Inflation in a Changing Environment Price Setting: Synchronization

Fernando Alvarez

University of Chicago

September 2019
"Price synchronization and cost pass-through in multiproduct firms: Evidence from Danish producer prices"

> By L. Dedola, M. Kristoffersen and Zullig

- Very rich data set firms: prices, quantities, cost and other variables
- This paper has several interesting findings, but more to come.
- Review some, provide some model for interpretation, comments.
- Set-up simple multiproduct model
- Kurtosis \& Area under IRF of small monetary shock.
- Discuss common vs idiosyncratic shocks: implications for Kurtosis
- Discuss effect of (small) trend inflation and implications
- Discuss measurement error and Kurtosis.
- Comment on differential pass-through.

Firm's problem: approx. to CES demand + CRTS

$$
V(p)=\min _{\left\{\tau_{j}, \Delta p\left(\tau_{j}\right)\right\}_{j=1}^{\infty}} \mathbb{E}\left[\sum_{j=1}^{\infty} e^{-r \tau_{j}} \psi+\int_{0}^{\infty} e^{-r t} B\left(\sum_{i=1}^{n} p_{i}^{2}(t)\right) d t \mid p(0)=p\right]
$$

where

$$
p_{i}(t)=\sigma \mathcal{W}_{i}(t)+\sum_{j: \tau_{j}<t} \Delta p_{i}\left(\tau_{j}\right) \quad \text { for all } t \geq 0 \text { and } i=1,2, \ldots, n,
$$

- $p_{i}(t)$ percentage deviation of price i from its optimal frictionless value
- stopping times τ_{j} and adjustments $\Delta p_{i}\left(\tau_{j}\right)$ all $i=1, . ., n$ and $j=1,2, \ldots$
- $\mathrm{d} p_{i}=\sigma \mathrm{d} \mathcal{W}_{i}: n$ Independent Brownian Motions (prod. shocks).
- pay fixed cost ψ (fraction of profits) and adjust prices of all products Δp.

Key idea: summarize state by scalar: $y \equiv\|p\|^{2}$

 $y \equiv\|p\|^{2}$ square of a Bessel process: : $\mathrm{d} y=n \sigma^{2} \mathrm{dt}+2 \sigma \sqrt{y} \mathrm{~d} \mathcal{W}$ Inaction region $=$ sphere: $\quad \mathcal{I}=\left\{p:\|p\|^{2} \leq \bar{y}\right\}$.
$v(y)=v\left(\|p\|^{2}\right)=V\left(p_{1}, \ldots, p_{n}\right)$

Value function $v(y)=v\left(\|p\|^{2}\right)=V\left(p_{1}, \ldots, p_{n}\right)$

Each y corresponds to a square radius of vector p

Density $w(\cdot)$ of the price changes as n varies

Fixing \bar{y} density w depends only on n. As n increases, change on prices of each product are "more independent". Kurtosis of Price change $=\frac{3 n}{2+n}$

Some price-setting statistics that depend ONLY on n

	Number of products n					
	1	2	4	6	10	50
Statistics	Model statistics					
$\operatorname{Std}\left(\left\|\Delta p_{i}\right\|\right) / E\left(\left\|\Delta p_{i}\right\|\right)$	0	0.48	0.62	0.65	0.70	0.75
Kurtosis $\left(\Delta p_{i}\right)$	1.0	1.5	2.0	2.25	2.5	2.88

Fraction: $\left|\Delta p_{i}\right|<\frac{1}{2} E\left(\left|\Delta p_{i}\right|\right) \quad 0 \quad 0.21 \quad 0.27 \quad 0.28 \quad 0.30 \quad 0.31$

Fraction: $\left|\Delta p_{i}\right|<\frac{1}{4} E\left(\left|\Delta p_{i}\right|\right) \quad 0 \quad 0.10 \quad 0.13 \quad 0.14 \quad 0.15 \quad 0.16$

$\mathcal{P}_{n}(\delta, t)$: IRF $(\log) \mathrm{CPI}$ to shock $\delta=1 \%$

- IRF for (log) output $Y(t)=\delta-\mathcal{P}_{n}(\delta, t)$
- For small shock, it is Only function of N_{a} and n

Effect of Monetary Shocks

- Let $\mathcal{M}(\delta)$ be the area under the impulse response function (IRF) of output to a monetary shock of size δ.
- Monetary shock is a once and form all increase in money (or costs) in δ.
- Let $\operatorname{Kurt}(\Delta p)$ be the kurtosis of price change in steady state.
- Let N_{a} be the kurtosis of price change in steady state.
- Then, for a small monetary shock δ :

$$
\mathcal{M}(\delta)=\frac{\operatorname{Kurt}(\Delta p)}{6 N_{a}} \delta
$$

- Entire IRF -not just area- characterized by eigenfunctions-eigenvalues.

