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v′(x2 + η2) − v′(x1 + η1). When the interbank market is inactive the interbank rate rR

is indeterminate. In fact equilibrium will be consistent with any interbank rate that satisfies

v′(x2 + η2) ≤ rR ≤ v′(x1 + η1) + cB. (10)

When the interbank rate is indeterminate we will for convenience define it to be the average

of the two limiting values in (10), rR ≡ 0.5[v′(x1 + η1) + v′(x2 + η2) + cB]

If the interbank market is active, y1 < 0, then the interbank rate satisfies

rR = v′(x2 + η2 − y1) = v′(x1 + η1 + y1) + cB. (11)

Clearly (11) and (8) plus some simple arithmatic implies that

rR =
1

2
[v′(x2 + η2 − y1) + v′(x1 + η1 + y1)] +

1

2
cB. (12)

Since η1 + η2 = 0 and v′ is linear—see (5)—(12) can be simplified to read

rR =
1

2
[v′(x2) + v′(x1)] +

1

2
cB = v′(

x1 + x2

2
) +

1

2
cB. (13)

This equation is rather interesting: The interbank rate depends on the period 1 excess

reserve holdings of the banks and the marginal balance sheet costs but not on the size of

η shocks. The latter is an implication of assumed absense of aggregate shocks to reserve

supply η1 + η2 = 0 and the linearity of the marginal value function v′(z). Note that the

expression for rR in (13) equals what we defined the interbank rate to be when the market

was inactive y1 = y2 = 0.

We can use (13) along with (5) to get an explicit expression for interbank trade volume

−y1. In particular interbank trade volume is given by

−y1 = [
1

2
(x1 − x2) + η1 −

cB
2s

]+, (14)

where s is the slope of v′ over its decreasing region. Notice that trade volume increases

with the difference in excess reserves holdings by banks at the end of period 1, x1 − x2, and

the interbank shock η1 and decreases with balance sheet costs cB but is independent of the

amount of (scarce) excess reserves that are in the economy.12

Figure 2 provides an illustration of equilibrium interbank trade. The lender’s marginal

value curve lies cB above the borrower’s curve. The difference between x1 + η1 and x2 − η1

12We shall see that in equilibrium x1 = x2. Hence, from (14), a necessary condition for strictly positive
interbank trade volume is cB < 2sη̄.
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Figure 2: interbank trade.

is sufficiently large so that the interbank market is active as indicated by the squares on the

piecewise linear curves where v′(x2 − η1) > v′(x1 + η1) + cB. Bank 1 extends a loan to bank

2 of size −y1 such that v′(x1 + η1 + y1) + cB = v′(x2− η1− y1) = rR. Notice that the average

after-interbank-trade excess reserve holdings of the banks is equal to (x1 + x2)/2 and that

the geometric construction that underlies figure 2 implies that rR = v′[(x1 +x2)/2]+(1/2)cB.

Define η0 = cB/(2s) to be an η shock such that banks are indifferent between trading and

not trading in the interbank market as illustrated in figure 2. (In figure 2 η0 ≡ η1 + y1.)

Then if η1 > η0 there is a positive trade and for any η1 < η0 the interbank market will be

inactive since v′(x2 + η2)− v′(x1 + η1) < cB.

3.3 Period 1: demand for deposits

In period 1 banks accumulate reserves by issuing deposits to the investor. Bank i chooses

an amount of deposits Ri+xi taking the deposit rate rD as given. When making this decision

banks anticipate that they will be hit by payment shocks between periods 1 and 2—that they

can partially offset in the interbank market—as well as another round of payment shocks

between periods 2 and 3—that they cannot offset in a market.

Bank i’s choice of excess reserves in period 1 xi can be compactly expressed as the solution

to the following problem

max
xi

u(xi)− xirD

13



where u(xi) = Ew(xi, ηi, rR) and

w(xi, ηi, rR) ≡ max
yi

[−yirR − [−yi]+cB + v(xi + ηi + yi)]. (15)

The function u(xi) is the expectation of the bank’s maximized period 2 objective function

w(xi, ηi, rR)—or equivalently (4)—where yi is chosen as a function of ηi and rR and the

expectation of w(xi, ηi, rR) is taken over the distribution of η1. Note that Ew(xi, ηi, rR)

generally depends on both xi and the label i, but in equilibrium we can ignore the dependence

on i.13 In making their decisions banks take the interbank rate rR as given. Notice from

(13) that the interbank rate rR is not a random variable even from period 1 perspective

since it does not depend on either η or ν.14 In light of (15) it is not surprising that u(xi) =

Ew(xi, ηi, rR) inherits some properties of v(zi). One important property that u(xi) inherits

is strict concavity.15

Before we proceed, we restate our definition of scarcity of reserves with a new one:

Definition 2. Excess reserves are said to be scarce if

−ν̄ + η̄ ≤ X/2 ≤ ν̄ − η̄ (16)

where X ≡M −R1 −R1.

Notice that definition 2 simply substitutes per bank excess reserves supplied by the

central bank X/2 for a bank’s excess reserve holdings xi in definition 1 and that it implies

definition 1 in equilibrium. This definition of scarcity is described solely by exogenous model

parameters. Given (16) we can demonstrate that the period 1 equilibrium is unique and is

described by

Lemma 3. Period 1 equilibrium is characterized by

u′(xi) = v′(xi) = v′(
X

2
) = rD (17)

for i = 1, 2.

13Ew(xi, ηi, rR) depends on i due to the presence of ηi. It will not depend on ηi if rR is symmetric around
zero as a function of η1, rR(η1) = rR(−η1). In the appendix we show that x1 = x2 in equilibrium and thus
rR(η1) = rR(−η1).

14Generally rR needs to be treated as a function of η1. However in the baseline model it can be shown
that rR is constant in equilibrium.

15Strictly speaking u(xi) is only concave. However u(xi) is strictly concave near the equilibrium xi.
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Lemma 3 is quite intuitive. Banks are essentially identical at the beginning of period 1 each

bank and will borrow one half of the aggregate excess reserves in equilibrium via deposits.16

Since the function v′(z) describes the value to a bank of borrowing an additional unit of

reserves, the equilibrium period 1 deposit (borrowing) rate will be given by v′(z) evaluated

at the bank’s expected excesss reserve holdings in equilibrium.17

Since x1 = x2 = X/2, (13) implies that the equilibrium period 2 interbank rate is given

by

rR = v′(
X

2
) +

1

2
cB. (18)

Comparing (17) with (18) it can be seen that there is a rather simple relationship between

the period 1 deposit rate and the period 2 interbank rate. In particular

rR = rD +
cB
2
.

Notice that the deposit rate is lower than the interbank rate because bank reserves that are

lent or borrowed in the interbank market will incur a balance sheet cost. The existence of

balance sheet costs means that the banks cannot “arbitrage away” the difference between

the two rates. Finally the equilibrium deposit and interbank rates can be expressed in terms

of model parameters by using equation (5). The equilibrium period 2 interbank rate is given

by

rR =
rW + rE

2
− sX

2
, (19)

and the equilibrium period 1 deposit rate is given by rD = rR − cB/2.18

3.4 Summary of the benchmark model

Equilibrium in our model is described by two interest rates rD and rR and four borrowing

levels x1, x2, y1, and y2. More specifically

• The period 1 deposit rate rD equals v′(X/2). Banks hold the same amount of excess

reserves x1 = x2 and the deposit market clears R1 + x1 +R2 + x2 = M .

• The period 2 interbank rate rR equals v′(X/2) + cB/2. The interbank market clears

y1(η1) + y2(η1) = 0 for all η1 and depending on the size of the shock η the interbank

16Banks care about excess reserves. So even though it may be the case that R1 6= R2 banks are ex ante
identical in how they treat excess reserves xi.

17This also requires that v′(z) be linear over a relevant interval which was assumed earlier.
18Recall that s = (rW − rE + cB)/(2ν̄).
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Figure 3: deposit market equilibrium when reserves are scarce.

market can be either active y1 < 0 or inactive y1 = 0. Intuitively, if shocks are small

the interbank market will be inactive and if they are big it will be active.

The equilibrium for our economy can be neatly described in two diagrams: one for

equilibrium in the period 1 deposit market and another for equilibrium in the period 2

interbank market. Equilibrium in the period 1 deposit market is illustrated in figure 3. The

per bank aggregate excess reserves X/2 lie in between [−ν̄+ η̄, ν̄− η̄] and the function v′(x) is

linear and strictly decreasing over the interval. The function v′(x) should be interpreted as a

borrowing bank’s demand for excess reserves for either period 1 or period 2. In equilibrium

each bank borrows x1 = x2 = X/2 excess reserves from the investor and the market clearing

deposit rate rD is given by the intersection of v′(x) and the perpendicular emanating from

x = X/2.

Equilibrium for the period 2 interbank market is illustrated in figure 2. The two downward

sloping lines v′(z) and v′(z) + cB can be interpreted as the demand curves for excess reserves

by a borrowing bank and a lending bank respectively.19 Suppose that η1 is sufficiently large

so that the interbank market is active, y1 < 0, as illustrated in figure 2. In particular

the interest rate at which the potential lender is willing to lend when its excess reserves

are z = X/2 + η1, v′(z) + cB—illustrated by small square on the upper demand curve—is

strictly less than the rate at which the potential borrower is willing to borrow when its excess

19Recall that in equilibrium v′(z) = rR for a borrowing bank and v′(z) + cB = rR for a lending bank if
there is a nonzero trade.
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reserves are z = X/2−η1, v′(z)—illustrated by the small square on the lower demand curve.

This configuation indicates that there are gains from trade in the interbank market. The

equilibrium trade volume is given by −y1 = η0 − η1 in figure 2 at the interbank rate rR that

satisfies

rR = v′(
X

2
+ η1 + y1) + cB = v′(

X

2
− η1 − y1) = v′(

X

2
) +

1

2
cB. (20)

As defined earlier for η1 shocks that exceed η0 ≡ η1 + y1 there is a positive trade. Figure

2 illustrates that if η1 > η0 then the interbank market is active and the interbank rate is

given by equation (20). If instead 0 < η1 < η0 the interbank market is inactive. Even in this

case the interbank rate given by equation (20) is consistent with equilibrium but it is not

the unique rate consistent with equilibrium.

