Discussion of

International Dimensions of Inflation

ECB Conference, 24 September 2019

Natalie Chen

University of Warwick and CEPR

This Session

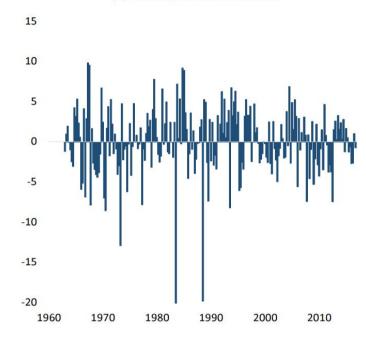
Investigates the role of international factors in affecting import prices or consumer prices and, therefore, domestic inflation

- Peersman (2019): international food commodity prices on euro area consumer prices (macro)
- **Carluccio et al. (2018)**: import openness from low-wage countries on French consumer price inflation (micro)
- Kim et al. (2019): exchange rate appreciations/depreciations on US import price inflation (micro)

Peersman (2019)

Peersman (2019)

Food commodities are a crucial input for the food-processing sector, and food accounts for more than 27% of the euro area HICP


Causal effects of international food commodity prices (corn, wheat, rice, soybeans) on euro area inflation using a SVAR-IV (unanticipated harvest shocks)

- Quantitatively important: exogenous food commodity price shocks explain 25–30% of consumer inflation volatility
- Qualitatively important: they help explain the twin puzzle of missing disinflation in 2009–2012 and of missing inflation in 2014–2015
- Transmission mechanism of international food commodity price shocks
 - Direct effect on food retail prices through the food production chain
 - Indirect effects via rising inflation expectations and a euro depreciation

Comments

- EU harvest shocks are excluded: lower bound estimates? Include EU shocks as a robustness check
- Many checks with additional variables in the SVAR. Also try excluding the oil price (endogenous to the business cycle)?
- Exclusion restriction: unanticipated harvest shocks should affect consumer prices only through food commodity prices. Other variables?
- Food commodities traded in USD, HICP is in euros. Food prices in euros?
- Deflate food commodity prices using US CPI. Is this appropriate?
- In addition to estimating the system for the euro area as a whole, estimate separately by country/major country. Heterogeneity?

Instrument

(B) Unanticipated harvest shocks

Unanticipated harvest shocks: residuals from regressing a global food production index (four items, excl. the EU) on weather indicators and other controls

- What explains the large negative spikes in the 1970s and especially 1980s?
- Could they explain the less significant results for the post-1990 period?

Carluccio et al. (2018)

Carluccio, Gautier, Guilloux-Nefussi (2018)

Impact of imports from low-wage countries (LWCs) on CPI inflation in France between 1994 and 2014 using firm-level import data

The share of imports from LWCs in consumption increased from 2% to 7%, and reduced CPI inflation by **0.17pp per year** on average (China: 0.10pp)

This effect decomposes into three channels

- A *substitution channel* (domestic goods by LWC goods): -0.05pp
- An *imported inflation channel* (rise in the share of LWC imports): -0.06pp
- A *competition channel* (reduced domestic markups): -0.06pp

Pro-Competitive Effects vs Intermediate Inputs

- Fourth channel: imports of cheaper intermediate inputs from LWCs
- Based on the regression that estimates the competition channel

$$\pi_{i,t}^{D} = \Psi \Delta S_{i,t}^{LWC} + \kappa \Delta labcost_{i,t} + \underbrace{\eta \Delta inputcost_{i,t}}_{} + \lambda_t + \nu_i + \epsilon_{i,t}, \quad (6)$$

this channel could be investigated by letting $\Delta input cost_{i,t}$ depend on $\Delta S_{i,t}^{LWC}$ (the share of imports from LWCs in the consumption of good *i*)

- This would also allow to better interpret Ψ as an effect on "markups"
- How are $\Delta input cost_{i,t}$ measured? Identify firm-level imported inputs using the BEC classification and aggregate at the level of good *i*?

Substitution Channel

- Consumers substitute domestically produced goods with cheaper imports
- Are the imported goods cheaper
 - Because they are produced at a lower cost for the same quality?
 - Or because they are simply of lower quality?
- Well-known example of quality issues with cheaper Chinese toys
 - "The EU has a rapid alert system for dangerous products 48% of alerts involve products made in China, of which 25% are toys"
 - "Almost one in three toys in China contains heavy metals, with one in ten containing excessive levels of lead"
- Control for the degree of product differentiation (using unit values or other estimated proxies for quality, Khandelwal, 2010): quality-adjusted prices?

Other Comments

- Share of imports into consumption: imports are measured CIF, while consumption further includes VAT and distribution margins
 - In the paper, scale imports with a uniform 20% distribution margin across all sectors and apply VAT
 - As a robustness check, use available estimates of distribution costs (Campa and Goldberg, 2005; Eurostat)
- Imports and consumer prices are in euros. According to Gopinath (2016), 74% of French imports in 2015 were invoiced in euros, 21% in USD, 5% in other currencies. Role for exchange rate changes?

Kim et al. (2019)

Kim, Lewis, Vigfusson (2019)

- Is exchange rate pass-through into monthly product-level US bilateral import prices between 1994 and 2014 symmetric to appreciations and depreciations?
- Foreign appreciations pass through faster and more completely than depreciations. Result is driven by consumer goods and arms-length transactions
- No evidence for non-linearities in pass-through
- Model with menu costs, strategic complementarities and, crucially, convex adjustment costs to rationalize these facts

Pricing-to-Market

- The pricing-to-market strategies of foreign exporters to the US may generate asymmetric pass-through
 - The US mostly imports and exports in USD (Gopinath, 2016)
 - Foreign appreciation: exporters receive less in domestic currency for each unit they export in USD. Raise export prices to restore markups
 - Foreign depreciation: exporters receive more in domestic currency for each unit they export in USD. Less likely to change prices
 - Note: effects may be dampened if foreign exporters "hedge" against exchange rate risk by for instance importing and exporting in USD
- But foreign export prices are not observed

Pricing-to-Market

- Use the **US export prices** available in the BLS data to investigate whether *pricing-to-market* is asymmetric to appreciations and depreciations
 - US export prices in the latest version of the paper!
 - Markups: export prices at reporter-product-country-time level on reporterproduct(-year) fixed effects (actual prices rather than unit values)
 - Also, export prices in USD rather than local currency
- No implications for US inflation (import prices are relevant for domestic inflation), but looking at export prices can help to identify the mechanisms
- Evidence suggests that markups are indeed highly variable (Amiti et al., 2014; Berman et al., 2012; De Loecker et al., 2016; Simonovska, 2015)

Other Comments

- The asymmetry in pass-through is explored across sectors and transaction types (stronger for consumer goods and arms-length transactions)
- Also investigate the asymmetry
 - Across types of firms (firm size, transaction size, productivity, etc)
 - Across origin countries (developing versus developed, etc)
 - For the sample of transactions priced in non-USD (COI available)
 - At quarterly and annual frequency

Conclusions

- The papers in this session emphasize the **global nature** of inflation
- They show that domestic inflation is significantly affected by
 - The prices of international food commodities (Peersman, 2019)
 - Openness to imports from LWCs (Carluccio et al., 2018)
 - Asymmetric exchange rate fluctuations (Kim et al., 2019)
- Other factors have also been recently emphasized in the literature (currency of invoicing choices for imported goods, for instance)
- Accounting for all these factors simultaneously in order to explain or forecast future inflation can be a challenge