Sensitivity to trend inflation μ

- Static "target" prices have drift μ, all price gaps drift down
- Optimal decision rule are different (no closed form)
- Prices are not reset to static target at adjustment.
- Inaction set \mathcal{I} is not a hyper-sphere.
- Inflation has only second order effect around $\mu=0$ on
- frequency of price changes N_{a},
- all centered even moments of marginal price changes (e.g. kurtosis).
- Inflation has first order effect on difference in Size and Frequency of Price Increases minus Decreases
- For $n=1$ can show that 90% of adjustment to inflation μ is difference in frequency increases vs decreases, 10% in size. (QJE)

Modeling drift and correlation

Let each price gap follow (inflation μ, correlation $\frac{\bar{\sigma}^{2}}{\bar{\sigma}^{2}+\sigma^{2}}$)

$$
\mathrm{d} p_{i}=-\mu \mathrm{dt}+\bar{\sigma} \mathrm{d} \overline{\mathcal{W}}+\sigma \mathrm{d} \mathcal{W}_{i} \text { for all } i=1, \ldots, n
$$

where $\overline{\mathcal{W}}, \mathcal{W}_{i}$ are independent standard BMs . Define:

$$
y=\sum_{i=1}^{n}\left(p_{i}\right)^{2} \quad \text { and } \quad z=\sum_{i=1}^{n} p_{i}
$$

Using Ito's Lemma define the diffusions

$$
\begin{aligned}
\mathrm{d} y & =\left[n \sigma^{2}+n \bar{\sigma}^{2}-2 \mu z\right] \mathrm{dt}+2 \sigma \sqrt{y} \mathrm{~d} \mathcal{W}^{a}+2 \bar{\sigma} z \mathrm{~d} \mathcal{W}^{c} \\
\mathrm{~d} z & =-n \mu \mathrm{dt}+n \bar{\sigma} \mathrm{~d} \mathcal{W}^{c}+\sqrt{n} \sigma\left(\frac{z}{\sqrt{n y}} \mathrm{~d} \mathcal{W}^{a}+\sqrt{1-\left(\frac{z}{\sqrt{n y}}\right)^{2}} \mathrm{~d} \mathcal{W}^{b}\right)
\end{aligned}
$$

where $\left(\mathcal{W}^{a}, \mathcal{W}^{b}, \mathcal{W}^{c}\right)$ are three standard independent BM's.

- Only two dimensions for decision rule and IRF!

Value function $v(y, z)$ and decision rules: no drift

($n=10$, shocks correlation is $0.5, B=20, \psi / n=0.04$)

Similar to lower n, i.e. it lower Kurtosis

Feasible Set and Inaction Set (no drift)

Effect of correlation on distribution $w(\Delta p)$

- Summary: correlation makes is closer to one good. It lower Kurtosis, and hence Output IRF.

Impulse response to a monetary shock As expected more flexible, smaller output IRF

Impulse response for $\rho=0.5$ various n

Kurtosis in $w(\Delta p)$ and Calvoness

Modify model

- introducing random (free) adjustment opportunities
- Adjustments: either if opportunity arrives or y reaches $\bar{y} \Longrightarrow$
- price changes mixture of distributions with $\operatorname{Var}(\Delta p)=\frac{y}{n}$ for all $y \leq \bar{y}$.

Main Results

- Introduce even more small price changes. Limit case is Laplace
- Optimal policy \bar{y} with (r, λ) same as with $(r+\lambda, 0)$ Intuition: effective discount rate of cost $r+\lambda$
- While decision rules are of the same form, frequency of price changes, invariant distribution of price gaps, and distribution of price changes all change.
- Hazard rate $h(t)$: just adds constant λ at all elapsed times t.