4 Interbank market pre- and post-crisis

We now use the model to study trade volume in the interbank market and other money

market outcomes under different scenarios. The first two cases correspond to the pre-crisis

and the current interbank markets. The former is characterized by scarce excess reserves

and negligible balance sheet costs while the the latter is characterized by abundant excess

reserves and significant balance sheet costs.20 We show that in each of these cases our model

delivers predictions that are consistent with stylized money market facts.

A third case which we consider in the subsequent section is hypothetical but one that

could be relevant in the future. This case is characterized by significant balance sheet costs

and scarce excess reserves. This case is relevant if in the future the size of the Federal Reserve

balance sheet is sufficiently reduced so that excess reserves become scarce. In this case we

show that interbank market trade volume can be much smaller than in the pre-crisis case

and may completely disappear in spite of excess reserves being scarce.

4.1 Pre-crisis period

In the pre-crisis period the federal funds market was primarily an interbank market and

the eurodollar market was a place where non-banks lent to banks. In our model it is best to

interpret the interbank rate rR as the fed funds rate and the deposit rate rD as the eurodollar

rate.

20We formally define abundant excess reserves later.
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Figure 4: interbank trade volume.

In the pre-crisis period banks did not receive interest on reserves deposited at the Fed

and their balance sheet costs were quite small.21 For example the pre-crisis period’s formula

for the FDIC assessment fee depended primarily on deposit liabilities and not on the size of

the bank’s balance sheet. And while the U.S. did have leverage ratio requirements during

this time the ratios were lower than current ratios and the base upon which the ratio was

calculated was narrower than it is now. Moreover anecdotal evidence suggests that the pre-

crisis behavior of banks was consistent with very low or no balance sheet costs. Finally and

importantly, the hallmark of the pre-crisis period was scarcity of excess reserves. In terms

of model parameters the pre-crisis period is best characterized by −ν̄ + η̄ ≤ X/2 ≤ ν̄ − η̄,

rE = 0 and cB = 0.

In the pre-crisis period the fed funds and the eurodollar rates were typically very close

to one another. This is consistent with our model when cB = 0. When excess reserves are

scarce, we have rR = rD + (1/2)cB and with cB = 0, rR = rD.

Pre-crisis interbank trading volumes in the federal funds market was quite high. Our

model is consistent with a very active federal funds market when cB = 0 since all realizations

of the shock ηi give rise to a nontrivial amount of interbank trade. In particular −yi = ηi.

The average volume of trade in our model is η̄/2 and actual volume is given by |ηi|; see figure

21The Fed only received authority to pay interest on reserves in 2008. Congress voted to give the Federal
Reserve the authority to pay interest on reserves in 2006 but this authority was supposed to take effect five
years later in 2011. The authority was accelerated during the financial crisis so as to give the Fed additional
tools to maintain interest rate control while trying to stabilize financial markets.

18



4.

In the baseline model we assume that the investor incurs an extremely large cost when it

delays its bank lending until period 2. But notice that for our pre-crisis model parameters

even if the cost of delay were arbitrarily small, the investor would never have an incentive

to delay lending until period 2 because rD = rR. In other words since the investor does not

earn a higher rate by lending late in period 2 it will never pay any positive cost to do so.

This observation is consistent with the relatively clear distinction between the timing of the

federal funds market and the eurodollar market that existed in the pre-crisis period: The

federal funds market was primarily interbank and trading happened mostly late in the day

while eurodollar lenders were non-banks that traded mostly in the morning.

Finally we discuss pre-crisis monetary policy implementation through the lens of our

model. When excess reserves are scarce the interbank rate in the model responds to small

changes in reserves M since, by (19), we have drR/dM < 0. In practice changes in reserves

were achieved through open market operations. In the pre-crisis period the target for the

federal funds rate was set δ percentage points below the discount window rate rW where

δ was equal to 1 percentage point. We can use equation (19) to characterize the supply

of reserves M or excess reserves X that is consistent with the target federal funds rate by

assuming that rW = rR + δ. In particular

X = 4ν̄
δ

rR + δ
− 2ν̄.

Notice that aggregate excess reserves X are a decreasing function of rR. Hence to implement

a higher target interbank rate the central bank needs to reduce the amount of excess reserves

in the banking system—in practice by either undertaking an open market sale or a reverse

repo—and by increasing rW . Finally by setting rW = rR + δ any interbank rate rR > 0 can

be implemented by choosing the appropriate amount of reserves.22

4.2 Post-crisis period

The Federal Reserve started paying interest on excess reserves in 2008 at the beginning

of the financial crisis. Hence we have that rE > 0 for the post-crisis period. The post-crisis

period is also characterized by financial market regulations that impose significant costs on

22Implementing rR close to 0 or rW may require increasing or decreasing M beyond the range consistent
with assumption 2. However since cB is zero the relationship between M and rR does not change as long as
−ν̄ ≤ X/2 ≤ ν̄. This will be seen more clearly from our discussion on abundant reserves.
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banks that are related to the size of their balance sheets. Hence cB > 0. Finally since 2009,

the amount of excess reserves in the U.S. banking system has been very large or abundant.

In terms of our model we define abundance as

Definition 3. Excess reserves are said to be abundant if

X

2
≥ ν̄ + η̄.

If excess reserves are abundant in the sense of definition 3 and banks hold the same amount

of excess reserves at the end of period 1, x1 = x2 = X/2, then each bank’s period 3 reserve

holdings will always exceed what is required Ri for any shocks ηi and νi when there is no

interbank trade, yi = 0. Abundant reserves along with balance sheet costs and interest on

reserves have interesting implications for equilibrium in our model.

Although we shall see that x1 = x2 = X/2 is an equilibrium—as in the case with scarce

reserves—this equilibrium allocation of date 1 excess reserves is not unique. In fact any period

1 bank excess reserve holdings x1 and x2 such that x1, x2 ≥ ν̄ + η̄ and x1 + x2 = X is an

equilibrium. All of these equilibria share a common feature: Independent of the realizations

of ηi and νi banks never need to borrow from the discount window in period 3. We now

examine these equilibria in greater detail.

When excess reserves are abundant in the sense of definition 3 the bank’s period 1 deposit-

taking and period 2 interbank borrowing/lending problems are drastically simplified. Assume

for time being that x1, x2 ≥ ν̄ + η̄. An implication of this assumption is that each bank’s

beginning of period 3 excess reserve holdings is strictly positive when it does not borrow or

lend in the period 2 interbank market. Therefore if a bank borrows a unit of reserves in

the period 2 interbank market then that loan generates an additional balance sheet cost for

the borrowing bank with probability one. Hence a bank will only borrow in the interbank

market if rR ≤ rE−cB. However a bank that has with probability one strictly positive excess

reserves in period 3 will never lend at a rate rR < rE because its marginal value for reserves

equals rE, the rate that it earns from the Fed. Therefore when excess reserves are abundant

and x1, x2 ≥ ν̄ + η̄, the period 2 interbank market will be inactive, yi = 0. In this situation

any rE− cB ≤ rR ≤ rE will be consistent with equilibrium in the period 2 interbank market.

When rE − cB ≤ rR ≤ rE banks do not have an incentive to either borrow or lend in the

interbank market.

Also it can be shown that the equilibrium deposit rate rD is equal to rE − cB.23 This

23See appendix.
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Figure 5: equilibrium with abundant reserves.

is intuitive because the banks always end up with positive excess reserves in equilibrium:

Any additional unit of early deposit brings in rE in interest on excess reserves but is subject

to balance sheet cost cB. To see that x1, x2 ≥ ν̄ + η̄ holds in equilibrium, suppose instead

that x2 < ν̄ + η̄ implying x1 > ν̄ + η̄. Then for some large negative η shocks, bank 2’s

marginal benefit of borrowing in period 2 will exceed rE − cB because interbank trades do

not fully offset η shocks due to balance sheet costs. Therefore bank 2’s expected marginal

benefit of borrowing in period 2 from a date 1 perspective also exceeds rE − cB. However

bank 1 always ends up with positive excess reserves and thus its expected marginal benefit

of borrowing is rE − cB. This cannot be an equilibrium because the marginal benefits are

different. Therefore equilibrium requires that xi ≥ ν̄ + η̄ for banks i = 1, 2.

Figure 5 diagramatically describes the equilibrium outcome. When reserves are abundant,

the relevant part of the borrower’s and lender’s marginal valuation of reserves are simply

horizontal lines beyond xi ≥ ν̄+ η̄ at heights rE−cB and rE respectively. Figure 5 illustrates

an equilibrium where x1 6= x2. In contrast to the case where reserves are scarce, equilibrium

with abundant reserves is not unique. Although every equilibrium is characterized by rD =

rE − cB and rE − cB ≤ rR ≤ rE, any period 1 deposits x1, x2 ≥ ν̄ + η̄ such that x1 + x2 = X

is an equilibrium.

In reality the volume of interbank trade in the U.S. is not zero but it is very close to

it. Potter (2016) notes that during “the first half of 2016 less than 5 percent of fed funds

transactions were interbank transactions based on the FR2420 data or about $3 billion

per day on average.” Our model also predicts that banks would never choose to lend at
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a rate below the interest rate paid on excess reserves (IOER) rE in the interbank market.

Indeed with excess reserves that fall a bit short of abundance the interbank rate will be

rE.24 Although there are some interbank trades with rates below IOER, interbank rates are

generally above rates on fed funds lent by non-banks and closer to IOER.25

This can be seen on figure 2 of Potter (2017) where the upper tail of the distribution of

rates—consisting of mostly interbank trades—in the fed funds market is above the IOER.

