Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information mode Shleifer *et al* resu

Conclusions

Additional materials

Intrinsic Expectations Persistence

Jeff Fuhrer

¹Federal Reserve Bank of Boston

Preliminary draft March 2019

Disclaimer

Intrinsic Expectations Persistence Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

This paper does not necessarily represent the official views of

- The Federal Reserve System
- The Federal Reserve Bank of Boston
- Although it might

General Motivation

Intrinsic Expectations Persistence

Motivation

- Data
- Summary of ke findings
- Implications What does revision inefficiency mean?
- Results SPF
- Other surveys
- Additional results
- Imperfect information theories Learning Information model Shleifer *et al* result
- Conclusions
- Additional materials

- Expectations are probably quite important to economic decision-making.
 - We assume a lot about expectations.
 - We know less.
 - A good idea to learn more.
 - Quite a few researchers are looking into this now. Good!

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF

Additional results

Imperfect information theories Learning Information models Shleifer et al results

Conclusions Additional • DSGE models employ a number of features to explain persistence in macroeconomic data

- Indexation or rule-of-thumb behavior in pricing
- Habit formation in consumption/output
- Autocorrelated structural shocks

These features add lags/persistence to the models
 Empirical basis for these features?

• In earlier work (JME 2017), I find that intrinsic persistence in expectations may provide a better explanation of macroeconomic persistence

• What is the source of such persistence? Look at micro data.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

- Data
- Summary of key findings
- Implications What does revision inefficiency mean?
- Results SPF Other surveys
- Imperfect information theories Learning Information models Shleifer *et al* result
- Conclusions Additional
- Additional materials

- DSGE models employ a number of features to explain persistence in macroeconomic data
 - Indexation or rule-of-thumb behavior in pricing
 - Habit formation in consumption/output
 - Autocorrelated structural shocks
- These features add lags/persistence to the models
 - Empirical basis for these features?
- In earlier work (JME 2017), I find that intrinsic persistence in expectations may provide a better explanation of macroeconomic persistence
- What is the source of such persistence? Look at micro data.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• DSGE models employ a number of features to explain persistence in macroeconomic data

- Indexation or rule-of-thumb behavior in pricing
- Habit formation in consumption/output
- Autocorrelated structural shocks
- These features add lags/persistence to the models
 - Empirical basis for these features?
- In earlier work (JME 2017), I find that intrinsic persistence in expectations may provide a better explanation of macroeconomic persistence
- What is the source of such persistence? Look at micro data.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

- Data
- Summary of key findings
- Implications What does revision inefficiency mean?
- Results SPF Other surveys
- Additional results
- Imperfect information theories Learning Information models Shleifer *et al* result
- Conclusions
- Additional materials

- DSGE models employ a number of features to explain persistence in macroeconomic data
 - Indexation or rule-of-thumb behavior in pricing
 - Habit formation in consumption/output
 - Autocorrelated structural shocks
- These features add lags/persistence to the models
 - Empirical basis for these features?
- In earlier work (JME 2017), I find that intrinsic persistence in expectations may provide a better explanation of macroeconomic persistence
- What is the source of such persistence? Look at micro data.

Three surveys

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

Other surveys

- Imperfect information theories Learning Information model Shleifer *et al* resul
- Conclusions
- Additional materials

- Survey of professional forecasters (SPF)
- European SPF
- Michigan survey of consumers

bout these sources:

- SPF: Long sample, panel data, many variables, rolling quarter-by-quarter
- ESPF: Shorter sample (1999), panel data, fixed endpoints by year, several variables
- Michigan: Long sample, a few quantitative variables, limited and imperfect panel aspect
 - Consumers are a pretty interesting group. But focus less on them today.
- A key shortcoming for US data: We do not have quantitative data for <u>firms'</u> expectations.

Three surveys

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

- Implications What does revision inefficiency mean?
- SPF
- Other surveys Additional results
- Imperfect information theories Learning Information model Shleifer *et al* result
- Conclusions
- Additional materials

- Survey of professional forecasters (SPF)
- European SPF
- Michigan survey of consumers
- About these sources:
 - SPF: Long sample, panel data, many variables, rolling quarter-by-quarter
 - ESPF: Shorter sample (1999), panel data, fixed endpoints by year, several variables
 - Michigan: Long sample, a few quantitative variables, limited and imperfect panel aspect
 - Consumers are a pretty interesting group. But focus less on them today.
 - A key shortcoming for US data: We do not have quantitative data for <u>firms'</u> expectations.

Three surveys

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

- Implications What does revision inefficiency mean?
- Results SPF
- Other surveys
- Imperfect information theories Learning Information model Shleifer *et al* result
- Conclusions
- Additional materials

- Survey of professional forecasters (SPF)
- European SPF
- Michigan survey of consumers
- About these sources:
 - SPF: Long sample, panel data, many variables, rolling quarter-by-quarter
 - ESPF: Shorter sample (1999), panel data, fixed endpoints by year, several variables
 - Michigan: Long sample, a few quantitative variables, limited and imperfect panel aspect
 - Consumers are a pretty interesting group. But focus less on them today.
 - A key shortcoming for US data: We do not have quantitative data for <u>firms'</u> expectations.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer *et al* result Conclusions

Additional materials

- All forecast revisions *appear* to be inefficient
 Notation: forecast for t + k made in t j is x_{t+k,t-j}
- Recall that an efficient forecast (absent information frictions) should satisfy:

$$X_{t+1,t}^{i} = X_{t+1,t-1}^{i} + News_{t}$$

$$m{R}_t\equiv X^i_{t+1,t}-X^i_{t+1,t-1}=m{N}ews_t$$

• This paper finds that *a* never close to 1 in these regressions: $X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t}$

