Inflation in a Changing Environment Price Setting: Synchronization

Fernando Alvarez

University of Chicago

September 2019

Fernando Alvarez (Univ. of Chicago)

"Price synchronization and cost pass-through in multiproduct firms: Evidence from Danish producer prices"

By L. Dedola, M. Kristoffersen and Zullig

- Very rich data set firms: prices, quantities, cost and other variables
- > This paper has several interesting findings, but more to come.
- ► Review some, provide some model for interpretation, comments.

- Set-up simple multiproduct model
- Kurtosis & Area under IRF of small monetary shock.
- Discuss common vs idiosyncratic shocks: implications for Kurtosis
- Discuss effect of (small) trend inflation and implications
- Discuss measurement error and Kurtosis.
- Comment on differential pass-through.

The firm problem

Firm's problem: approx. to CES demand + CRTS

$$V(\rho) = \min_{\{\tau_j, \Delta \rho(\tau_j)\}_{j=1}^{\infty}} \mathbb{E}\left[\sum_{j=1}^{\infty} e^{-r\tau_j} \psi + \int_0^{\infty} e^{-rt} B\left(\sum_{j=1}^n \rho_j^2(t)\right) dt \middle| \rho(0) = \rho\right]$$

where

$$p_i(t) = \sigma \mathcal{W}_i(t) + \sum_{j:\tau_j < t} \Delta p_i(\tau_j)$$
 for all $t \ge 0$ and $i = 1, 2, ..., n$,

- *p_i(t)* percentage deviation of price *i* from its optimal frictionless value
- stopping times τ_j and adjustments $\Delta p_i(\tau_j)$ all i = 1, ..., n and j = 1, 2, ...
- $dp_i = \sigma dW_i$: *n* Independent Brownian Motions (prod. shocks).
- pay fixed cost ψ (fraction of profits) and adjust prices of all products Δp.

Key idea: summarize state by scalar: $y \equiv ||p||^2$ $y \equiv ||p||^2$ square of a **Bessel** process: $dy = n \sigma^2 dt + 2 \sigma \sqrt{y} dW$

Inaction region = sphere: $\mathcal{I} = \{ \boldsymbol{p} : ||\boldsymbol{p}||^2 \leq \bar{\boldsymbol{y}} \}.$

$$v(y) = v(||p||^2) = V(p_1, ..., p_n)$$

Fernando Alvarez (Univ. of Chicago)

The firm problem

Value function
$$v(y) = v(||p||^2) = V(p_1, ..., p_n)$$

Each y corresponds to a square radius of vector p

Fernando Alvarez (Univ. of Chicago)

The firm problem

Density $w(\cdot)$ of the price changes as *n* varies

Fixing \bar{y} density *w* depends only on *n*. As *n* increases, change on prices of each product are *"more independent"*. <u>Kurtosis</u> of Price change = $\frac{3n}{2+n}$

Some price-setting statistics that depend ONLY on *n*

	Number of products <i>n</i>					
	1	2	4	6	10	50
Statistics	Model statistics					
$Std(\Delta p_i) / E(\Delta p_i)$	0	0.48	0.62	0.65	0.70	0.75
Kurtosis(Δp_i)	1.0	1.5	2.0	2.25	2.5	2.88
Fraction: $ \Delta p_i < \frac{1}{2}E(\Delta p_i)$	0	0.21	0.27	0.28	0.30	0.31
Fraction: $ \Delta p_i < \frac{1}{4}E(\Delta p_i)$	0	0.10	0.13	0.14	0.15	0.16

Fernando Alvarez (Univ. of Chicago)

The firm problem

$\mathcal{P}_n(\delta, t)$: IRF (log) CPI to shock $\delta = 1\%$

• IRF for (log) output $Y(t) = \delta - \mathcal{P}_n(\delta, t)$

For small shock, it is Only function of N_a and n

The firm problem

Effect of Monetary Shocks

- Let *M*(δ) be the area under the impulse response function (IRF) of output to a monetary shock of size δ.
- Monetary shock is a once and form all increase in money (or costs) in δ .
- Let *Kurt* (Δp) be the kurtosis of price change in steady state.
- Let N_a be the kurtosis of price change in steady state.
- Then, for a small monetary shock δ :

$$\mathcal{M}(\delta) = \frac{\operatorname{Kurt}\left(\Delta p\right)}{6\,\mathcal{N}_a}\,\delta$$

Entire IRF -not just area- characterized by eigenfunctions-eigenvalues.