In contrast fed funds trades between Federal Home Loan Banks and commercial banks and

non-bank to bank trades in the eurodollar market occur at a rate below the IOER as in the

model. Note that Federal Home Loan Banks do not earn IOER from the Federal Reserve so

they can be regarded as non-banks in the money market. Therefore their fed funds lending

is considered deposits in our model along with eurodollar trades.

As in the pre-crisis regime of section 4.1 the investor has no incentive to pay any cost

for the option of lending to the bank in period 2. Investors understand that the period 2

borrowing rate will equal rE − cB which is the rate they receive for lending in period 1.26

5 U. S. interbank market in the future

In this section we examine how the U. S. interbank market may evolve in response to a

reduction in excess reserves. We examine how equilibrium outcomes will be affected when

reserves declined from being abundant—with no need for interbank trading in period 2—

to scarce. Generally speaking interbank trading volume will increase when excess reserves

are lowered from an abundant level. Then depending on the specification of the investor’s

cost associated with delaying bank lending to period 2, interbank trade volume can stop

increasing and remain at a relatively low level even with continued reserve drain or can

disappear at some point, being completely replaced by the investor’s period 2 loans. These

outcomes suggest that it may be difficult or misleading to assess the implications associated

with large scale draining of excess reserves by experimenting with small changes in reserves

24With abundant reserves there are no interbank transactions. However there is an intermediate region
between reserves abundance and scarcity where deposit rate rD stays below IOER while a small volume of
interbank trades occur at IOER. This will become clearer in the next section when we discuss the future of
the interbank market.

25Therefore lending banks sometimes make losses by lending. This may be understood as being part of
various business relationships between the lending and the borrowing bank.

26Period 2 borrowing rate is indeterminate in equilibrium only because there is no trade in period 2. If
any trade occurs the rate needs to be no higher than rE − cB to induce borrowing.
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when excess reserves are still large.27

The analysis here suggests that if excess reserves are lowered sufficiently, open market

operations will be able to affect interest rates, such as the deposit rate, in a predictable way.

However, the stance of monetary policy may not be able to be transmitted by a rate that

relies on active interbank trading because interbank trades may disappear.

We first examine the situation where reserves have been drained from the banking system

to the point where excess reserves X are scarce, as in definition 2. We now assume that the

investor’s of cost of delaying bank lending to period 2 is no longer prohibitive and consider

two types of costs: a constant marginal cost per unit of period 2 loan and a fixed cost. The

cost may represent the burden of maintaining operational readiness, creating new types of

contracts or infrastructures to execute late loans or even the fear of not being able to invest

resources profitability if one waits for too long.28

Let h represent the amount of funds that the investor lends to banks in period 2 and hi

the amount of reserves that bank i borrows from the investor in period 2. The total cost

of lending h in period 2 is characterized by either chh, where ch represents the constant

marginal cost ch associated with late loans, or a one-time fixed cost Ch. We will interpret

the fixed cost as the cost for constructing a public good infrastructure that facilitates the

late loans.

We first analyze a bank’s problem taking the amount of resources that the investor lends

in period 2, h, as given. Then we analyze the investor’s choice h of period 2 lending under

the two cost functions.

5.1 Period 3: the bank’s payoff

The expression for excess reserves ei is almost identical to that of the baseline model

except now it includes period 2 loans hi from the investor:

ei ≡ xi + yi + hi + ηi + νi.

The period 3 payoff for bank i, net of the exogenous terms having Ri, ηi or νi, is given by

−xirD − (yi + hi)rR − [−yi]+cB + [ei]
+(rE − cB)− [−ei]+rW .

27By ‘large’ we mean that excess reserves are neither scarce nor abundant. We formalize this notion below.
28In our model the investor is always has the opportunity to lend so this last interpretation comes from

outside the model.
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Notice that the period 2 interbank market rate rR equals the rate at which banks borrow

from the investor in period 2. This is an equilibrium outcome. To see this suppose that the

rates are different. Then borrowers would avoid the higher borrowing rate and the type of

trades associated with that rate would be characterized by an excess supply of funds.

5.2 Period 2: banks’ borrowing decisions

Equilibrium in period 2 is characterized by a borrowing rate rR that clears both the

interbank market−y1 = y2 and the market where banks borrow from the investor h = h1+h2.

The bank’s period 2 problem is only slightly different from the baseline model and reflects

the bank’s ability to borrow directly from the investor. The bank’s decision problem is given

by

max
yi,hi
−(yi + hi)rR − [−yi]+cB + v(xi + ηi + yi + hi)

where

v(xi+ηi+yi+hi) =

∫ ν̄

−ν̄
{[xi+ηi+yi+hi+νi]+(rE−cB)−[−(xi+ηi+yi+hi+νi)]

+rW}(2ν̄)−1dν.

(21)

As in the baseline model we identify bank 1 as the potential lender which means that

x1 +η1 ≥ x2 +η2 and η1 = −η2 ≥ 0—anticipating x1 = x2 in equilibrium. Bank 1 never lends

in the interbank market at the same time it borrows from the investor. To see this take the

first order conditions of (21) with respect to hi and y1 to get rR = v′(z1) and rR = v′(z1)+cB

respectively. Clearly it is not possible for both equations to simultaneously hold. Hence

there are 3 general cases to consider:

1. Both banks borrow from the investor;

2. Bank 2 borrows from the investor and bank 1 neither borrows nor lends;

3. Bank 2 borrows from both the investor and bank 1.

Case 1 is characterized by v′(x2 − η1 + h) < v′(x1 + η1). If bank 2 receives all of the

investor’s loans h then its marginal value of borrowing reserves is less than bank 1’s marginal

value. This implies that there exists a h2 > 0 such that

v′(x2 − η1 + h2) = v′(x1 + η1 + h− h2).

24



v'(z)

v'(z)+cB

(X-h)/2 X/2

Before trade After trade

z

Rates

(X-2h)/2

rR
(=v'(X/2))

Case 1

v'(z)

v'(z)+cB

(X-h)/2 X/2 z

Rates

(X-2h)/2

rR

Case 2

X/2+ 0

v'(X/2)

X/2- 0

v'(z)

v'(z)+cB

(X-h)/2 X/2 z

Rates

(X-2h)/2

rR

Case 3

X/2+ 0

v'(X/2)

X/2- 0

Figure 6: late market with non-bank lending.

In this situation the investor extends loans to both banks. When the period 2 borrowing

market closes, both banks will hold the same amount of excess reserves which in equilibrium

equals X/2. Therefore the period 2 borrowing rate rR must satisfy

rR = v′(
X

2
).

Case 1 arises when the η shock is relatively small. Anticipating that in equilibrium we have

x1 = x2, case 1 occurs whenever η1 ∈ [0, h/2]. If the investor lends h in total to the banks

then each bank will hold excess reserves (X − h)/2 in period 1; see the left panel in figure

6. Note that period 1 bank excess reserve holdings exclude h reserves (which may sit at

either bank before getting lent out in period 2). For any shock η1 ∈ [0, h/2] bank 1’s excess

reserves will be less than or equal to X/2 which means that the investor can lend to both

banks and both banks’ post trade excess reserves can equal X/2. It is clear from figure 6

that if η1 = h/2 bank 1 will have exactly X/2 excess reserves before the date 2 loan market

opens and bank 2 will have X/2 excess reserves after it borrows h from the investor. For

an arbitrary η1 ∈ (0, h/2), illustrated by the ‘x’s’ on the bank’s borrowing demand curve in

figure 6, both banks borrow from the investor and bank 2 borrows 2η1 more reserves than

bank 1. Both banks end up holding X/2 reserves and the fed funds rate equals v′(X/2), as

indicated by the circle on the lower demand curve in figure 6.

In case 2 bank 2 borrows h from the investor while bank 1 neither borrows nor lends.

25



Case 2 therefore must be characterized by v′(x2 + η2 + h) ≥ v′(x1 + η1) and

v′(x2 + η2 + h) ≤ v′(x1 + η1) + cB.

The first inequality says that bank 2’s marginal valuation of borrowing reserves exceeds that

of bank 1’s (marginal valuation of borrowing) when it receives all of the depositor’s loans h.

This implies that bank 1 does not borrow from the investor and becomes a potential lender.

The second inequality says that bank 1 does not lend in the interbank market because any

gains from any trade are more than offset by the balance sheet costs. Therefore we have

that h2 = h and h1 = y1 = y2 = 0. From bank 2’s decision problem the equilibrium period

2 borrowing rate must satisfy

rR = v′(x2 + η2 + h).

Once again, anticipating that x1 = x2 = (X − h)/2 we can identify the set of η’s that are

relevant for case 2. Notice that when η1 = h/2 the equilibrium allocation of excess reserves

after period 2 trading with the investor is identical to that of the baseline model when η1 = 0.

Therefore the set of η’s that are consistent with case 2 simply shifts the set of η’s that are

consistent with an equilibrium in the baseline model that has y1 = 0 by h/2:

η1 = −η2 ∈ [
h

2
,
h

2
+ η0]

with η0 ≡ cB/(2s). (Recall that s = (rW + cB − rE)/2ν̄ is the absolute value of the slope

of v′(z) for z ∈ [−ν̄, ν̄]). The middle panel of figure 6 illustrates this set. Notice that by

construction the marginal valuation of borrowing for bank 2 for z = X/2− η0 and of lending

for bank 1 for z = X/2 + η0 are equal and given by

v′(
X

2
− η0) = v′(

X

2
+ η0) + cB.

If we assume that x1 = x2 = (X − h)/2 then the excess reserve holdings for case 2, after

the investor lends h to bank 2, lies somewhere in the interval [X/2, X/2 + η0] for bank 1

and [X/2− η0, X/2] for bank 2 depending upon the magnitude of the η shock. Notice that

the bank 2’s marginal valuation of borrowing after receiving h from the investor, indicated

by the circle on the borrower’s demand curve in the middle panel of figure 6, is less than

bank 1’s marginal valuation of lending, indicated by the ‘x’ and the circle on the lender’s

demand curve. The borrowing rate rR is given by bank 2’s marginal valuation of borrowing

after it borrows h from the investor and is illustrated by the circle on the borrower’s demand
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curve. The borrowing rate rR is characterized by r∗D ≤ rR ≤ r∗R, where r∗D = v′(X/2) and

r∗R = r∗D + cB/2. r∗R will be defined as the period 2 rate in case 3 and r∗D as the deposit rate

in the bank’s period 1 problem.

