Banking on Deposits:
 Maturity Transformation without Interest Rate Risk

Itamar Drechsler ${ }^{1}$ Alexi Savov ${ }^{2}$ Philipp Schnab| ${ }^{2}$
${ }^{1}$ Wharton and NBER ${ }^{2}$ NYU Stern and NBER

ECB Monetary Policy Conference
October 2019

Textbook View of Banking and Maturity Transformation

1. Banks borrow short term (issue deposits), lend long term (make loans, buy securities)

- maturity/duration mismatch
- pay short-term (floating) rate, receive long-term (fixed) rate

2. Earns term premium but creates exposure to interest rates

- a rise in short rate \rightarrow interest expenses go up \rightarrow profits fall
\Rightarrow assets fall relative to liabilities, equity capital depleted
- important at all times, not just in financial crises
- different from run risk, applies to whole balance sheet

3. Seen as an important channel for monetary policy

- "bank balance sheet channel" - idea that Fed impacts banks through their interest rate exposure

Banks' Duration Mismatch

1. Aggregate duration mismatch is about 4 years
\Rightarrow Under textbook view, a 100-bps level shift in rates leads to

- 4 years of 100 -bps lower net income (as \% of assets)
- in PV terms: a 4\% drop in assets \rightarrow a 40% drop in equity since banks are levered 10 to 1 ; stock price drops on impact
- shocks cumulative over time, 100 bps small by historical standards

How Exposed are Bank Stocks to Interest Rates?

1. Regress FF49 industry portfolios on $\Delta 1$-year rate around FOMC days

2. Bank stocks drop by just 2.4% per 100 -bps rate shock ($<40 \%$) - no more exposed than average nonfinancial firm or overall market

Bank Cash Flows and Interest Rates

1. Interest rates have varied widely and persistently over past 60 years

Bank Cash Flows and Interest Rates

1. Interest rates have varied widely and persistently over past 60 years
2. Banks' interest income much smoother, reflecting long-term assets \Rightarrow would suffer frequent and sustained losses if funded at Fed funds rate

Bank Cash Flows and Interest Rates

1. Interest rates have varied widely and persistently over past 60 years
2. Banks' interest income much smoother, reflecting long-term assets \Rightarrow would suffer frequent and sustained losses if funded at Fed funds rate
3. Instead, banks' interest expense much lower and smoother than Fed funds rate, even though liabilities are short-term

Why Is Banks' Interest Expense so Low and Smooth?

In Drechsler, Savov, Schnabl (2017, QJE) we show that:

1. This is due to banks' market power in retail deposit markets
\Rightarrow allows banks to keep deposit rates low even as the short rate rises
2. On average, deposit rates increase by just 40 bps per 100 -bps Fed funds rate increase

- exploit differences in competition across branches of the same bank

3. Deposits represent over 70% of aggregate bank liabilities
\Rightarrow banks' overall interest expense has a low sensitivity to interest rates

Banks' Net Interest Margin (NIM)

1. $\mathrm{NIM}=$ (Interest income - Interest expense)/Assets

2. NIM is uncorrelated with short rate \Rightarrow goes against textbook view

- $\operatorname{corr}(\Delta \mathrm{NIM}, \Delta \mathrm{FF}$ rate $) \approx 0 ; \sigma(\Delta \mathrm{NIM})=0.13 \%$ (annual)

Banks' Net Interest Margin (NIM)

1. $\mathrm{NIM}=$ (Interest income - Interest expense)/Assets

......Fed funds rate —Bank NIM —Treasury portfolio NIM
2. Construct NIM for Treasury portfolio with same duration mismatch as banks (but no deposit market power)

- Treasury portfolio NIM much more sensitive to rates than bank NIM

Banks' Net Interest Margin (NIM) and ROA

1. ROA $=$ NIM + Fee income - Operating costs - Loan losses

2. Like NIM, ROA is also uncorrelated with the short rate

- well below NIM, reflecting substantial operating costs, $2-3 \%$ of assets

Model

1. Time $t \geq 0$, short rate process f_{t}
2. An infinitely-lived bank runs a deposit franchise

- per-dollar operating cost c (branches, salaries, marketing, etc.)
- paying c gives the bank market power:

$$
\text { deposit rate }=\beta^{E x p} f_{t}, \text { where } \beta^{E x p}<1
$$