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t}$$

So revisions appear to add new information inefficiently, i.e.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer et al result Conclusions

Additional materials

- All forecast revisions appear to be inefficient
 - Notation: forecast for t + k made in t j is $x_{t+k,t-j}$
- Recall that an efficient forecast (absent information frictions) should satisfy:

$$X_{t+1,t}^{i} = X_{t+1,t-1}^{i} + News_{t}$$

 $R_{t} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = News_{t}$

• This paper finds that *a* never close to 1 in these regressions: $X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t}$

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t}$$

So revisions appear to add new information inefficiently, i.e.

$$a \neq 1, a << 1, (a - 1) << 0$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer et al result Conclusions

Additional materials

- All forecast revisions appear to be inefficient
 - Notation: forecast for t + k made in t j is $x_{t+k,t-j}$
- Recall that an efficient forecast (absent information frictions) should satisfy:

$$X_{t+1,t}^i = X_{t+1,t-1}^i + News_t$$

 $R_t \equiv X_{t+1,t}^i - X_{t+1,t-1}^i = News_t$

• This paper finds that *a* never close to 1 in these regressions: $X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t}$

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t}$$

So revisions appear to add new information inefficiently, i.e.

$$a \neq 1, a << 1, (a - 1) << 0$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer et al resul Conclusions

Additional materials

- All forecast revisions appear to be inefficient
 - Notation: forecast for t + k made in t j is $x_{t+k,t-j}$
- Recall that an efficient forecast (absent information frictions) should satisfy:

$$X_{t+1,t}^{i} = X_{t+1,t-1}^{i} + News_{t}$$

 $R_{t} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = News_{t}$

• This paper finds that *a* never close to 1 in these regressions: $X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t}$

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t}$$

• So revisions appear to add new information inefficiently, i.e.

$$a \neq 1, a << 1, (a-1) << 0$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer et al resul Conclusions

Additional materials

- All forecast revisions appear to be inefficient
 - Notation: forecast for t + k made in t j is $x_{t+k,t-j}$
- Recall that an efficient forecast (absent information frictions) should satisfy:

$$X_{t+1,t}^{i} = X_{t+1,t-1}^{i} + News_{t}$$

 $R_{t} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = News_{t}$

• This paper finds that *a* never close to 1 in these regressions: $X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t}$

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t}$$

• So revisions appear to add new information inefficiently, i.e.

$$a \neq 1, a << 1, (a-1) << 0$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

• Forecast errors can be predicted using revisions, and the individual forecasters' own forecasts

Error_t
$$\equiv x_{t+1} - x_{t+1,t} = a[x_{t+1,t} - x_{t+1,t-1}] + bx_{t+k,t-j}^{i}$$

$$a, b \neq 0, R^2 >> 0$$

- Revisions enter significantly (could be "diagnostic expectations"), but xⁱ_{t+k,t-j} includes lagged and current idiosyncratic forecasts, all forecaster-provided information.
- This runs counter to noisy information stories: all these forecasts should already be optimally filtered, so forecast errors should not be predicted by them.
 - If they're filtering, they're doing so sub-optimally.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shlelfer *et al* result

Conclusions

Additional materials

• Forecast errors can be predicted using revisions, and the individual forecasters' own forecasts

$$Error_t \equiv x_{t+1} - x_{t+1,t} = a[x_{t+1,t} - x_{t+1,t-1}] + bx_{t+k,t-j}^i$$

$$a, b \neq 0, R^2 >> 0$$

- Revisions enter significantly (could be "diagnostic expectations"), but xⁱ_{t+k,t-j} includes lagged and current idiosyncratic forecasts, all forecaster-provided information.
 - This runs counter to noisy information stories: all these forecasts should already be optimally filtered, so forecast errors should not be predicted by them.
 - If they're filtering, they're doing so sub-optimally.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

• Forecast errors can be predicted using revisions, and the individual forecasters' own forecasts

$$Error_t \equiv x_{t+1} - x_{t+1,t} = a[x_{t+1,t} - x_{t+1,t-1}] + bx_{t+k,t-j}^i$$

$$a, b \neq 0, R^2 >> 0$$

- Revisions enter significantly (could be "diagnostic expectations"), but xⁱ_{t+k,t-j} includes lagged and current idiosyncratic forecasts, all forecaster-provided information.
- This runs counter to noisy information stories: all these forecasts should already be optimally filtered, so forecast errors should not be predicted by them.

If they're filtering, they're doing so sub-optimally.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shlelier *et al* result

Conclusions

Additional materials

• Forecast errors can be predicted using revisions, and the individual forecasters' own forecasts

$$Error_t \equiv x_{t+1} - x_{t+1,t} = a[x_{t+1,t} - x_{t+1,t-1}] + bx_{t+k,t-j}^i$$

$$a, b \neq 0, R^2 >> 0$$

- Revisions enter significantly (could be "diagnostic expectations"), but xⁱ_{t+k,t-j} includes lagged and current idiosyncratic forecasts, all forecaster-provided information.
- This runs counter to noisy information stories: all these forecasts should already be optimally filtered, so forecast errors should not be predicted by them.
- If they're filtering, they're doing so sub-optimally.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

 Forecast revisions are always inefficiently tied to previous forecast

 $R_{t+1,t}^{i} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t} + 1, t$

Solve for forecasts in terms of news:

$$X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t+1,t} + (1-a)\mu$$

$$X_{t+1,t} = \sum_{i=0}^{\infty} a^i N_{t-i,t+1} + \mu$$

When a = 1, µ = 0, efficient forecast = sum of news
When a < 1, µ ≠ 0, news is down-weighted, increasingly into the past (short "memory" → a ≈ 0.5)
Forecast reverts to µ (initial estimate of x, other anchor)
Similar to Tversky and Kahneman "Adjustment and Anchoring?"