Finally in case 3 bank 2 borrows from both the investor and bank 1. This case is

characterized by

v′(x2 + η2 + h) > v′(x1 + η1) + cB,

which means that even after bank 2 borrows h from the investor, there are gains from trade

in the interbank market. The equilibrium interbank rate is

rR = v′(x2 + η2 + h− y1) = v′(x1 + η1 + y1) + cB. (22)

Anticipating that x1 = x2 = (X − h)/2, case 3 arises when

η1 >
h

2
+ η0.

In case 3 the allocation of reserves held by banks 1 and 2 after period 2 trading will be

identical to the the excess reserves held by these banks when η1 precisely equals h/2 + η0.

In particular when η1 > h/2 + η0, bank 2 borrows h2 = h from investor and

y2 = −y1 = η1 −
h

2
− η0

from bank 1. We can therefore rewrite (22) as

rR = v′(x2 +
h

2
− η0) = v′(x1 +

h

2
+ η0) + cB. (23)

Since ν is uniformly distributed—which implies that v′ is linear—the equations in (23) can

be simplified to read

rR =
1

2
[(v′(x2 +

h

2
) + v′(x1 +

h

2
)] +

1

2
cB.

Anticipating that x1 = x2 = (X − h)/2 this equation can be further simplied to

r∗R = v′(
X

2
) +

1

2
cB.

The last panel in figure 6 illustrates this case. The ‘large’ η shock results in excess reserve

holdings indicated by the ‘x’ on bank 1’s lending demand curve and bank 2’s borrowing

demand curve. After bank 2 borrows h from the investor, its excess reserves will still be less

than X/2−η0. Therefore bank 2’s marginal value for borrowing reserves is greater than bank
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1’s marginal value for lending reserves; hence there are gains from trade. Bank 1 lends to

bank 2 until the marginal values are equated, with bank 1 holding X/2 + η0 excess reserves

and bank 2 holding X/2 − η0 as indicated by the circles on the borrower’s and lender’s

demand curves. Finally, notice that when η1 is large in the sense of case 3, the period 2

borrowing rate equals the interbank rate in the baseline model when there is strictly positive

volume.

5.3 Period 1: banks’ demand for deposits

5.3.1 Bank i’s demand for deposits

As in the baseline model, the bank’s choice of deposits is given by

max
xi

u(xi)− xirD (24)

where u(xi) = Ew(xi, ηi, rR) and

w(xi, ηi, rR) = max
yi,hi

[−(yi + hi)rR − [−yi]+cB + v(xi + ηi + yi + hi)].

As in the baseline model it can be shown that u(xi) is concave and that w′(xi, ηi, rR) ≡
∂w/∂xi(xi, ηi, rR) = v′(zi) where zi ≡ xi + ηi + yi + hi for optimal yi and hi. The former

implies that the solution to (24) which is u′(xi) = rD is unique under broad assumptions.

As a result x1 = x2 as anticipated.29

To characterize u′(xi) = rD we can evaluate w′(xi, ηi, rR) for each of the three cases

examined in section 5.2 and then compute its expectation over η1. However we can simplify

the problem further by taking advantage of the fact that ηi has a symmetric distribution

around zero.

Since ηi is symmetric around zero, ηi can be η̂1 or −η̂1 with equal probability, for any

0 ≤ η̂1 ≤ η̄. Since the two banks are identical prior to period 2, x1 = x2, it is as if bank i

with ηi = η̂1 were trading against bank i with ηi = −η̂1 in period 2. Writing the optimal

choices of yi and hi as functions of ηi implies in equilibrium that

(xi + η̂1 + yi(η̂1) + hi(η̂1)) + (xi − η̂1 + yi(−η̂1) + hi(−η̂1)) = X.

This equation simply means that the excess reserves are distributed between the two banks.

Since v′ is linear, we have

Eηi∈{η̂1,−η̂1}w
′(xi, ηi, rR) = Eηi∈{η̂1,−η̂1}v

′(zi) = v′(
X

2
).

29As in the baseline model the appendix shows that the dependence of Ew(xi, ηi, rR) on the label i can
be ignored in equilibrium.
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The expression for the conditional expectation holds for any η̂1 and thus in equilibrium

we have

r∗D = E[w′(xi, ηi, rR)] = v′(
X

2
).

Notice the equilibrium period 1 deposit rate is identical to that of the baseline model which

has h ≡ 0. We have characterized equilibrium behavior for the banks for a given level of

period 2 investor loans h. We now examine the period 1 equilibrium behavior of the investor.

5.4 Investor’s supply of deposits

It is costly for the investor to withhold funds to lend to banks in period 2. We consider

two types of costs: a per unit constant marginal cost and a fixed cost. We examine the case

of a constant marginal cost first.

5.4.1 Per unit withholding costs

In period 1 the investor chooses the amount of resources h to lend to banks in period 2.

The period 1 problem that the lender solves is simple:

max
h

(M − h)rD + h[E(rR)− ch] (25)

where ch is the marginal cost associated with lending in period 2. If ch = 0 then h must be

consistent with the first order condition rD = E(rR). Since rR ≥ rD for any η, rD = E(rR)

implies that rD = rR.30 Hence we have

rR = r∗D = v′(
X

2
).

In this situation the investor is indifferent between lending in period 1 and period 2. In order

to ensure that the investor has sufficient period 2 resources to be consistent with rR = r∗D

for all possible η shocks, it must be the case that h ≥ 2η̄.31

Suppose now that ch > 0. If h > 0 is optimal then from (25), E(rR) = rD + ch. Since in

any equilibrium the maximum ex post value of rR is r∗D+cB/2, a necessary but not sufficient

condition for h > 0 is that ch < cB/2. Also in any equilibrium where ch > 0 it must be that

h < 2η̄. If this was not the case then rR = r∗D and the investor could increase its payoff by

setting h = 0.

30rR ≥ rD because rR equals the marginal value of the bank with fewer excess reserves while rD equals
the marginal value of the bank with half of total excess reserves.

31Otherwise for η1 > h/2 bank 2 will end up with fewer than X/2 reserves even after trading in period 2
and rR will be greater than r∗D.
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When h < 2η̄ there is a strictly positive probability that cases 1 and 2 (from section 5.2)

will prevail in equilibrium. This implies that E(rR) > r∗D. Whether or not case 3 prevails

with a strictly positive probability depends on the size of h. In particular if

h < 2(η̄ − η0)

then case 3 will prevail with a strictly positive probability. If h > 2(η̄ − η0) then date 2

lending by the investor will be sufficiently large so that there will be no gains from trade in

the interbank market. Recall that in case 3 we have that rR = r∗D + cB/2.

For an arbitrary h < 2η̄ the expected return to lending h > 0 in period 2, E(rR|h), is

given by

E(rR|h) =
1

η̄
{h

2
r∗D +

∫ min{η̄,h/2+η0}

h/2

v′(
X + h

2
− η)dη + [η̄ − h/2− η0]+(r∗D +

1

2
cB)}.

Note that E(rR) can be treated as a function of h because once h is chosen, the equilibrium

conditions for period 2 determine E(rR|h). When the investor deposits all of his resources

at the banks in period 1, the expected return on a marginal period 2 loan is E(rR|h = 0).

Hence if we define c∗B ≡ E(rR|h = 0) − rD then the necessary and sufficient condition for

h > 0 is ch < c∗B. When this condition is met, the equilibrium level of h is simply determined

by E(rR|h)− r∗D = ch.

If 0 < ch < c∗B then the expected trading volume in the interbank market will increase

when excess reserves are reduced from an abundant level to a scarce level. Specifically the

expected interbank trading volume is zero when excess reserves are abundant and are positive

when excess reserves are scarce as long as ch is not too small; if it is too small the equilibrium

value of h can be large enough to prevent any interbank trading. However as indicated in

figure 7 the expected trading volume will decline compared to the pre-crisis period where

h ≡ 0 for two reasons. First expected trading volume will fall because cB has increased due

to recent regulations. An increase in cB (from zero) will decrease trading volumes for any

given η shock. This decline in volume is illustrated in figure 7 as the downward shift in

interbank trade curve from (cB = 0, h = 0) to curve (cB > 0, h = 0). Second an increase in

the supply of loans h in period 2 by the investor will further reduce interbank trade volume

for any given cB and η. This decline in volume is illustrated in figure 7 as the downward

shift in interbank trade curve from (cB > 0, h = 0) to curve (cB > 0, h > 0).
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Figure 7: interbank volume under different conditions.

5.4.2 Fixed cost

Suppose a public good-type infrastructure is needed to facilitate date 2 investor loans to

banks. One can think of the public good as a trading platform or a set of legal contracts

that allow the investor to lend freely in period 2. Once the public good is constructed at

cost Ch it is costless to use.

If the public good is constructed then the investor’s outcome is identical to the case where

the marginal cost of a period 2 loan is zero. In that situation the allocation of excess reserves

at the end of period 2 is equal to z1 = z2 = X/2 and the deposit and period 2 borrowing

rates are equal, r∗D = rR = v′(X/2). The investor holds back sufficient resources equal to at

least 2η̄ to ensure that banks’ holdings of excess reserves can be equalized for any η shock.

In this situation the interbank market shuts down.

If the public good is not constructed then the outcome is identical to the baseline model

where h ≡ 0. In particular in period 2 if η1 ∈ (0, η0) then y1 = y2 = 0 and no additional

balance sheet costs due to interbank trades are incurred; as before η0 ≡ cB/(2s) is the

minimal shock necessary for an interbank trade to happen. If η1 ∈ (η0, η̄) then −y1 = y2 > 0,

additional balance sheet costs equal to −y1cb will be incurred by the banking sector and end

of period 2 excess reserve holdings will be z1 = X/2 + η0 and z2 = X/2− η0.