Sensitivity to trend inflation μ

- Static "target" prices have drift μ , all price gaps drift down
- Optimal decision rule are different (no closed form)
 - Prices are *not* reset to static target at adjustment.
 - Inaction set \mathcal{I} is *not* a hyper-sphere.
- Inflation has only second order effect around $\mu = 0$ on
 - frequency of price changes Na,
 - all centered even moments of marginal price changes (e.g. kurtosis).
- Inflation has first order effect on difference in *Size* and <u>Frequency</u> of Price Increases *minus* Decreases
 - For n = 1 can show that 90% of adjustment to inflation μ is difference in frequency increases vs decreases, 10% in size. (QJE)

Fernando Alvarez (Univ. of Chicago)

Modeling drift and correlation

Let each price gap follow (inflation μ , correlation $\frac{\bar{\sigma}^2}{\bar{\sigma}^2 + \sigma^2}$)

 $\mathrm{d}\mathbf{p}_i = -\mu \,\mathrm{dt} + \bar{\sigma} \,\mathrm{d}\bar{\mathcal{W}} + \sigma \,\mathrm{d}\mathcal{W}_i \,\,\text{for all }i = 1, ..., n \,.$

where $\overline{\mathcal{W}}, \mathcal{W}_i$ are independent standard BMs. Define:

$$y = \sum_{i=1}^{n} (p_i)^2$$
 and $z = \sum_{i=1}^{n} p_i$

Using Ito's Lemma define the diffusions

$$dy = \left[n\sigma^{2} + n\bar{\sigma}^{2} - 2\mu z \right] dt + 2\sigma\sqrt{y} d\mathcal{W}^{a} + 2\bar{\sigma}z d\mathcal{W}^{c}$$
$$dz = -n\mu dt + n\bar{\sigma} d\mathcal{W}^{c} + \sqrt{n\sigma} \left(\frac{z}{\sqrt{ny}} d\mathcal{W}^{a} + \sqrt{1 - \left(\frac{z}{\sqrt{ny}}\right)^{2}} d\mathcal{W}^{b} \right)$$

where $(\mathcal{W}^a, \mathcal{W}^b, \mathcal{W}^c)$ are three standard independent BM's.

- Only two dimensions for decision rule and IRF!

Fernando Alvarez (Univ. of Chicago)

Drift and correlation

Value function v(y, z) and decision rules: no drift (n = 10, shocks correlation is 0.5, B = 20, $\psi/n = 0.04$)

Similar to lower n, i.e. it lower Kurtosis

Fernando Alvarez (Univ. of Chicago)

Feasible Set and Inaction Set (no drift) n = 10 , shocks correlation is 0.5 , B = 20 , $\psi/n = 0.04$) 0.18 $\bar{y}(z)$ z^2/n 0.16 0.14 correlation 1 case Adjustment Region..... 0.12 $\sum_{i=1}^n p_i^2$ 0.1 $\bar{n}(z) = \bar{n}(z)$ uncorrelated case Inaction Region 0.06 0.04 0.02 0L -1.5 -0.5 0.5 -1 n 1 1.5 $z = \sum_{i=1}^{n} p_i$

Fernando Alvarez (Univ. of Chicago)

Drift and correlation

Effect of correlation on distribution $w(\Delta p)$

 Summary: correlation makes is closer to one good. It lower Kurtosis, and hence Output IRF.

Impulse response to a monetary shock As expected more flexible, smaller output IRF

Kurtosis in $w(\Delta p)$ and Calvoness

Modify model

- introducing random (free) adjustment opportunities
- Adjustments: either if opportunity arrives or y reaches $\bar{y} \implies$
 - price changes **mixture** of distributions with $Var(\Delta p) = \frac{y}{p}$ for all $y \leq \overline{y}$.

Main Results

- ► Introduce even more small price changes. Limit case is Laplace
- Optimal policy y
 with (r, λ) same as with (r + λ, 0) Intuition: effective discount rate of cost r + λ
- While decision rules are of the same form, frequency of price changes, invariant distribution of price gaps, and distribution of price changes all change.
- Hazard rate h(t): just adds constant λ at all elapsed times t.