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

 Forecast revisions are always inefficiently tied to previous forecast

 $R_{t+1,t}^{i} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t} + 1, t$

• Solve for forecasts in terms of news:

$$X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t+1,t} + (1-a)\mu$$

$$X_{t+1,t} = \sum_{i=0}^{\infty} a^i N_{t-i,t+1} + \mu$$

• When a = 1, $\mu = 0$, efficient forecast = sum of news

increasingly into the past (short "memory" $\rightarrow a \approx 0.5$)

• Forecast reverts to μ (initial estimate of *x*, other anchor)

 Similar to Tversky and Kahneman "Adjustment and Anchoring?"

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

 Forecast revisions are always inefficiently tied to previous forecast

 $R_{t+1,t}^{i} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t} + 1, t$

• Solve for forecasts in terms of news:

$$X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t+1,t} + (1-a)\mu_{\infty}$$

$$X_{t+1,t} = \sum_{i=0}^{\infty} a^{i} N_{t-i,t+1} + \mu$$

• When a = 1, $\mu = 0$, efficient forecast = sum of news

When a < 1, µ ≠ 0, news is down-weighted, increasingly into the past (short "memory" → a ≈ 0.5)
Forecast reverts to µ (initial estimate of x, other anchor)
Similar to Tversky and Kahneman "Adjustment and Anchoring?"

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

information theories Learning Information mod

Conclusions

Additional materials

 Forecast revisions are always inefficiently tied to previous forecast

 $R_{t+1,t}^{i} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t} + 1, t$

Solve for forecasts in terms of news:

$$X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t+1,t} + (1-a)\mu$$

$$X_{t+1,t} = \sum_{i=0}^{\infty} a^{i} N_{t-i,t+1} + \mu$$

• When a = 1, $\mu = 0$, efficient forecast = sum of news

When a < 1, μ ≠ 0, news is down-weighted, increasingly into the past (short "memory" → a ≈ 0.5)
Forecast reverts to μ (initial estimate of x, other anchor)
Similar to Tversky and Kahneman "Adjustment and Anchoring?"

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional result

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

 Forecast revisions are always inefficiently tied to previous forecast

 $R_{t+1,t}^{i} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t} + 1, t$

Solve for forecasts in terms of news:

$$X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t+1,t} + (1-a)\mu_{\infty}$$

$$X_{t+1,t} = \sum_{i=0}^{\infty} a^i N_{t-i,t+1} + \mu$$

• When a = 1, $\mu = 0$, efficient forecast = sum of news

- When a < 1, µ ≠ 0, news is down-weighted, increasingly into the past (short "memory" → a ≈ 0.5)
- Forecast reverts to μ (initial estimate of *x*, other anchor)
- Similar to Tversky and Kahneman "Adjustment and Anchoring?"

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

 Forecast revisions are always inefficiently tied to previous forecast

 $R_{t+1,t}^{i} \equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} + News_{t} + 1, t$

• Solve for forecasts in terms of news:

$$X_{t+1,t}^{i} = aX_{t+1,t-1}^{i} + News_{t+1,t} + (1-a)\mu_{\infty}$$

$$X_{t+1,t} = \sum_{i=0}^{\infty} a^i N_{t-i,t+1} + \mu$$

When a = 1, μ = 0, efficient forecast = sum of news

- When a < 1, μ ≠ 0, news is down-weighted, increasingly into the past (short "memory" → a ≈ 0.5)
- Forecast reverts to μ (initial estimate of *x*, other anchor)
- Similar to Tversky and Kahneman "Adjustment and Anchoring?"

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

• Consider the information frictions in standard models

- Sticky: Agents update information sets when they get a Calvo draw. Upon update, they form rational expectations.
- **Noisy**: Agents update all the time, efficiently filtering out the noise in information and combining with their previous forecast.
- **Diagnostic Expectations:** Agents <u>over</u>-react at the micro level, under-react in the aggregate.

Key empirical questions for these theories

How often do agents update information sets? Do incluidual forecasts for signal processors use all available information efficiently (i.e. efficiently filtering out noise)?

Do forecasters under or over-react to news?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Impertect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

- Consider the information frictions in standard models
 - **Sticky**: Agents update information sets when they get a Calvo draw. Upon update, they form rational expectations.
 - Noisy: Agents update all the time, efficiently filtering out the noise in information and combining with their previous forecast.
 - **Diagnostic Expectations:** Agents <u>over</u>-react at the micro level, under-react in the aggregate.

• Key empirical questions for these theories

How often do agents update information sets? Bo individual forecasts for signal-processors use all available information efficiently (i.e. efficiently filtering out noise)?

Do forecasters under- or over-react to news?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications

What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

- Consider the information frictions in standard models
 - **Sticky**: Agents update information sets when they get a Calvo draw. Upon update, they form rational expectations.
 - Noisy: Agents update all the time, efficiently filtering out the noise in information and combining with their previous forecast.
 - **Diagnostic Expectations:** Agents <u>over</u>-react at the micro level, under-react in the aggregate.
- Key empirical questions for these theories
 - How often do agents update information sets?
 Do individual forecasts for signal-processors use all available information efficiently (i.e. efficiently filtering out noise)?
 - Do forecasters under- or over-react to news?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications

What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

- Consider the information frictions in standard models
 - **Sticky**: Agents update information sets when they get a Calvo draw. Upon update, they form rational expectations.
 - Noisy: Agents update all the time, efficiently filtering out the noise in information and combining with their previous forecast.
 - **Diagnostic Expectations:** Agents <u>over</u>-react at the micro level, under-react in the aggregate.