Collectively the banks and the investor have an incentive to incur the cost of providing

the public good if the surplus generated by late investor loans exceeds its cost. For simplicity

we assume that the public good is constructed if the surplus exceeds the cost. Conceptually
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Figure 8: illustration of surplus.

the surplus is the sum of the benefits associated with costless period 2 trades compared to

the baseline model. There are two components to this surplus. The first is the balance

sheet cost savings from replacing interbank trades with non-bank lending. The second is the

additional trades that take place via period 2 loans that equalize the two banks’ marginal

values for reserves.

The ex post surplus is a function of η1. If η1 ∈ (0, η0) then the interbank market is

inactive in the baseline model and the surplus comes from equalizing the marginal values for

reserves between the two borrowing banks. The surplus generated by date 2 lending for this

case is illustrated in figure 8: It is the sum of the areas of the two triangles. More formally

the ex post surplus generated by letting the investor lend to banks in period 2 without any

extra cost, S(η1), is

S(η1) =

∫ η1

0

[[v′(
X

2
− η)− r∗D] + [r∗D − v′(

X

2
+ η)]]dη

=

∫ η1

0

[v′(
X

2
− η)− v′(X

2
+ η)]dη

=

∫ η1

0

2sηdη

= sη2
1.

If instead η1 ∈ (η0, η̄) then the surplus is augmented by the elimination of balance sheet

costs that would have been generated by interbank trading in the baseline model. More

formally the surplus S(η1) is

S(η1) = S(η0) + cB(η1 − η0).
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The first term reflects the increase in efficiency associated with period 2 loans equating banks’

marginal excess reserve valuations and the second term reflects the reduction in balance sheet

costs associated with interbank trading. Suppose that the Fed reduces excess reserves from

an abundent level to a scarce level. The expected total surplus E[S] associated with any

level of excess reserves that are scarce is given by

E[S] =
1

η̄

∫ η̄

0

S(η)dη.

The public good infrastructure will be undertaken if E[S] > Ch. An implication of E[S] > Ch

is that the interbank market is inactive, i.e., it effectively shuts down.

5.5 Future path of money markets

To explore how money markets may evolve in response to possible draining of excess

reserves, we perform a simple exercise. We extend the equilibrium analysis to all possible

values of excess reserves X. In particular, we imagine that the Fed reduces excess reserves

from abundant to scarce. We then document the volumes of interbank trade, period 2 non-

bank lending and periods 1 and 2 lending rates at each level of excess reserves that is between

abundant to scarce. We do this for three scenarios regarding the cost of period 2 lending by

the investor. In the first scenario we assume that the cost of period 2 lending is prohibitive;

in the second we assume that there is only a finite, non-prohibitive marginal cost to period

2 lending; and in the third we assume that there is zero marginal cost but a non-prohibitive

fixed cost to period 2 lending. Here we provide the basic intuition behind the results and

relegate the formal analysis to the appendix.

We first consider the baseline case where the cost associated with investor period 2 loans

is prohibitive (meaning that the investor never lends to banks in period 2). Intuitively there

are four qualitatively different regions of excess reserves per bank as in illustraged in figure

9:

1. X/2 ∈ [ν̄ + η̄,∞): Excess reserves are abundant. In equilibrium rD = rE − cB and

interbank trade volume is zero.

2. X/2 ∈ [ν̄ + η̄ − cB/s, ν̄ + η̄): If η1 is sufficiently large, then X/2 − η1 < ν̄ + η̄ and

the marginal value of reserves for bank 2 exceeds rE − cB. However by construction

the marginal value is always less than rE and therefore there is no interbank trade. In
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particular, highest possible marginal valuation of excess reserves for a borrower in the

interval is always less than v′(ν̄ − cB/s) = rE. Since the marginal value of borrowing

in period 2 exceeds rE− cB for some η shocks, the date 1 deposit rate rD—which is the

expected marginal value of borrowing in period 2—exceeds rE − cB and is decreasing

in aggregate excess reserves.

3. X/2 ∈ [ν̄−cB/(2s), ν̄+ η̄−cB/s): Since v′(ν̄−cB/s) = rE, there exists η1 < η̄ such that

v′(X/2−η1) > rE which implies that expected interbank trade volume will be positive.

The interbank rate will never exceed rE since, by construction, v′(ν̄−cB/(2s))+cB/2 =

rE. Hence the interbank rate is equal to rE for all shocks η1 that generate interbank

trading volume. The date 1 deposit rate, rD, is decreasing in aggregate excess reserves.

4. X/2 ∈ [0, ν̄ − cB/(2s)): Qualitatively speaking, rates and volumes in this region cor-

respond to the baseline model when excess reserves are assumed to be scarce. In

particular, rD = v′(X/2) and rR = v′(X/2) + cB.

The equilibrium in case 4 is characterized by the same equations as the baseline equilib-

rium in section 3. Assuming that η̄ > cB/(2s), the constraints on excess reserves in case 4

is less restrictive than our scarcity assumption under definition 2, −ν̄ + η̄ ≤ X/2 ≤ ν̄ − η̄.

Hence, we can relax the definition of scarcity to be −ν̄ + cB/(2s) ≤ X/2 ≤ ν̄ − cB/(2s).

Note that we have implicitly assumed that η̄ ≥ cB/(2s) throughout the paper; otherwise the

volume of interbank trade would be zero for any η realization since the marginal balance

sheet cost cB were ‘too high.’

Next we consider the case where there is a constant, non-prohibitive marginal cost as-

sociated with period 2 investor lending. It is useful to generalize our definition of c∗b from

section 5.4.1. Specifically, define c̄h(X) ≡ E(rR|h = 0, X)− rD. Notice that c̄h(X) = c∗b for

X/2 ≤ ν̄ − cB/(2s), i.e., when excess reserves are scarce. If excess reserves are abundant

then equilibrium borrowing rate is equal to rE − cB for both period 1 and period 2 lending

for any given level of h. As a result the investor is not willing to lend in period 2 if the

marginal cost is positve. Hence c̄h(X) = 0 for X/2 ≥ ν̄ + η̄.

When ν̄ − cB/(2s) ≤ X/2 ≤ ν̄ + η̄, c̄h(X) is a decreasing function of X. Intuitively, for

any given η1 the difference rR(η1) − rD decreases as X increases. When excess reserves are

between scarce and abundant, the the investor will lend in period 2 only if marginal costs

are characterized by ch(X) < ch. Figure 10 illustrates an example where period 2 lending by
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Figure 9: future path with no late non-bank lending

the investor occurs for X ≤ X̂, where c̄h(X̂) = ch and ν̄ − cB/(2s) ≤ X̂/2 < ν̄ + η̄ − cB/s.
When X > X̂, h = 0 and the equilibrium is described by cases 1, 2 and 3 of the previous

example. When ν̄−cB/(2s) < X/2 < X̂/2 two interesting results stand out. First interbank

volume remains constant as excess reserves are reduced. When excess reserves decrease banks

are more willing to borrow in period 2 but now the higher demand for borrowing is met by

increased period 2 lending by the investor rather than by increased interbank trading. This

is in contrast to the above baseline example where interbank trading volume increases as

excess reserves decrease in this region. Second for any given X < X̂ the period 2 borrowing

rate is not constant at rE as in the above baseline example but varies with the magnitude

of the η payment shock. In particular rR will be higher when there is a larger demand for

period 2 borrowing and this occurs with larger |ηi|’s.
Notice in figure 10 that interbank trading volume is dramatically reduced compared to

the baseline model (where period 2 lending by the investor is zero). Clearly the magnitude

of the reduction in interbank trading volume, as well as the size of period 2 lending by the

investor, depends critically on the value of ch.

Finally consider the case where the investor can lend in period 2 if a fixed cost is under-

taken, e. g., for a public good infrastructure required to facilitate period 2 loans. The fixed

cost will be undertaken if the total expected surplus to the private players, the banks and

the investor, associated with the period 2 loans E(S) exceeds the cost Ch of infrastructure.
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Figure 10: future path with a constant marginal cost.

We define a critical value of fixed cost C∗h where

C∗h = E(S|0 < X/2 < ν̄ − cB/(2s)).

The fixed cost C∗h is such that the expected surplus of period 2 loans is zero when excess

reserves are scarce.32 If Ch > C∗h then the infrastructure will never be undertaken as the

cost will always be larger than the surplus.

Now suppose that 0 < Ch < C∗h. Then there exists a critical level of aggregate excess

reserves, ν̄ − cB/(2s) < X∗/2 < ν̄ + η̄, such that Ch = E(S|X = X∗). Therefore, for all

X > X∗ the fixed cost of public good infrastructure is not undertaken and the equilibrium

outcomes are identical to the baseline case. If however X ≤ X∗, then the fixed cost is

incurred and the public good infrastructure is constructed. In this situation the interbank

trading volume is always zero and h is always large enough to make rD = rR = v′(X/2),

for example h = 2η̄; see figure 11. In contrast to the case where period 2 lending entails a

constant marginal cost, the interbank market completely shuts down.

The foregoing discussion is based on the idea that the expected surplus is decreasing in the

level of excess reserves and becomes zero when excess reserves are abundant. The intuition

behind this relationship is clear: Banks have less need to borrow in period 2 when they hold

larger excess reserves and, as a result, get less surplus from the ability to borrow from the

investor. The negative equilibrium relationship between expected surplus and excess reserves

is demonstrated in the appendix.

32The surplus is identical for all values of excess reserves that are scarce. Note that we are now using the
less restrictive definition of scarce excess reserves.
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Figure 11: future path with a fixed cost.

The price and quantity responses associated with a reserve draining depend on the nature

of costs faced by non-banks that provide loans to banks which substitute for interbank

borrowing.33 Figures 9, 10, and 11 describe outcomes when these costs are prohibitive,

marginal and fixed, respectively. The response of interbank trading volumes and prices to

decreases in excess reserves depend critically on the magnitude and the nature of costs that

(institutional) lenders to banks face.