- Drechsler, Savov, and Schnabl (2017) provide microfoundations

3. Bank invests deposit dollars to maximize PV of future profits

- no equity or long-term debt (for simplicity)
- asset markets are complete, stochastic discount factor m_{t}

Setup

Bank solves:

$$
\begin{gathered}
V_{0}=\max _{I N C_{t}} E_{0}\left[\sum_{t=0}^{\infty} \frac{m_{t}}{m_{0}}\left(I N C_{t}-\beta^{E x p} f_{t}-c\right)\right] \\
\text { s.t. } E_{0}\left[\sum_{t=0}^{\infty} \frac{m_{t}}{m_{0}} I N C_{t}\right]=1 \\
\text { and } I N C_{t} \geq \beta^{E x p} f_{t}+c
\end{gathered}
$$

Risks:

1. Need to cover interest expenses, sensitivity $\beta^{E x p}$ to f_{t}
\Rightarrow income must be sensitive enough to f_{t} in case f_{t} is high

- yet $\beta^{E \times p}<1$ is low because of market power

2. Also need to cover insensitive operating cost c
\Rightarrow income must be insensitive enough in case f_{t} is low

- must hold sufficient long-term (fixed-rate) assets

Result

Under ex-ante free entry (zero rents):

1. $V_{0}=0$, income is pinned down: $I N C_{t}^{\star}=\beta^{E x p} f_{t}+c$
2. Sensitivity matching:

$$
\text { Income beta } \equiv \beta^{\operatorname{lnc}}=\frac{\partial I N C_{t}^{\star}}{\partial f_{t}}=\beta^{E x p} \equiv \text { Expense beta }
$$

- aggregate time series shows tight sensitivity matching
- test in cross section

3. Bank can implement optimal policy by investing:

- $\beta^{E x p}$ share of assets in short-term (floating-rate) assets
- $1-\beta^{E \times p}$ in long-term (fixed-rate) assets

Empirical Analysis

1. Call reports, all U.S. commercial banks, 1984 to 2013

- we've posted cleaned data on our websites

2. For each bank i, estimate interest expense and income betas

$$
\begin{aligned}
& \Delta \operatorname{Int} E_{x p_{i, t}}=\alpha_{i}+\sum_{\tau=0}^{3} \beta_{i, \tau}^{E x p} \Delta F F_{t-\tau}+\varepsilon_{i t} \\
& \Delta I^{I n t l n c} c_{i, t}=\alpha_{i}+\sum_{\tau=0}^{3} \beta_{i, \tau}^{\operatorname{lnc}} \Delta F F_{t-\tau}+\varepsilon_{i t}
\end{aligned}
$$

- IntExp $=$ Interest expense/Assets
- IntInc = Interest income/Assets
- 4 quarterly lags of $\Delta F F$ capture adjustment over a full year

3. Plot $\beta_{i}^{E x p}=\sum_{\tau=0}^{3} \beta_{i, \tau}^{E x p}$ versus $\beta_{i}^{\text {Inc }}=\sum_{\tau=0}^{3} \beta_{i, \tau}^{\text {Inc }}$

Income versus Expense betas (all banks)

1. Bin scatter plot of $\beta_{i}^{\text {Inc }}$ versus $\beta_{i}^{\text {Exp }} ; 100$ bins, ≈ 168 banks per bin

2. Strong matching: tight linear relationship between income and expense betas, slope is close to 1

Income versus Expense betas (top 5\% of banks)

1. Bin scatter plot of $\beta_{i}^{\text {Inc }}$ versus $\beta_{i}^{\text {Exp }}$

2. Strong matching: tight linear relationship between income and expense betas, slope is close to 1

Sensitivity matching (panel regression)