Fernando Alvarez (Univ. of Chicago)

Drift and correlation

Multi-product version of Calvo⁺

- Fix $\lambda > 0, \sigma > 0$ and $n \ge 1$.
 - (i) Kurt(Δp_i) depends on two parameters: *n* and $\frac{\lambda}{N_n}$
 - (ii) Let $\psi/B \to \infty$ so that $\bar{y} \to \infty$. Then $N_a \to \lambda$ and $Kurt(\Delta p_i) \to 6$ (Laplace)

% of free adjustments:	number of products n					
λ/N_a	1	2	4	6	10	50
0%	1.0	1.5	2.0	2.2	2.5	2.9
10%	1.1	1.6	2.1	2.4	2.6	3.0
50%	1.6	2.2	2.7	3.0	3.2	3.6
95%	3.5	4.3	4.7	4.9	5.0	5.2
100%	6.0	6.0	6.0	6.0	6.0	6.0

Table: Kurtosis of Price changes: $\mathbb{E}(\Delta p_i)^4 / (\mathbb{E}(\Delta p_i)^2)^2$

Fernando Alvarez (Univ. of Chicago)

Drift and correlation

Figure 7: Histograms of standardized price changes

Fernando Alvarez (Univ. of Chicago)

ECB Inflation Conference

September 2019 19 / 39

Hazard rate of price changes as *n* varies

Giving expected time between adjustment, hazard depends only on *n*. As *n* increases, change on prices of each product are *"more independent"*.

Fernando Alvarez (Univ. of Chicago)

Hazard rate

Two comments on Measurement Error

- Effect on Kurtosis of price changes
- Effect on differential pass-through coefficient

Fernando Alvarez (Univ. of Chicago)

Kurtosis and Measurement Error

- Distribution of price changes is leptokurtic, more than normal but less than Laplace
- This results differs from US data on PPI.
- I believe because data in this paper has been properly demeaned (heterogeneity,i.e mixing increases kurtosis)
- Kurtosis similar to the one CPI data in France, once corrected by measurement error (AER w/LeBihan and Lippi, corrected b comparing CPI w/scanner data)
- Could Kurtosis be even smaller?

Hazard rate

Difference in pass-through coefficients

- Passthrough coefficient for energy cost changes is much larger than for imported good cost changes.
- Cost changes are the product of share for the firm times price of the imported good.
- True shares may depend on the good, not just the firm.
- This gives classical measurement error on RHS variable, and hence attenuation bias.
- Heterogeneity on shares at the level of the good can be larger for imported inputs.

"Multi-Product Pricing: Theory and Evidence From Large Retailers in Israel"

By M. Bonomo, C. Carvalho, O. Kryvtsov, S. Ribon and R. Rigato

- Thorough analysis of synchronization of price changes for a large retailer
- New price setting model with infinitely many products and two costs.
- Very nice characterization of output IRF's.
- ► Review some, provide some model for interpretation, comments.

- > Discuss model, by first presenting finitely many products version of it.
- Cost of adjusting any product, and extra cost for each product.
- Present an alternative style estimation of τ^* .

Finitely many product version

- Let $y_i(t) = p_i(t)^2$ the square of each uncontrolled price gap follow
- each $p_i(t)$ follow standard independent BMs w/volatility σ

 $dy_i(t) = \sigma^2 dt + 2 \sigma \sqrt{y_i(t)} d\mathcal{W}_i(t)$ for all i = 1, ..., n

- firms that adjust $1 \le m \le n$ product's prices pays $\psi + m\nu$
- ψ independent of the number of product
- ν per product.
- We will write the value function with vector of square price gaps (y₁,..., y_n) as arguments

Fernando Alvarez (Univ. of Chicago)

Value function $v(y_1, y_2, ..., y_n)$

$$rv\left(y_{1}, y_{2}, ..., y_{n}\right) \leq B\sum_{i=1}^{n} y_{i} + \sigma^{2}\sum_{i=1}^{n} \frac{\partial v\left(y_{1}, ..., y_{n}\right)}{\partial y_{i}} + 2\sigma^{2}\sum_{i=1}^{n} \frac{\partial^{2} v\left(y_{1}, ..., y_{n}\right)}{\partial y_{i}^{2}} y_{i}$$

with equality if $(y_1, y_2, ..., y_n)$ is in the inaction region and

$$v(y_1, y_2, ..., y_n) \leq \min_{l_j \in \{0,1\}, j=1,...,n} \left\{ \psi + \sum_{j=1}^n \nu(1-l_j) + v(l_1y_1, l_2y_2, ..., l_ny_n) \right\}$$

with equality if $(y_1, y_2, ..., y_n)$ is the control region

 $I_j = 1$ is an indicator that the firm keeps the *j*-th price in the inaction region.

Example n = 2: Inaction, change one price, or change two prices.