6 Conclusion

We study how interbank trading volumes and rates are affected by the size of aggregate

excess reserves supplied to the banking sector and by recent regulations. Our analysis indi-

cates that the new regulations increase the cost of interbank trading which, holding all else

constant, results in decreased trading volume. These regulations also provide an incentive

for non-banks to compete with the interbank market by lending reserves directly to banks

even though there may be direct costs associated with competition. As a result interbank

trading volumes may not return to pre-crisis levels even if the Fed returns to a monetary im-

plementation framework that is based on scarce excess reserves. This could pose a potential

problem since that framework partly relies on the existence of an active interbank market.

33In practice these non-banks can be institutions such as Federal Home Loan Banks, money market funds
and corporate treasuries.
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7 Appendix

This appendix formalizes some of the ideas and arguments presented in the main text.

7.1 Formal definition of the equilibrium

Here we define the equilibrium of our model. We define all choice variables and prices as

functions of η1 over the domain η1 ∈ [−η̄, η̄].

The equilibrium is defined by a set of prices rD and rR(η1), investor’s choice h, and the

two banks’ choices xi, yi(η1), and hi(η1), i = 1, 2 that clear market when the investor and

the two banks maximize profits. In particular, h solves

max
0≤h≤M

(M − h)rD + E[h(rR(η1)− ch)].

Taking xi as given, yi(η1) and hi(η1) solve for each η1

max
yi,hi
−(yi + hi)rR(η1)− [−yi]+cB + v(xi + ηi + yi + hi).

Note that the function v is defined in the main text and we have omitted terms that enter

the bank’s final payoff but do not affect the choice of yi or hi. To formulate bank i’s choice

of xi define a function w(xi, ηi, rR) as

w(xi, ηi, rR) = max
yi,hi
−(yi + hi)rR − [−yi]+cB + v(xi + ηi + yi + hi).

Then xi solves

max
xi
−xirD + E[w(xi, ηi, rR)].

The market clearing conditions are

x1 + x2 = M − h−R1 −R2,

y1(η1) + y2(η1) = 0,

h1(η1) + h2(η1) = h

for all η1.

7.2 Proofs for section 3

Proof of lemma 1: The lemma says that in the baseline model of section 3, y1 ≤ 0 if

x1 + η1 ≥ x2 + η2. Suppose instead that y1 > 0. Then, bank 1’s profit-maximizing implies

v(x1 + η1 + y1)− y1rR ≥ v(x1 + η1).

v(x1 + η1 + y1)− v(x1 + η1) ≥ y1rR.
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In equilibrium y2 = −y1. Therefore, bank 2’s profit-maximizing implies

v(x2 + η2 − y1) + y1rR − y1cB ≥ v(x2 + η2).

v(x2 + η2)− v(x2 + η2 − y1) ≤ y1rR − y1cB.

Since x1 + η1 ≥ x2 + η2 and v is concave, we have v(x2 + η2)− v(x2 + η2− y1) ≥ v(x1 + η1 +

y1)− v(x1 + η1). All these inequalities together imply that

y1rR ≤ v(x2 + η2)− v(x2 + η2 − y1) ≤ y1rR − y1cB,

a contradiction.

Proof of lemma 2: The lemma says that if x1 +η1 ≥ x2 +η2 then x1 +η1 +y1 ≥ x2 +η2 +y2 =

x2 +η2−y1. If y1 = 0, then the lemma holds. Suppose that y1 < 0 and contrary to the lemma

x1 + η1 + y1 < x2 + η2− y1. Since v is concave and v′ continuous, bank 1’s profit-maximizing

implies

v′(x1 + η1 + y1) ≤ rR − cB.

Bank 2’s profit-maximizing implies

v′(x2 + η2 − y1) ≥ rR.

Since x1 + η1 + y1 < x2 + η2− y1, we have that v′(x1 + η1 + y1) ≥ v′(x2 + η2− y1). Therefore

the profit-maximizing conditions imply

rR ≤ v′(x2 + η2 − y1) ≤ rR − cB,

a contradiction.

Concavity of u(xi): We define u(xi) = Ew(xi, ηi, rR), where the expectation is taken over all

possible realizations of η1. To show that u is concave it is enough to show that w(xi, ηi, rR)

is concave with respect to xi for any fixed ηi and rR(ηi). For simplicity, write w(xi) as a

function of only xi. Recall that

w(xi) = max
yi

[−yirR − [−yi]+cB + v(xi + ηi + yi)].

Since v is concave, we can apply the envelope property to show that w is concave. Formally,

let a and b (a < b) such that v′(a) = rR and v′(b) = rR − cB. For xi < a − ηi, the optimal

choice of yi is yi = a− ηi − xi. Therefore, w(xi) = (xi + ηi − a)rR + v(a), and dw/dx = rR.

Similar arguments show that for xi > b− ηi, dw/dx = rR − cB.
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For a − ηi < xi < b − ηi, the optimal choice of yi is simply yi = 0, and dw/dx = v′(xi),

which is decreasing in xi and is between rR − cB and rR. Therefore, w(xi) is concave, and

thus, u(xi) is concave.

If v′(a) < rR for all a we can simply define a = −∞. Similarly we can define b = ∞
if v′(b) > rR − cB for all b. Note that it is not possible in equilibrium that v′(a) > rR for

all a or v′(b) < rR − cB for all b because either condition makes both banks borrow or lend

infinite amounts of reserves violating market clearing conditions. If v′(a) = rR for multiple

values of a we can pick any a and the arguments will still work. Similarly we can pick any b

if v′(b) = rR − cB for multiple values of b.

Proof of lemma 3: This lemma effectively characterizes the equilibrium. It states that

u′(xi) = v′(xi) = v′(
X

2
) = rD.

This equation determines xi. Once xi is determined we can solve for period 2 borrowing yi

and rate rR and characterize the equilibrium fully. We will also show that u(xi) does not

depend on i in equilibrium as part of the proof.

First we show x1 = x2 = X/2 in equilibrium if excess reserves are scarce under definition

2. Suppose that this is not the case. Then without loss of generality we can assume that

there exists an equilibrium in which x1 > x2. Furthermore let rR(η1) be the interbank rate

in that equilibrium. For any η1 such that bank 1 lends a positive amount to bank 2, y1 < 0,

the following holds:

v′(x1 + η1 + y1) + cB = v′(x2 − η1 − y1) = rR(η1).

Note that the solution x = b to the equation v′(x) + cB = v′(X −x) is unique. First it exists

because the v′(x) decreases from rW to rE − cB as x increases and rW − (rE − cB) > cB. If

the latter inequality is not satisfied then y1 = 0 for all η1 and the interbank market shuts

down. Second it is unique because for any solution x to the equation, x or X − x is on the

steep part of v′, i.e., where v′′(x) < 0.

Since x = x1 + η1 + y1 is also a solution to v′(x) + cB = v′(X − x) it follows that

x1 + η1 + y1 = b. Therefore for any η1 such that bank 1 lends a positive amount to bank 2,

rR(η1) is the same, denoted r0 ≡ v′(b) + cB. Similarly for any η1 such that bank 1 borrows

a positive amount from bank 2, rR(η1) = r0.

It can be seen from the previous discussion that if x1 > b − η1 then y1 < 0 and

∂w(x1, η1)/∂x1 = r0 − cB in equilibrium: rR(η1) must be equal to r0 for such η1 in equi-
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librium. Also, if x1 < a − η1 where a ≡ X − b, then y1 > 0 and ∂w(x1, η1)/∂x1 = r0 in

equilibrium. Finally, if b − η1 < x1 < a − η1, then y1 = 0 and ∂w(x1, η1)/∂x1 = v′(x1 + η1)

in equilibrium. These conditions hold for x2 as well due to the symmetry between the two

banks.

Recall that u1(x1) = Ew(x1, η1). Therefore u′1(x) = E[∂w(x1, η1)/∂x1]. We can expand

this equation using ∂w(x1, η1)/∂x1 derived earlier,

u′1(x) =

η̄∫
−η̄

h(v′(x1 + η))g(η)dη,

where g(η) is the probability density function of η and h(z) is a function such that h(z) = r0

if z > r0, h(z) = r0 − cB if z < r0 − cB, and h(z) = z otherwise. Note that the value of

u′1(x1) depends only on the distribution of x1 + η1. Since η2 has the same distribution as η1,

u′2(x2) = u′1(x2). Therefore in equilibrium ui(xi) does not depend on the label i and we can

drop the dependence on i, simply writing it as u(xi).

Let a′ be the supremum of the set of x such that v′(x) = r0, and let b′ be the infimum of

the set of x such that v′(x) = r0 − cB. Clearly a′ ≥ a and b′ ≤ b. It is not always the case

that a′ = a or b′ = b because a or b can fall on the flat region of v′, i.e., where v′′(x) = 0.

Note that h(v′(x+ η)) is strictly decreasing if a′ < x+ η < b′, flat at r0 if x+ η < a′, and flat

at r0 − cB if x+ η > b′. Therefore, u′′(x) < 0 if a′ − η̄ < x < b′ + η̄ and u′′(x) = 0 otherwise.

In an equilibrium u′(x1) = u′(x2). Furthermore u′(x) is monotonically decreasing which

means that u′(x) = u′(x1) for any x2 ≤ x ≤ x1. At the same time we have been assuming

that x1 > x2. Therefore u′(x1) = u′(x2) can happen only if x1 ≤ a′ − η̄ or x2 ≥ b′ + η̄. If

x1 ≤ a′ − η̄ then x1 + x2 < 2(a′ − η̄). Note that a < X/2 by construction and therefore

if a = a′ then x1 + x2 < X/2 violating a market clearing condition. If a < a′ then a′ is

the upper limit of the flat region v′(x) = rW and a′ = −ν̄. Thus x1 + x2 < 2(−ν̄ − η̄)

contradicting assumed scarcity under definition 2.