Multi-product version of Calvo ${ }^{+}$

Fix $\lambda>0, \sigma>0$ and $n \geq 1$.
(i) $\operatorname{Kurt}\left(\Delta p_{i}\right)$ depends on two parameters: n and $\frac{\lambda}{N_{a}}$
(ii) Let $\psi / B \rightarrow \infty$ so that $\bar{y} \rightarrow \infty$. Then $N_{a} \rightarrow \lambda$ and $\operatorname{Kurt}\left(\Delta p_{i}\right) \rightarrow 6$ (Laplace)

Table: Kurtosis of Price changes: $\mathbb{E}\left(\Delta p_{i}\right)^{4} /\left(\mathbb{E}\left(\Delta p_{i}\right)^{2}\right)^{2}$

\% of free adjustments:	number of products n					
λ / N_{a}	1	2	4	6	10	50
0%	1.0	1.5	2.0	2.2	2.5	2.9
10%	1.1	1.6	2.1	2.4	2.6	3.0
50%	1.6	2.2	2.7	3.0	3.2	3.6
95%	3.5	4.3	4.7	4.9	5.0	5.2
100%	6.0	6.0	6.0	6.0	6.0	6.0

Figure 7: Histograms of standardized price changes

Hazard rate of price changes as n varies

Giving expected time between adjustment, hazard depends only on n. As n increases, change on prices of each product are "more independent".

Two comments on Measurement Error

- Effect on Kurtosis of price changes
- Effect on differential pass-through coefficient

Kurtosis and Measurement Error

- Distribution of price changes is leptokurtic, more than normal but less than Laplace
- This results differs from US data on PPI.
- I believe because data in this paper has been properly demeaned (heterogeneity,i.e mixing increases kurtosis)
- Kurtosis similar to the one CPI data in France, once corrected by measurement error
(AER w/LeBihan and Lippi, corrected b comparing CPI w/scanner data)
- Could Kurtosis be even smaller?

Difference in pass-through coefficients

- Passthrough coefficient for energy cost changes is much larger than for imported good cost changes.
- Cost changes are the product of share for the firm times price of the imported good.
- True shares may depend on the good, not just the firm.
- This gives classical measurement error on RHS variable, and hence attenuation bias.
- Heterogeneity on shares at the level of the good can be larger for imported inputs.
"Multi-Product Pricing:
Theory and Evidence From Large Retailers in Israel"

By M. Bonomo, C. Carvalho, O. Kryvtsov, S. Ribon and R. Rigato

- Thorough analysis of synchronization of price changes for a large retailer
- New price setting model with infinitely many products and two costs.
- Very nice characterization of output IRF's.
- Review some, provide some model for interpretation, comments.
- Discuss model, by first presenting finitely many products version of it.
- Cost of adjusting any product, and extra cost for each product.
- Present an alternative style estimation of τ^{*}.

Finitely many product version

- Let $y_{i}(t)=p_{i}(t)^{2}$ the square of each uncontrolled price gap follow
- each $p_{i}(t)$ follow standard independent BMs w/volatility σ

$$
d y_{i}(t)=\sigma^{2} d t+2 \sigma \sqrt{y_{i}(t)} d \mathcal{W}_{i}(t) \text { for all } i=1, \ldots, n
$$

- firms that adjust $1 \leq m \leq n$ product's prices pays $\psi+m \nu$
- ψ independent of the number of product
- ν per product.
- We will write the value function with vector of square price gaps $\left(y_{1}, \ldots, y_{n}\right)$ as arguments

Value function $v\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

$$
r v\left(y_{1}, y_{2}, \ldots, y_{n}\right) \leq B \sum_{i=1}^{n} y_{i}+\sigma^{2} \sum_{i=1}^{n} \frac{\partial v\left(y_{1}, \ldots, y_{n}\right)}{\partial y_{i}}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial^{2} v\left(y_{1}, \ldots, y_{n}\right)}{\partial y_{i}^{2}} y_{i}
$$

with equality if $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is in the inaction region and

$$
v\left(y_{1}, y_{2}, \ldots, y_{n}\right) \leq \min _{l_{\in} \in\{0,1\}, j=1, \ldots, n}\left\{\psi+\sum_{j=1}^{n} \nu\left(1-l_{i}\right)+v\left(l_{1} y_{1}, l_{2} y_{2}, \ldots, l_{n} y_{n}\right)\right\}
$$

with equality if $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is the control region
$l_{j}=1$ is an indicator that the firm keeps the j-th price in the inaction region.
Example $n=2$: Inaction, change one price, or change two prices.

Valuc function for $n=2, \psi=0.02$ and $\nu=0.01$

Parameters: $r=0.05, B=20, \sigma=0.1, \nu=0.01$, and $\psi=0.02$.