• Key empirical questions for these theories

 How often do agents update information sets?
 Do individual forecasts for signal-processors use all available information efficiently (i.e. efficiently filtering out noise)?

Do forecasters under- or over-react to news?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications

What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer et al result

Conclusions

Additional materials

- Consider the information frictions in standard models
 - **Sticky**: Agents update information sets when they get a Calvo draw. Upon update, they form rational expectations.
 - Noisy: Agents update all the time, efficiently filtering out the noise in information and combining with their previous forecast.
 - **Diagnostic Expectations:** Agents <u>over</u>-react at the micro level, under-react in the aggregate.
- Key empirical questions for these theories
 - How often do agents update information sets?
 - Do individual forecasts for signal-processors use all available information efficiently (i.e. efficiently filtering out noise)?
 - Do forecasters under- or over-react to news?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

SPF Other surveys Additional results

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• An interesting source of news: Median[$X_{t+k,t-1}^{i}$]

- Not known to participants in period t 1, but known ("news") in period t
- A good aggregator of lagged information?

 In many cases, can express as a "forecast discrepancy" in regressions:

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)[X_{t+1,t-1}^{i} - Median(X_{t+1,t-1}^{i})]$$

• Estimated $a - 1 \simeq -0.5$, *p*-value = 0.000

- No particular reason forecasts should correct toward the lagged discrepancy between their own forecast at t - 1 and the median of t - 1 forecasts
- Don't impose this restriction (include lagged medians), but may be interesting to look at it that way

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

SPF Other surveys Additional results

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• An interesting source of news: Median $[X_{t+k,t-1}^i]$

- Not known to participants in period t 1, but known ("news") in period t
- A good aggregator of lagged information?
- In many cases, can express as a "forecast discrepancy" in regressions:

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)[X_{t+1,t-1}^{i} - Median(X_{t+1,t-1}^{i})]$$

• Estimated $a - 1 \simeq -0.5$, *p*-value = 0.000

- No particular reason forecasts should correct toward the lagged discrepancy between their own forecast at t 1 and the median of t 1 forecasts
- Don't impose this restriction (include lagged medians), but may be interesting to look at it that way

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

SPF Other surveys Additional results

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• An interesting source of news: Median $[X_{t+k,t-1}^i]$

- Not known to participants in period t 1, but known ("news") in period t
- A good aggregator of lagged information?
- In many cases, can express as a "forecast discrepancy" in regressions:

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)[X_{t+1,t-1}^{i} - Median(X_{t+1,t-1}^{i})]$$

• Estimated $a - 1 \approx -0.5$, *p*-value = 0.000

- No particular reason forecasts should correct toward the lagged discrepancy between their own forecast at
 - t-1 and the median of t-1 forecasts
- Don't impose this restriction (include lagged medians), but may be interesting to look at it that way

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

SPF Other surveys Additional results

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• An interesting source of news: Median $[X_{t+k,t-1}^i]$

- Not known to participants in period t 1, but known ("news") in period t
- A good aggregator of lagged information?
- In many cases, can express as a "forecast discrepancy" in regressions:

$$X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)[X_{t+1,t-1}^{i} - Median(X_{t+1,t-1}^{i})]$$

• Estimated $a - 1 \approx -0.5$, *p*-value = 0.000

- No particular reason forecasts should correct toward the lagged discrepancy between their own forecast at
 - t-1 and the median of t-1 forecasts
- Don't impose this restriction (include lagged medians), but may be interesting to look at it that way

The basic result

Intrinsic Expectations Persistence

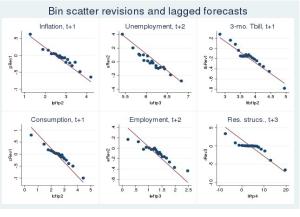
Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF


Additional result

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

Revisions to individual forecasts, various horizons, plotted against t-1 individual forecasts

 $\begin{aligned} R_{t+1}^{i} &\equiv X_{t+1,t}^{i} - X_{t+1,t-1}^{i} = (a-1)X_{t+1,t-1}^{i} \\ (\hat{a}-1) &\cong -0.5 \end{aligned}$

Inflation revisions: Other forecast horizons, control variables

Intrinsic Expectations Persistence

Motivation

Data

Summary of k findings

Implications What does revisio inefficiency mean

Results SPF Other surve

Additional result

Imperiect information theories Learning Information mode Shleifer *et al* resu

Conclusions

Additional materials

$$\pi_{t+1,t}^{i} - \pi_{t+1,t-1}^{i} = (a-1)[\pi_{t+1,t-1}^{i} - \pi_{t+1,t-1}^{Median}] + b\pi_{t-1}^{i} + c\pi_{t+1,t-1}^{Median} + dZ_{t}^{i} + \delta_{t-1}^{i} + dZ_{t-1}^{i} + dZ_{t-$$

Variable	t+1 revision					t+2	t+3
$\pi_{t+1,t-1}^{i} - Med(\pi_{t+1,t-1}^{i})$	-0.56	-0.56	-0.57	-0.55	-0.57	-0.52	-0.59
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Lagged inflation		0.02	0.04	0.04	-0.04	0.05	0.06
		(0.116)	(0.026)	(0.033)	(0.001)	(0.000)	(0.000)
Lagged median			-0.21	-0.29	-0.20	-0.16	-0.20
			(0.000)	(0.001)	(0.001)	(0.000)	(0.000)
Lagged unemployment, T-bill, output				Y	Y		
Additional controls					Y		
Adjusted R-squared	0.16	0.16	0.18	0.17	0.34	0.23	0.28
Observations	3999	3988	3988	3717	3540	3971	3883
Estimation sample: 1981:Q3-2018:Q1							

Other variables: Unemployment

Intrinsic Expectations Persistence

Motivation

Data

Summary of ke findings

Implications What does revision inefficiency mean?