Similarly we can show that x2 ≥ b′ + η̄ leads to a contradiction. Therefore we have

established x1 = x2 in equilibrium. Note that the scarcity of excess reserves has been used

only to contradict x1 + x2 < 2(−ν̄ − η̄) and x1 + x2 > 2(ν̄ + η̄). This means that to have

excess reserves equally distributed between the two banks, x1 = x2 = X/2, we only need to

assume −ν̄ − η̄ < X/2 < ν̄ + η̄; excess reserves do not need to be scarce but only need not

to be ‘really’ scarce or abundant.

We now suppose that x1 = x2 = X/2 and show u′(x1) = v′(x1). Given the scarcity
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assumption −ν̄ + η̄ ≤ X/2 ≤ ν̄ − η̄, we have that v′(x1 + η) is strictly decreasing over

−η̄ ≤ η ≤ η̄. If a ≤ x1− η̄, then y1 = y2 = 0 for every η1, and v′(x1 +η1) lies strictly between

r0 − cB and r0, except possibly at the endpoints η1 = ±η̄. Therefore

u′(x1) =

η̄∫
−η̄

h(v′(x1 + η))g(η)dη =

η̄∫
−η̄

v′(x1 + η)g(η)dη = v′(x1).

The last equality follows from the linearity of v′ and the symmetry of η’s distribution.

If a > x1 − η̄ ≥ ν̄, then a lies on the steep part of v(x). Furthermore this implies that

b = X − a < x1 + η̄ and b lies on the steep part of v(x) as well. Therefore h(v′(x1 + η)) = r0

if η ≤ a− x1, h(v′(x1 + η)) = r0 − cB if η ≥ b− x1 = −(a− x1), and h(v′(x1 + η)) linearly

decreases from r0 to r0−cB over η ∈ [a−x1,−(a−x1)]. This symmetric shape of h(v′(x1+η))

implies that u′(x1) = v′(x1).

Strict concavity of u(xi): From the proof of lemma 3 we can see that with scarce excess

reserves, u(x1) is strictly concave around the equilibrium value of x1, defined under the equi-

librium functional form of rR(η1). It is sufficient to show that there is a positive probability

such that (∂2/∂x2
1)w(x1, η1) is strictly negative. Using earlier notation this partial derivative

is strictly negative if a < x1 + η1 < b. We have seen in the proof of the lemma that this

inequality holds with a positive probability. Since x1 = x2 this result applies to x2 as well.

Relationship between definitions 1 and 2: We have seen that if reserves are scarce under

definition 2, then xi = X/2 in equilibrium and thus −ν̄+ η̄ ≤ xi ≤ ν̄− η̄. Therefore reserves

are scarce under definition 1 as well in equilibrium.

7.3 Model with large excess reserves

This section supports the discussion on post-crisis (section 4.2) and future (section 5.5)

money markets. We solve the model with reserves no longer scarce under definition 2,

−ν̄ + η̄ ≤ X/2 ≤ ν̄ − η̄. In doing so we can rely on many of previous results for scarce

reserves and modify them as required.

First we solve the model for abundant excess reserves X/2 ≥ ν̄ + η̄. This condition

implies that there are enough reserves for both banks to always end up with strictly positive

excess reserves at the end of period 3. Since x1 + x2 = X ≥ 2(ν̄ + η̄), we assume x1 ≥
ν̄ + η̄ ≥ x2 without loss of generality. For any η1 such that there is a nontrivial interbank

trade, bank 1 lends and never borrows. Bank 1 does not borrow because it borrows only if
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rR ≤ v′(x1 + η1) = rE − cB. However bank 2 will lend only if rR ≥ v′(x2 + η2) + cB ≥ rE

which implies that bank 1 will never borrow in equilibrium.

If bank 1 lends, y1 < 0, the interbank rate rR is determined by rR = v′(x) + cB, where x

is the solution to v′(x) + cB = v′(X − x) as discussed in the proof of lemma 3. This implies

that x ≥ X/2 ≥ ν̄ + η̄ and thus v′(x) = rE − cB and rR = rE. Note that given this rR bank

1 chooses y1 ≤ 0 so that v′(x1 + η1 + y1) + cB ≤ rR = rE. Since v′ is bounded from below by

rE−cB it simply means that v′(x1 +η1 +y1) = rE−cB for all η1. Therefore u′1(x1) = rE−cB
as well. Also note that rR = rE is consistent with no trade, y1 = 0, so in equilibrium rR = rE

is a constant, ui(xi) does not depend on i and we can simply write it as u(xi).

Equilibrium requires that u′(x2) = u′(x1) = rE − cB. This implies that bank 2 always

has enough excess reserves at the beginning of period 2 in the sense that x2 + η2 ≥ ν̄. If

x2 + η2 < ν̄ with a positive probability then u′(x2) > rE − cB with a positive probability.

The reason is that with x2 + η2 < ν̄, the marginal value of reserves to bank 2 is either

v′(x2 + η2) > rE − cB or the interbank rate, rR = rE, and is greater than rE − cB in either

case. Therefore x2 ≥ ν̄ + η̄.

We have shown that in equilibrium, x1, x2 ≥ ν̄+ η̄. Also we can see that any such x1 and

x2 constitute an equilibrium as long as x1 +x2 = X. Since xi+ηi ≥ ν̄ for both banks, there is

no interbank trade in period 2, and the interbank rate is indeterminate as rE−cB ≤ rR ≤ rE.

The deposit rate is simply determined as rD = u′(x1) = u′(x2) = rE − cB.

Next we characterize the model in the intermediate case with excess reserves between

ν̄ − η̄ and ν̄ + η̄. Let s be the slope of v′ in its steep part. We assume that η̄ > cB/(2s);

otherwise there is no interbank trading under any parameters. For any level of total excess

reserves X that is not abundant or ‘really’ scarce, −ν̄ − η̄ < X/2 < ν̄ + η̄, we have x1 = x2.

This has been discussed in the proof of lemma 3.

If ν̄ + η̄ − cB/s ≤ X/2 < ν̄ + η̄ there is no interbank trade because the difference in v′

after η shocks between the two banks is always less than cB. However note that v′(xi + ηi)

can rise above rE − cB for small enough negative shocks such that ηi < −η̄ + cB/s. Thus

rD > rE − cB. Also it is obvious that rD is decreasing in X because v′ is decreasing.

If ν̄ − cB/(2s) < X/2 < ν̄ + η̄ − cB/s then the volume of interbank trade increases as X

decreases. Let us assume η1 ≥ 0 without loss of generality making bank 1 as the potential

lender. There will be a positive interbank volume if and only if x2−η1 < ν̄−cB/s. The volume

of trade −y1 is determined by v′(x2− η1− y1) = v′(x1 + η1 + y1). Since x1 + x2 > 2ν̄ − cB/s
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it is always the case that x2 − η1 − y1 = ν̄ − cB/s and x1 + η1 + y1 > ν̄. Therefore rR = rE.

At X/2 = ν̄ − cB/(2s) the banks would act as if excess reserves were scarce. The banks

do not care about that v′ is flat if ηi is greater than cB/(2s) because any extra excess reserves

beyond X/2 + cB/(2s) will be lent to the other bank in the interbank market. Therefore we

can broaden definition 2 as −ν̄ + cB/(2s) ≤ X/2 ≤ ν̄ − cB/(2s). With X/2 = ν̄ − cB/(2s)
the rates are rD = rE − cB/2 and rR = rE. Any further reduction in excess reserves will

increase rD and rR as in the scarce excess reserves case.

7.4 Model with constant marginal cost for late deposits

We first describe how the equilibrium can be derived, supplementing sections 5.1, 5.2,

5.3, and 5.4.1. Then we explain how the equilibrium can be derived for different levels of

excess reserves, supplementing 5.5.

We solve for the equilibrium in the main text assuming x1 = x2. Intuitively this makes

sense; it can be proved by following steps similar to those in the proof of lemma 3, which

we now explain. We assume η > cB/(2s) to ensure that there is some interbank trade.

Otherwise the model is less interesting but the equilibrium can still be characterized in the

essentially same way. Also we assume ch > 0. Otherwise the model becomes much simpler

because in equilibrium the investor will lend enough in period 2 so that the marginal values

of the two banks are always the same. In that case there is no need for x1 = x2 as long as

h is sufficiently large to ensure that both banks end up with X/2 reserves after the η shock

and period 2 lending.

To solve for equilibrium we fix the value of h and look for an equilibrium consistent with

that value. In equilibrium h and X determine rR(η1) and v′(xi + ηi + yi + hi) in period 2.

These can be used to determine rD in period 1. Therefore for a given X we can determine

E[rR(η1)] − rD as a function of h. Then we can find an equilibrium by finding the value of

h such that E[rR(η1)]− rD = ch.

First let us assume h = 0 and solve for outcomes in the period 2 market. This can be

seen by just following arguments used in the proof of lemma 3 which is possible because

h = 0. Following an earlier notation let x = b be the solution to v′(x) + cB = v′(X − x).

Then obviously b > X/2.

If η1 < X/2− b or η1 > b−X/2 there is a nonzero interbank trade and rR = v′(X − b) =

v′(X) + cB/2. If X/2 − b ≤ η1 ≤ b − X/2 then rR = max{v′(X/2 + ηi)|i = 1, 2}. Here
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Figure 12: marginal values and interbank rate.

we treat rR as uniquely determined even if h = 0; this is technically incorrect because we

have indeterminancy in rR as in the baseline model. However we need to use this formula

for rR to evaluate the investor’s willingness to pay the delay cost, E(rR) − rD, at h = 0. If

we imagine that h is very small instead of being zero, the existence of non-bank lending in

period 2 pins down the rate in period 2 as determined by this previous formula.

E[rR] is generally above rD because E[rR] is the expected marginal value of the bank

with the higher marginal value in period 2 while rD is the expected marginal value of a given

bank. Figure 12 illustrates this graphically. The difference E[rR] − rD can be computed

directly as the area between rR(η1) and rD:

E[rR]− rD =
cB
2

[1− 1

4

cB
sη̄

],

where s = (rW − rE + cB)/(2ν̄) is the slope of v′ over its steep part. Therefore, for any ch

greater than this value of E[rR]− rD, the equilibrium level of the investor’s period 2 lending

is zero: h = 0.