Parameters: $r=0.05, B=20, \sigma=0.1, \nu=0.01$, and $\psi=0.02$. Solid line $y_{1}+y_{2}=\bar{y}$ with cost $\psi^{\prime}=\psi+2 \nu$ and $\nu^{\prime}=0$. Decision rules only displayed for points with $y_{1}+y_{2}<4 \bar{y}$.

Fernando Alvarez (Univ. of Chicago)
ECB Inflation Conference
September 2019

Table: Statistics for price changes as function of cost ν and ψ

statistics $\backslash \psi$	0.04	0.035	0.03	0.02	0.01	0.00
2ν	0.00	0.005	0.01	0.02	0.03	0.04
	1.00	0.83	0.75	0.56	0.34	0.00
Fraction simultaneous price changes						
Kurtosis $\left(\Delta p_{i}\right)$	1.50	1.30	1.21	1.11	1.04	1.00
Fraction: $\left\|\Delta p_{i}\right\|<\frac{1}{2} E\left(\left\|\Delta p_{i}\right\|\right)$	0.21	0.11	0.06	0.00	0.00	0.00
Fraction: $\left\|\Delta p_{i}\right\|<\frac{1}{4} E\left(\left\|\Delta p_{i}\right\|\right)$	0.11	0.00	0.00	0.00	0.00	0.00

- As "marginal" fixed cost ν increases relative to "fixed" fixed ψ :
- Lower synchronization and Lower Kurtosis of price changes

Partial Synchronization, Kurtosis and output IRF

- Model in the paper has infinitely many products in the firm
- In the model all shocks are independent within the firm.
- Firm change prices every τ^{*} periods, to save in "fixed" fixed cost ψ.
- Synchronize price changes, as in $n \rightarrow \infty$ in Alvarez and Lippi.
- But marginal fixed cost $\nu>0$ implies that firm does NOT change all products, just the ones with large price gaps.
- On the other hand, it reduces Kurtosis and reduces output IRF!
- Conjecture: Kurtosis lies between 1 and 3 (in benchmark in paper ≈ 1)
- Please compute Kurtosis of price changes \& cumulative output's IRF!

Estimate τ^{*}, σ^{2} \& area outside inaction

- Estimate (frequency of price changes) N_{a} as usual.
- For σ^{2} can use lemma in $\mathrm{AL}(\mathrm{AER}): N_{a} \operatorname{Var}(\Delta p)=\sigma^{2}$
- Estimate τ^{*} by looking at the peak of the spectral density for the time series of frequency of price changes.
- Given N_{a} and τ^{*} we have an implies area outside threshold $|p|>\bar{x}$.
- We estimate $\tau^{*} \approx 15$ weeks and $N_{a}=0.04$ per week, so area outside is: Area $\approx 0.60=\tau^{*} N_{a}$
- Alternatively, every 15 weeks 40% the products goods change prices.

Estimates of τ^{*}

- Use weekly frequency of price changes (IRI)
- Took store in Chicago area with more goods and 573 weeks of data.
- HP filter weekly frequency for a class for each products (aisle).
- Estimate correlogram for weekly frequency
- Use kernel to estimate spectral density
- Look for the peak on the spectral density

Figure: Weekly Fraction of Price Changes

The graph shows the fraction of price changes in store 282571. A regular price change is defii as in Alvarez et al.(2014). The period plotted starts on January of 2001.

Figure: Power Spectral Density - Yogurt and Tooth Paste

Figure: Power Spectral Density - Spaguetti Sauce and Peanut Butter

Figure: Power Spectral Density - Frozen Pizza and Cereal

Table: Power Spectral Density - Interpretation of Normalized Frequency

\tilde{x}	Period
.03	52 weeks
.076	26 weeks
0.1	20 weeks
0.2	10 weeks
0.3	6.6 weeks
0.4	5 weeks

\tilde{x}	Period
0.5	4 weeks
0.6	3.3 weeks
0.7	2.8 weeks
0.8	2.5 weeks
0.9	2.2 weeks
1	2 weeks

Peak for most product types is around 0.15 , or about 15 weeks.

Other comments

- Hazard rate of price changes
- What is the hazard rate of individual price changes?
- Hazard is positive only in multiple of τ^{*} and increasing in time
- Add Calvo ${ }^{+}$to the model (random menu cost)
- Kurtosis of individual price changes in the model will be closer to the data.
- Very easy, as in the previous paper.
- Better fit with positive frequency every week (see figure store 644)
- How to decide which products are in each "aisle"?

Is the entire firm an "aisle"?