Fernando Alvarez (Univ. of Chicago)

Finitely many products model

Value function for n = 2, $\psi = 0.02$ and $\nu = 0.01$

Parameters: r = 0.05, B = 20, $\sigma = 0.1$, $\nu = 0.01$, and $\psi = 0.02$.

Parameters: r = 0.05, B = 20, $\sigma = 0.1$, $\nu = 0.01$, and $\psi = 0.02$. Solid line $y_1 + y_2 = \bar{y}$ with cost $\psi' = \psi + 2\nu$ and $\nu' = 0$. Decision rules only displayed for points with $y_1 + y_2 < 4 \bar{y}$. Fernando Alvarez (Univ. of Chicago) ECB Inflation Conference September 2019 29/39

statistics $\setminus \psi$ 2 ν	0.04 0.00	0.035 0.005	0.03 0.01	0.02 0.02	0.01 0.03	0.00 0.04
Fraction simultaneous price changes	1.00	0.83	0.75	0.56	0.34	0.00
Kurtosis(Δp_i)	1.50	1.30	1.21	1.11	1.04	1.00
Fraction: $ \Delta p_i < \frac{1}{2}E(\Delta p_i)$	0.21	0.11	0.06	0.00	0.00	0.00
Fraction: $ \Delta p_i < \frac{1}{4}E(\Delta p_i)$	0.11	0.00	0.00	0.00	0.00	0.00

Table: Statistics for price changes as function of cost ν and ψ

- As "marginal" fixed cost ν increases relative to "fixed" fixed ψ :
- Lower synchronization and Lower Kurtosis of price changes

Fernando Alvarez (Univ. of Chicago)

Partial Synchronization, Kurtosis and output IRF

- Model in the paper has infinitely many products in the firm
- ► In the model all shocks are independent within the firm.
- Firm change prices every τ^* periods, to save in "fixed" fixed cost ψ .
- Synchronize price changes, as in $n \to \infty$ in Alvarez and Lippi.
- ► But marginal fixed cost v > 0 implies that firm does NOT change all products, just the ones with large price gaps.
- > On the other hand, it reduces Kurtosis and reduces output IRF!
- Conjecture: Kurtosis lies between 1 and 3 (in benchmark in paper \approx 1)
- Please compute Kurtosis of price changes & cumulative output's IRF!

Estimate τ^*, σ^2 & area outside inaction

- Estimate (frequency of price changes) N_a as usual.
- For σ^2 can use lemma in AL (AER): $N_a Var(\Delta p) = \sigma^2$
- Estimate \u03c6** by looking at the peak of the spectral density for the time series of frequency of price changes.
- Given N_a and τ^* we have an implies area outside threshold $|p| > \bar{x}$.
- We estimate τ^{*} ≈ 15 weeks and N_a = 0.04 per week, so area outside is: Area ≈ 0.60 = τ^{*} N_a
- ► Alternatively, every 15 weeks 40% the products goods change prices.

Estimates of τ^*

- Use weekly frequency of price changes (IRI)
- ▶ Took store in Chicago area with more goods and 573 weeks of data.
- ► HP filter weekly frequency for a class for each products (aisle).
- Estimate correlogram for weekly frequency
- Use kernel to estimate spectral density
- Look for the peak on the spectral density

Figure: Weekly Fraction of Price Changes

Figure: Power Spectral Density - Yogurt and Tooth Paste

Figure: Power Spectral Density - Spaguetti Sauce and Peanut Butter

Figure: Power Spectral Density - Frozen Pizza and Cereal

Table: Power Spectral Density - Interpretation of Normalized Frequency

Ĩ	Period	ĩ	Period
.03	52 weeks	0.5	4 weeks
.076	26 weeks	0.6	3.3 weeks
0.1	20 weeks	0.7	2.8 weeks
0.2	10 weeks	0.8	2.5 weeks
0.3	6.6 weeks	0.9	2.2 weeks
0.4	5 weeks	1	2 weeks

Peak for most product types is around 0.15, or about 15 weeks.

Other comments

- Hazard rate of price changes
 - What is the hazard rate of individual price changes?
 - Hazard is positive only i in multiple of τ^* and increasing in time
- Add Calvo⁺ to the model (random menu cost)
 - Kurtosis of individual price changes in the model will be closer to the data.
 - Very easy, as in the previous paper.
 - Better fit with positive frequency every week (see figure store 644)
- How to decide which products are in each "aisle"? Is the entire firm an "aisle"?

Fernando Alvarez (Univ. of Chicago)