> Stage1 : $\Delta \operatorname{IntExp} p_{i, t}=\alpha_{i}+\sum_{\tau=0}^{3} \beta_{i, \tau}^{E x p} \Delta F e d F u n d s_{t-\tau}+\epsilon_{i, t}$
> Stage2 : Δ Intlnc $_{i, t}=\alpha_{i}+\sum_{\tau=0}^{3} \gamma_{\tau} \Delta F e d F u n d s_{t-\tau}+\delta \Delta \widehat{\operatorname{lntExp}}_{i, t}+\varepsilon_{i, t}$

	All banks		Top 5\%		Top 1\%	
	(1)	(2)	(3)	(4)	(5)	(6)
$\widehat{\triangle I n t E x p}$	$\begin{gathered} 0.765^{* * *} \\ (0.033) \end{gathered}$	$\begin{gathered} 0.766^{* * *} \\ (0.034) \end{gathered}$	$\begin{gathered} 1.114^{* * *} \\ (0.099) \end{gathered}$	$\begin{gathered} 1.111^{* * *} \\ (0.099) \end{gathered}$	$\begin{gathered} 1.096^{* * *} \\ (0.068) \end{gathered}$	$\begin{gathered} 1.089^{* * *} \\ (0.076) \end{gathered}$
$\sum \gamma_{\tau}$	$\begin{aligned} & 0.093^{* *} \\ & (0.031) \end{aligned}$		$\begin{aligned} & -0.053 \\ & (0.050) \end{aligned}$		$\begin{aligned} & -0.065 \\ & (0.050) \end{aligned}$	
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Time FE	No	Yes	No	Yes	No	Yes
N	1126023	1126023	44584	44584	9833	9833
R-sq.	0.089	0.120	0.120	0.153	0.109	0.150

1. Matching coefficient δ close to 1 , especially for large banks
\Rightarrow a bank with no market power (expense beta $=1$) predicted to hold only short-term assets (income beta $=1$) \rightarrow a money market fund

Time Series of Interest Income and Expense Rates

1 Average interest income and interest expense rate by expense beta (top vs. bottom 5\%)

- a non-parametric way to see matching in the cross section

ROA Betas vs. Expense Betas

1. No relationship between expense beta and ROA beta
\Rightarrow matching unaffected by non-interest income (e.g., fees) and costs
2. Similar result for expense beta vs. NIM beta (by construction)

Expense Betas and Asset Duration

1. Lower expense beta \Rightarrow higher asset duration (repricing maturity)

- slope coefficient $=-3.66$ years
- large relative to aggregate asset duration of 4.4 years

Cross Section of Bank Equity FOMC Betas

1. No relationship with asset duration
\Rightarrow explained by matching of long-term assets with deposit market power

Cross Section of Bank Equity FOMC Betas

1. No relationship with either expense or income betas
\Rightarrow explained by sensitivity matching

Is Matching Driven by Liquidity (Run) Risk?

1. Perhaps high- $\beta^{E x p}$ banks hold more short-term assets to insure against liquidity risk?

- does not predict matching coefficient of one

2. High- $\beta^{E x p}$ banks hold more loans and fewer securities

- but loans are illiquid \rightarrow inconsistent with liquidity risk explanation
- consistent with matching: securities have higher duration than loans

Matching within Securities portfolio

$$
\text { Stage1 : } \Delta \operatorname{IntExp} \boldsymbol{P}_{i, t}=\alpha_{i}+\sum_{\tau=0}^{3} \beta_{i, \tau}^{E x p} \Delta F e d F u n d s_{t-\tau}+\epsilon_{i, t}
$$

Stage2 : Δ IntIncTreasuries ${ }_{i, t}=\alpha_{i}+\sum_{\tau=0}^{3} \gamma_{\tau} \Delta$ FedFunds $_{t-\tau}+\delta \Delta \widehat{\text { IntExp }}_{i, t}+\varepsilon_{i, t}$.