Results SPF

Additional result

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

$$U_{t+1,t}^{i} - U_{t+1,t-1}^{i} = (a-1)[U_{t+1,t-1}^{i} - Med(U_{t+1,t-1})] + bU_{t-1}^{i} + cZ_{t}^{i} + \delta_{i} + \mu_{t-1}^{i} + bU_{t-1}^{i} + bU_{t-1}^{i$$

Variable		<i>t</i> + 1 r	evision		t + 2	t + 3
$[U_{t+1,t-1}^{i} - Med(U_{t+1,t-1})]$	-0.67	-0.68	-0.74	-0.71	-0.56	-0.49
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Lagged unemployment		0.08	0.08	0.13	-0.03	-0.05
		(0.428)	(0.707)	(0.000)	(0.759)	(0.570)
Lagged median		-0.08	-0.07	-0.13	0.04	0.07
		(0.508)	(0.752)	(0.000)	(0.759)	(0.524)
Lagged inflation, t-bill, output			Y	Y		
Additional controls				Y		
Adjusted R-squared	0.21	0.21	0.23	0.78	0.16	0.15
Observations	5817	5807	3796	3542	5764	5503
Estimation sample: 1981:Q3-2	018:Q1					

More variables (financial)

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF

Other surveys Additional results

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

Financial variables

	0-year Tre	easury Yie	eld									
Variable		t+1		t+2	t+3							
$[x_{t+1,t-1}^{\prime} - Med(x_{t+1,t-1})]$	-0.67	-0.68	-0.67	-0.59	-0.53							
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)							
Lagged median		-0.04	-0.06	-0.03	-0.02							
		(0.058)	(0.002)	(0.123)	(0.288)							
Other controls	N	N	Y	N	N							
R-squared	0.19	0.19	0.21	0.17	0.17							
Observations	3176	3176	3045	3160	3047							
BA	A Corpora	ate Bond `	Yield									
Variable		t+1		t+2	t+3							
$[x_{t+1,t-1}^{i} - Med(x_{t+1,t-1})]$	-0.69	-0.66	-0.66	-0.56	-0.57							
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)							
Lagged median		-0.15	-0.27	-0.18	-0.19							
		(0.000)	(0.006)	(0.000)	(0.000)							
Other controls	N	N	Y	N	N							
R-squared	0.27	0.30	0.33	0.26	0.26							
Observations	771	771	735	771	761							

- Revisions <u>always</u> strongly correlated with lagged-viewpoint forecast.
- Absent information frictions, implies very inefficient incorporation of news.
- Lots more results in paper.

Heterogeneity in coefficient a

Motivation

Data

Summary of key findings

Implications What does revisio inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

Distribution of forecaster-specific revision coefficients

Noticeable heterogeneity, but strong centering on significant negative values.

Euro SPF results (note: different information structure)

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of ke findings

Implications What does revision inefficiency mean?

Results

Other surveys

Additional results

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

Inflation Results, Euro SPF, 1999-2018

Y1	Y2	Y1	Y2	Y1	Y2
-0.56	-0.48	-0.59	-0.49	-0.52	-0.51
(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
0.17	0.06	0.16	0.06	0.20	0.07
(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
		Y	Y	Y	Y
				Y	Y
0.19	0.24	0.28	0.25	0.44	0.32
3405	1054	3200	1025	2162	739
	-0.56 (0.000) 0.17 (0.000) 0.19	-0.56 -0.48 (0.000) (0.000) 0.17 0.06 (0.000) (0.000) 0.19 0.24	-0.56 -0.48 -0.59 (0.000) (0.000) (0.000) 0.17 0.06 0.16 (0.000) (0.000) (0.000) Y 0.19 0.24	-0.56 -0.48 -0.59 -0.49 (0.000) (0.000) (0.000) (0.000) 0.17 0.06 0.16 0.06 (0.000) (0.000) (0.000) (0.000) V Y Y 0.19 0.24 0.28 0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

p-values in parentheses

Time-variation in the a coefficient, SPF

20-quarter rolling estimates

Intrinsic Expectations Persistence

Motivation

Data

Summary of ke findings

Implications What does revision inefficiency mean

Results SPF Other surveys Additional results

Imperfect information theories Learning Information mode Shleifer et al resu

Time-variation, other variables

Could these results be construed as evidence in favor of learning?

Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

- No. (See the paper)
- Some evidence of least-squares learning.
- Relatively small changes in estimated coefficients over time.
- Does not substitute for inefficient revisions.

Is this evidence simply a reflection of a standard information problem?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Additional

- Sticky information? (Mankiw and Reis 2002)
- 2 Noisy information? (Maćkowiak and Wiederholt 2009)
- Diagnostic expectations (Bordalo, Gennaioli, Ma and Shleifer 2018)
 - Really nice paper by Coibion and Gorodnichenko (2015) provides this insight:
 - Under first two frameworks, forecast errors in the aggregate should be correlated only with forecast revisions.
 - The micro implications of these models are different.
 We will examine.
 - Their aggregate results can be interpreted as pointing in the direction of information frictions

Is this evidence simply a reflection of a standard information problem?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

SPF

Additional resul

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

- Sticky information? (Mankiw and Reis 2002)
- 2 Noisy information? (Maćkowiak and Wiederholt 2009)
- Diagnostic expectations (Bordalo, Gennaioli, Ma and Shleifer 2018)
 - Really nice paper by Coibion and Gorodnichenko (2015) provides this insight:
 - Under first two frameworks, forecast errors in the aggregate should be correlated only with forecast revisions.
 - The micro implications of these models are different. We will examine.
 - Their aggregate results can be interpreted as pointing in the direction of information frictions

Is this evidence simply a reflection of a standard information problem?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

- Sticky information? (Mankiw and Reis 2002)
- 2 Noisy information? (Maćkowiak and Wiederholt 2009)
- Diagnostic expectations (Bordalo, Gennaioli, Ma and Shleifer 2018)
 - Really nice paper by Coibion and Gorodnichenko (2015) provides this insight:
 - Under first two frameworks, forecast errors in the aggregate should be correlated only with forecast revisions.
 - The micro implications of these models are different. We will examine.
 - Their aggregate results can be interpreted as pointing in the direction of information frictions

Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Additional materials

• Recall that agents update with probability λ , form RE, or

Don't update, no change in expectations.

 Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

- G&C get estimates of λ of about 0.5
- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Additional

- Recall that agents update with probability λ, form RE, or
 Don't update, no change in expectations.
- Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

- G&C get estimates of λ of about 0.5
- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer et al results

Additional

- Recall that agents update with probability $\lambda,$ form RE, or
- Don't update, no change in expectations.
- Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

- G&C get estimates of λ of about 0.5
- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer et al results

Conclusions

Additional materials

- $\bullet\,$ Recall that agents update with probability $\lambda,$ form RE, or
- Don't update, no change in expectations.
- Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

• G&C get estimates of λ of about 0.5

- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer et al results

Conclusions

- Recall that agents update with probability $\lambda,$ form RE, or
- Don't update, no change in expectations.
- Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

- G&C get estimates of λ of about 0.5
- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

- Recall that agents update with probability $\lambda,$ form RE, or
- Don't update, no change in expectations.
- Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

- G&C get estimates of λ of about 0.5
- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

- Recall that agents update with probability $\lambda,$ form RE, or
- Don't update, no change in expectations.
- Implies that on average, forecast errors a function of revisions (Coibion and Gorodnichenko, 2015)

$$x_{t+1} - x_{t+1,t} = \nu_{t+1,t} + \frac{\lambda}{1-\lambda} [x_{t+1,t} - x_{t+1,t-1}]$$

- G&C get estimates of λ of about 0.5
- Micro data: this equation doesn't hold (some update, some don't)
- How many are not updating?
- For those who update, forecasts should be efficient-are they?

How do we know who updates?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results

Other surveys

Additional results

Imperfect information theories Learning Information models

Conclusions

Additional materials

We don't

• How to estimate frequency of update?

- *a priori*: Professional forecasters presumably update very frequently
- Households probably less so-although re-interview may prompt updating
- Revisions data: When revision= 0, may not have updated (Andrade et al use this for Euro SPF data)
- Probably an upper bound on the number of non-updaters

	Percentage of forecasters whose revision equals zero												
	SPF(19	81-20	18)		Michigan	Euro SPF (1999-2018)							
One-q	One-quarter Four-quarter				One-year	1,2,3 or 5-year							
Inflation	Unemp.	Infl.	Unemp.	All	Infl.	Infl.	Unemp.	Growth	All 3				
18.7	20.2	6.2	6.9	1.0	9.4	33.6	29.2	9.2	3.3				

How do we know who updates?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer et al results

Conclusions

Additional materials

We don't

• How to estimate frequency of update?

- *a priori*: Professional forecasters presumably update very frequently
- Households probably less so-although re-interview may prompt updating
- Revisions data: When revision= 0, may not have updated (Andrade et al use this for Euro SPF data)

 Probably an upper bound on the number of non-updaters

	Percentage of forecasters whose revision equals zero												
		SPF(19	81-20	18)		Michigan	Euro SPF (1999-2018)						
	One-quarter Four-quarter				One-year	1,2,3 or 5-year							
In	Iflation	Unemp.	Infl.	Unemp.	All	Infl.	Infl.	Unemp.	Growth	All 3			
	18.7	20.2	6.2	6.9	1.0	9.4	33.6	29.2	9.2	3.3			

How do we know who updates?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

We don't

• How to estimate frequency of update?

- *a priori*: Professional forecasters presumably update very frequently
- Households probably less so-although re-interview may prompt updating
- Revisions data: When revision= 0, may not have updated (Andrade et al use this for Euro SPF data)
- Probably an upper bound on the number of non-updaters

Percentage of forecasters whose revision equals zero												
	SPF(19	81-20	18)		Michigan	Euro SPF (1999-2018)						
One-quarter Four-quarter				One-year	1,2,3 or 5-year							
Inflation	Unemp.	Infl.	Unemp.	All	Infl.	Infl.	Unemp.	Growth	All 3			
18.7	20.2	6.2	6.9	1.0	9.4	33.6	29.2	9.2	3.3			

Do those who appear to update do so efficiently?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of ke findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models

Conclusions

Additional materials

$$x_{t+1} - x_{t+1,t-1}^{i} = a[x_{t+1,t}^{i} - x_{t+1,t-1}^{i}] + bZ_{t-1} + \delta_{i} + e_{t+1}$$