Let us consider a more general case with h > 0. We can solve for the interbank rate rR as

functions of xi+ηi. If the difference in reserves is small enough, |(x1+η1)−(x2+η2)| ≤ h, then

h alone can equalize marginal values between the two banks, x1+η1+h1 = x2+η2+h2 = X/2

and y1 = y2 = 0. In this case rR = v′(X/2). If |(x1 + η1) − (x2 + η2)| > h then there are

two possibilities. First h may be enough to reduce the difference in marginal values to under

cB, in the sense that |(x1 + η1) − (x2 + η2)| − h ≤ s−1cB. If this happens, the bank i with

smaller xi + ηi borrows all of h so that rR = v′(xi + ηi + h), and there is no interbank trade

y1 = y2 = 0. Otherwise |(x1 +η1)− (x2 +η2)|−h > s−1cB and there is a nontrivial interbank
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trade in the equilibrium. In this case the bank i with smaller xi + ηi borrows all of h, and at

the same time also borrows in the interbank market, yi > 0, so that xi + ηi +h+ yi = X − b.
Using this characterization we can show that x1 = x2 following arguments similar to those

in used in proving lemma 3 for the baseline model. Suppose that x1 > x2 in equilibrium.

We can compute w′ ≡ ∂w(x1, η1, rR)/∂x1 as a function of η1.

Following the notation used in the proof of 3, we define a = X − b, b′ = inf{z|v′(z) =

v′(b)} and a′ = sup{z|v′(z) = v′(a)}. There are five distinct intervals of η1 within which w′

has distinct expressions:

1. If b′ − x1 ≤ η1 then w′ = r0 − cB where r0 ≡ v′(b) + cB.

2. If X/2− x1 ≤ η1 ≤ b′ − x1 then w′ = v′(x1 + η1).

3. If X/2− x1 − h ≤ η1 ≤ X/2− x1 then w′ = v′(X/2).

4. If a′ − x1 − h ≤ η1 ≤ X/2− x1 − h then w′ = v′(x1 + η1 + h).

5. If η1 ≤ a′ − x1 − h then w′ = r0.

Note that w′ is decreasing in x1. Also note that ∂w(x2, η2, rR)/∂x2 has the same form as

∂w(x1, η1, rR)/∂x1 if we replace x1 and η1 by x2 and η2 in the earlier characterization of the

latter. The equilibrium requires

η̄∫
−η̄

∂

∂x1

w(x1, η, rR(η))g(η)dη =

η̄∫
−η̄

∂

∂x2

w(x2, η, rR(−η))g(η)dη, (26)

where g(η) is the probability density function for ηi. Given the form of w′ and the assumption

x1 > x2, this equation holds if and only if x1, x2, h and X are such that η1 and η2 are both

always in intervals 1, 3 or 5 so that ∂w/∂x1 and ∂w/∂x2 are always the same constant; w′

is strictly decreasing in intervals 2 and 4 so η1 and η2 must never touch these intervals to

make equation (26) hold.

Suppose that both η1 and η2 always end up in interval 1. Then the marginal values of

both banks after period 2 market are always r0 − cB, making rR = rD = r0 − cB. Therefore

given ch > 0 it must be h = 0 which is a contradiction. The same can be said of cases where

both η1 and η2 always end up in intervals 3 or 5.

Therefore the necessary condition for equilibrium, equation (26), cannot hold if x1 > x2.

Similarly x2 > x1 is not allowed in equilibrium and thus x1 = x2.
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Figure 13: marginal values and interbank rate with h > 0.

As discusssed in the main text even with h > 0 the expected value of v′(xi+ηi+hi+yi) is

still v′(X/2) so rD does not change with h. However, E[rR] decreases as h increases because

h introduces a flat part of zero of length h around η1 = 0. Figure 13 illustrates this. The

figure also makes it clear that for h ≥ 2η̄, the difference E[rR]−rD is zero. Intuitively h ≥ 2η̄

is enough to remove the difference in excess reserves between the two banks in period 2 and

completely offset η shocks.

7.4.1 When excess reserves are not scarce

For a given level of excess reserves, allowing period 2 lending by the investor weakly

decreases interbank volume because it weakly reduces the difference in marginal values pre-

interbank trading between the two banks under any realization of ηi. This can be seen from

figure 13 where the flat sections of v′ near the lower and upper end of η1 become smaller due

to h > 0.

A less obvious fact is that even with some period 2 lending by the investor, interbank

trade volume increases monotonically as reserves are drained. This can be seen formally by

solving the model for different values of X as discussed in section 5.5.

As in the baseline model, if excess reserves are abundant, X/2 ≥ ν̄ + η̄, there is no

interbank trade or period 2 lending by the investor and rD = rE − cB.

To describe how the equilibrium changes as X/2 decreases within the intermediate region,

ν̄ − η̄ ≤ X/2 ≤ ν̄ + η̄, we first define f(X) ≡ E[rR] − rD with ch = ∞ as a function of

total excess reserves. In other words it is the expected per-unit revenue from lending an
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infinitesimal amount of fund in period 2 for the investor. Generally rR(η1) is indeterminate

if η1 is such that there is no interbank trade. In such a case rR is defined as the interest rate

that would prevail with an infinitely small but nonzero h or equivalently the marginal value

v′ of the bank with fewer excess reserves.

Using our prior analysis of the benchmark model we can show that f(X) is a decreasing

function. We skip the computational steps here but the result is intuitive: As excess reserves

decrease the demand for borrowing in period 2 increases thus increasing the willingness to

pay for a period 2 loan.

For the purpose of illustration we assume that f(X̂) = ch for some positive constant

2ν̄ < X̂ < 2ν̄ + 2η̄ − cB/s. Then f(X) < ch for X = 2(ν̄ + η̄ − cB/s) > X̂. This means that

some level of interbank activity will come back before the investor decides to lend in period

2.

As discussed previously, for ν̄ + η̄ − cB/s ≤ X/2 ≤ ν̄ + η̄ there is no interbank trade but

rD strictly increases from rE − cB as X/2 decreases from the upper bound.

For X̂/2 ≤ X/2 ≤ ν̄ + η̄ − cB/s there is no period 2 lending by the investor and the

equilibrium is the same as in the model with ch = ∞: As total excess reserves decrease,

interbank lending volume increases, rR = rE and rD increases.

For ν̄ ≤ X/2 ≤ X̂/2 the equilibrium outcomes are constant except that period 2 late

lending by the investor increases as excess reserves decrease. To maintain E[rR]− rD = ch,

the investor sets the supply of period 2 lending h so that h = X̂ −X. Computing the shape

of w′ shows that this makes the shape of w′ as a function of ηi invariant for any given X and

corresponding h = X̂ −X.

Finally over ν̄ − cB/(2s) ≤ X/2 ≤ ν̄, as excess reserves decline equlibrium outcomes no

longer stay constant. The reason is that if X/2 ≤ ν̄ then v′ has a negative slope on both

sides of X/2: On the contrary if X/2 ≥ ν̄ then v′(x) has a negative slope only for some

x < X/2. As X/2 declines over the region ν̄ − cB/(2s) ≤ X/2 ≤ ν̄ the volumes of both

interbank trade and period 2 non-bank lending increase, the lower limit of rR increases from

rE − cB to rE − cB/2, and rD increases to rE − cB/2. The upper limit of rR stays at rE.

For -ν̄ + cB/(2s) ≤ X/2 ≤ ν̄ − cB/(2s), excess reserves can be considered scarce: rD and

the lower and upper limits of rR all increase at the same rate as total excess reserves decline.

The volume of interbank trades and the amount of period 2 lending by the investor stay

constant.
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7.5 Model with fixed cost for late deposits

We compute the total private surplus of allowing the investor to lend in the interbank

market at no cost. The total surplus is defined as the sum of the surplus of the investor

and the two banks. There are two sources of surplus. First it displaces interbank lending

completely, y1 = y2 = 0, and saves balance sheet costs. Second free period 2 lending by

the investor always equalizes the marginal values of the two banks, v′(x1 + η1 + y1 + h1) =

v′(x2 + η2 + y2 + h2). Equalizing marginal values increases surplus by reducing the system-

wide cost of discount window borrowing, caused by the rate penalty rW −rE and the balance

sheet cost cB.

Let S(η1) be the extra surplus from free period 2 lending by the investor, conditional

on η1. If X/2 ≥ ν̄ + η̄ then both banks always end up with v′ = rE − cB even without

any nonbank lending in period 2, and S(η1) is always zero. Therefore, we only consider

−ν̄ − η̄ < X/2 < ν̄ + η̄.

From lemma 3 we know that x1 = x2 = X/2 in equilibrium if the public good is not

constructed. Also there is no interbank trade if |η1| is small enough so that v′(x1 − |η1|) ≤
v′(x1 + |η1|) + cB. Let η0 > 0 be the maximum value of such |η1| which is a function of X.

For |η1| ≤ η0,

S(η1) =

|η1|∫
0

[v′(x1 − η)− v′(x1 + η)]dη.

For |η1| > η0, the surplus from just equalizing marginal values is S(η0). In addition there

is extra surplus from saving balance sheet costs from interbank trades. For |η1| > η0

S(η1) = S(η0) + (|η1| − η0)cB.

Given the shape of v′ it is clear that the expected total surplus E[S(η1)] is a decreasing

function of X. Therefore as reserves are drained it is possible that after a certain amount of

draining, X ≤ X∗ for some X∗, the surplus exceeds the cost Ch and late trading becomes free

for the investor eliminating all interbank trades. If Ch is such that there is some interbank

trading at X = X∗ then there is non-monotonicity in how the volume of interbank trading

responds to a drain of reserves. Similarly and as illustrated by figure 11 there can be non-

monotonicity in the path of the deposit rate rD.
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