	All banks			Top 5\%		
	(1) Total	(2) Treasuries	(3) MBS	(4) Total	(5) Treasuries	$\begin{gathered} (6) \\ \text { MBS } \end{gathered}$
\triangle IntExpRate	$\begin{gathered} 0.570^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} 0.429^{* * *} \\ (0.054) \end{gathered}$	$\begin{gathered} 0.489^{* * *} \\ (0.082) \end{gathered}$	$\begin{gathered} 0.933^{* * *} \\ (0.142) \end{gathered}$	$\begin{gathered} 0.792^{* * *} \\ (0.218) \end{gathered}$	$\begin{gathered} 1.347^{* * *} \\ (0.364) \end{gathered}$
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
N	1115149	322147	279794	44382	8877	9333
R-sq.	0.012	0.033	0.01	0.034	0.041	0.038

1. Banks match sensitivities even within Treasury and MBS portfolio

- highly liquid/integrated markets \Rightarrow not driven by segmentation

2. Implications for asset pricing

Expense Betas and Market Concentration

1. Bank HHI is the average Herfindahl of all zip codes where the bank has branches
\Rightarrow Banks that face less local competition for deposits (high Bank HHI) have lower expense betas, especially for retail (e.g. savings) deposits

Expense Betas and Market Concentration (HHI)

$$
\begin{aligned}
& \Delta I_{n t E x p_{i, t}}=\alpha_{i}+\sum_{\tau=0}^{3}\left(\beta_{\tau}^{0}+\beta_{\tau}^{1} H H I_{i, t}\right) \Delta \text { FedFunds }_{t, t-\tau}+\epsilon_{i, t} \\
& \Delta \text { Intlnc }_{i, t}=\alpha_{i}+\sum_{\tau=0}^{3} \gamma_{\tau} \Delta \text { FedFunds }_{t, t-\tau}+\delta \Delta \widehat{\operatorname{IntExp}}_{i, t}+\epsilon_{i, t} .
\end{aligned}
$$

1. Less competition \rightarrow less sensitive interest expense (Stage 1)
2. Matching coefficient δ close to 1 (Stage 2)

Retail Deposit Betas and Within-Bank Estimation

1. Use retail-deposit betas to hone in on market power mechanism
2. Within-bank retail $\beta^{E x p}$:

- compute county-level retail betas using differences in deposit rates across branches of same bank, average across each bank's counties \Rightarrow gives us geographic variation in $\beta^{E x p}$ purged of bank characteristics

Stage 1:	Retail $\beta^{\text {Exp }}$		Within-bank retail $\beta^{\text {Exp }}$	
	(1)	(2)	(3)	(4)
$\sum \beta_{\tau}^{1}$	$\begin{gathered} 0.550 * * * \\ (0.057) \end{gathered}$	$\begin{gathered} 0.565 * * * \\ (0.056) \end{gathered}$	$\begin{gathered} 0.109 * * * \\ (0.013) \end{gathered}$	$\begin{aligned} & 0.110^{* *} \\ & (0.013) \end{aligned}$
R^{2}	0.214	0.264	0.210	0.258
Stage 2:	Δ Interest income		Δ Interest income	
	(1)	(2)	(3)	(4)
$\widehat{\triangle / n t E x p}$	1.259***	1.264***	1.185**	1.186**
	(0.136)	(0.136)	(0.114)	(0.119)
Bank FE	Yes	Yes	Yes	Yes
Time FE	No	Yes	No	Yes
N	492862	492862	446862	446862
R^{2}	0.093	0.121	0.091	0.126

1. Strong first stage, matching coefficient again close to one

Takeaways

1. Despite a large duration mismatch, banks are largely unexposed to interest rate risk
2. This is due to market power over deposits, which lowers the interest rate sensitivity of banks' expenses
3. Banks invest in long-term assets to hedge their deposit franchise
\Rightarrow Deposits are the foundation of banking, drive maturity transformation

- explains why deposit taking and long-term lending coexist under one roof
- implies that "narrow banking" could make banks unstable, reduce long-term lending
- implies that banks are largely insulated from the "balance sheet channel" of monetary policy