		In	flation erro	rs			Unem	ployment	errors	
Variable	t	t+1	t+1	t+2	t+3	t	t+1	t+1	t+2	t+3
Lagged med.	-0.01	0.12	1.00	0.35	0.24	0.07	0.15	1.44	0.12	0.11
	(0.957)	(0.554)	(0.451)	(0.045)	(0.120)	(0.452)	(0.258)	(0.002)	(0.521)	(0.518)
Revision	-0.10	-0.79	-0.85	-0.90	-0.88	0.05	0.20	0.12	0.29	0.41
	(0.513)	(0.000)	(0.000)	(0.000)	(0.000)	(0.498)	(0.108)	(0.409)	(0.161)	(0.062)
$x_{t+k,t-1}^{i}$	-0.31	-0.78	-0.73	-0.99	-0.88	-0.08	-0.18	-0.24	-0.19	-0.24
	(0.024)	(0.000)	(0.000)	(0.000)	(0.000)	(0.389)	(0.154)	(0.021)	(0.245)	(0.088)
Additional $t - 1$ info [*]			Y					Y		
R-squared	0.07	0.15	0.25	0.16	0.15	0.06	0.10	0.20	0.12	0.14
		Outp	ut growth e	errors		Trea	sury bill e	rrors		
	t	t+1	t+1	t+2	t+3	t	t+1	t+1	t+2	t+3
Lagged med.	0.62	0.56	0.72	0.29	0.67	-0.02	0.23	-0.28	0.26	0.26
	(0.000)	(0.079)	(0.001)	(0.489)	(0.166)	(0.678)	(0.006)	(0.604)	(0.000)	(0.026)
Revision	-0.43	-0.51	-0.53	-0.73	-1.03	0.03	-0.10	-0.12	-0.06	0.00
	(0.000)	(0.000)	(0.0000)	(0.000)	(0.000)	(0.218)	(0.311)	(0.265)	(0.542)	(0.986)
$x_{t+k,t-1}^{i}$	-0.51	-0.64	-0.61	-0.83	-1.04	-0.00	-0.31	-0.34	-0.43	-0.49
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.987)	(0.000)	(0.000)	(0.000)	(0.000)
Additional t – 1 info			Y					Y		
R-squared	0.11	0.08	0.21	0.15	0.24	0.01	0.05	0.10	0.10	0.12

Additional t-1 info"=lagged and current individual forecaster's forecasts

NO. (A bunch more results in the paper, all the same.) True for Michigan survey, too.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories

Information models

Conclusions Additional Simple motivating model from C & G

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{y}_t^i &= \mathbf{x}_t + \omega_t^i \end{aligned}$$

$$x_{t,t}^{i} = Gy_{t}^{i} + (1 - G)x_{t,t-1}^{i}$$
$$x_{t+h,t}^{i} = \rho^{h}x_{t,t}^{i}$$

- Individual forecasts should still efficiently use all information available to the forecaster
- Thus, forecaster errors should not be predictable using information available to the forecaster—especially not their own lagged and current forecasts, which by assumption have already filtered information efficiently.
 If they are, forecasters did not filter efficiently.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions Additional Simple motivating model from C & G

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{y}_t^i &= \mathbf{x}_t + \omega_t^i \end{aligned}$$

$$egin{aligned} & x_{t,t}^{i} = G y_{t}^{i} + (1-G) x_{t,t-1}^{i} \ & x_{t+h,t}^{i} =
ho^{h} x_{t,t}^{i} \end{aligned}$$

- Individual forecasts should still efficiently use all information available to the forecaster
- Thus, forecaster errors should not be predictable using information available to the forecaster—especially not their own lagged and current forecasts, which by assumption have already filtered information efficiently.
 If they are, forecasters did not filter efficiently.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Additional

Simple motivating model from C & G

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{y}_t^i &= \mathbf{x}_t + \omega_t^i \end{aligned}$$

$$egin{aligned} & x_{t,t}^{i} = G y_{t}^{i} + (1-G) x_{t,t-1}^{i} \ & x_{t+h,t}^{i} =
ho^{h} x_{t,t}^{i} \end{aligned}$$

- Individual forecasts should still efficiently use all information available to the forecaster
- Thus, forecaster errors should not be predictable using information available to the forecaster—especially not their own lagged and current forecasts, which by assumption have already filtered information efficiently.
 If they are, forecasters did not filter efficiently.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

Other surveys

Additional results

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

Simple motivating model from C & G

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{y}_t^i &= \mathbf{x}_t + \omega_t^i \end{aligned}$$

Implies forecasts from viewpoint date t

$$egin{aligned} & x_{t,t}^{i} = G y_{t}^{i} + (1-G) x_{t,t-1}^{i} \ & x_{t+h,t}^{i} =
ho^{h} x_{t,t}^{i} \end{aligned}$$

- Individual forecasts should still efficiently use all information available to the forecaster
- Thus, forecaster errors should not be predictable using information available to the forecaster–especially not their own lagged and current forecasts, which by assumption have already filtered information efficiently.

If they are, forecasters did not filter efficiently.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

Other surveys

Additional results

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

Simple motivating model from C & G

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{y}_t^i &= \mathbf{x}_t + \omega_t^i \end{aligned}$$

$$egin{aligned} & x_{t,t}^{i} = G y_{t}^{i} + (1-G) x_{t,t-1}^{i} \ & x_{t+h,t}^{i} =
ho^{h} x_{t,t}^{i} \end{aligned}$$

- Individual forecasts should still efficiently use all information available to the forecaster
- Thus, forecaster errors should not be predictable using information available to the forecaster–especially not their own lagged and current forecasts, which by assumption have already filtered information efficiently.
- If they are, forecasters did not filter efficiently.

Noisy info, test results

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

- Test: Predictable forecast errors? Yes (from previous table). From revisions, and from lots of other regressors.
 - All forecasts dated t or t-1, as submitted by individual forecasters

Test of noisy information (SPF t + 1 forecasts)

Noisy info, test results

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

- Test: Predictable forecast errors? Yes (from previous table). From revisions, and from lots of other regressors.
 - All forecasts dated t or t-1, as submitted by individual forecasters

Test of noisy information (SPF t + 1 forecasts)

	Inflation errors	Unemployment errors
Test, all vars. excl . revision=0	0.000 (0.000)	0.000 (0.000)
R-squared, all information	0.25	0.20
R-squared, revisions only	0.04	0.06
	Output growth errors	Treasury bill errors
Test, all vars. excl . revision=0	0.000 (0.000)	0.000 (0.000)
R-squared, all information	0.21	0.10
R-squared, revisions only	0.01	0.04
<i>p</i> -values in parentheses instrume	nt the revision in the test	regression

This is a strong result about rational inattention/noisy information models

Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys Additional result:

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

- The significant inefficiency of forecast errors with respect to all of the forecaster-specific forecasts constitutes a strong rejection of any such theories.
- Hard to conceive of a model that posits that agents efficiently filter such information to form expectations that is not rejected by these results.

This is a strong result about rational inattention/noisy information models

Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

- The significant inefficiency of forecast errors with respect to all of the forecaster-specific forecasts constitutes a strong rejection of any such theories.
- Hard to conceive of a model that posits that agents efficiently filter such information to form expectations that is not rejected by these results.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

 They use the C-G test regression, linking forecast errors to revisions in micro data, to assess over- or under-reaction

$$\varepsilon_{t+h,t}^{i} \equiv \mathbf{x}_{t+h} - \mathbf{x}_{t+h,t}^{i} = \beta(\mathbf{x}_{t+h,t}^{i} - \mathbf{x}_{t+h,t-1}^{i}) + \mathbf{e}$$

If receive positive news and *under*-react in revision, causes an under-forecast (= negative forecast error A-F); similar for negative news → positive coefficient
 Opposite if *over*-react (receive positive news,

over-react, over-forecast) ightarrow negative coefficient

- In most cases, they find a negative relationship
- Appears consistent with over-reaction to news
- Consistent with "diagnostic expectations"-over-react at micro level, and under-react in aggregate.

Quite different from my findings on <u>under-reaction</u>
Why?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results

SPF Other surveys

Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

• They use the C-G test regression, linking forecast errors to revisions in micro data, to assess over- or under-reaction

$$\varepsilon_{t+h,t}^{i} \equiv x_{t+h} - x_{t+h,t}^{i} = \beta(x_{t+h,t}^{i} - x_{t+h,t-1}^{i}) + e$$

- If receive positive news and *under*-react in revision, causes an under-forecast (= negative forecast error A-F); similar for negative news → positive coefficient
- Opposite if *over*-react (receive positive news, over-react, over-forecast) → negative coefficient
- In most cases, they find a negative relationship
- Appears consistent with over-reaction to news
- Consistent with "diagnostic expectations"-over-react at micro level, and under-react in aggregate.

Quite different from my findings on <u>under-</u>reaction
Why?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results

SPF Other surveys

Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

• They use the C-G test regression, linking forecast errors to revisions in micro data, to assess over- or under-reaction

$$\varepsilon_{t+h,t}^{i} \equiv x_{t+h} - x_{t+h,t}^{i} = \beta(x_{t+h,t}^{i} - x_{t+h,t-1}^{i}) + e$$

- If receive positive news and *under*-react in revision, causes an under-forecast (= negative forecast error A-F); similar for negative news → positive coefficient
- Opposite if *over*-react (receive positive news, over-react, over-forecast) → negative coefficient
- In most cases, they find a negative relationship
- Appears consistent with over-reaction to news
- Consistent with "diagnostic expectations"-over-react at micro level, and under-react in aggregate.

Quite different from my findings on <u>under-reaction</u>
Why?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results

SPF Other surveys

Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

• They use the C-G test regression, linking forecast errors to revisions in micro data, to assess over- or under-reaction

$$\varepsilon_{t+h,t}^{i} \equiv x_{t+h} - x_{t+h,t}^{i} = \beta(x_{t+h,t}^{i} - x_{t+h,t-1}^{i}) + e$$

- If receive positive news and *under*-react in revision, causes an under-forecast (= negative forecast error A-F); similar for negative news → positive coefficient
- Opposite if *over*-react (receive positive news, over-react, over-forecast) → negative coefficient
- In most cases, they find a negative relationship
- Appears consistent with over-reaction to news
- Consistent with "diagnostic expectations"-over-react at micro level, and under-react in aggregate.
- Quite different from my findings on <u>under-reaction</u>
 Why?

Digging into BGMS's results

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

• Test regression: Split revision into two terms:

 Thus the error is associated with t—period forecast, not revision per se

- In most cases, the lagged viewpoint date forecast does not enter significantly at all (note *s)
- What explains the BMGS correlation between error and t-period forecast?

Digging into BGMS's results

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional resu

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

• Test regression: Split revision into two terms:

$$\varepsilon_{t+h,t}^{i} \equiv \mathbf{x}_{t+h} - \mathbf{x}_{t+h,t}^{i} = \beta(\mathbf{x}_{t+h,t}^{i} - \mathbf{x}_{t+h,t-1}^{i}) + \mathbf{e}_{t+h}^{i}$$
$$= \beta_{1}\mathbf{x}_{t+h,t}^{i} + \beta_{2}\mathbf{x}_{t+h,t-1}^{i} + \mathbf{e}_{t+h}^{i}$$

	Un-packing the test regression: p -value for test $\beta_1 + \beta_2 = 0$												
Variable t t+1 t+2 t+3 Variable t t+1 t+2 t+3													
Inflation	0.000	0.000	0.000	0.000	Unemp.	.036	.015	0.0062	0.0033*				
GDP growth	0.040	0.0063	0.000	0.000	T-bill	.012	.0045	0.000*	0.000*				
GDP defl.	0.000*	0.000	0.000	0.000	dEmp	.001*	.0047	0.091*	0.333				
dConsump	0.002	0.000*	0.000	0.000	dRes.	0.000*	0.012	0.000	0.000				
* indicates x ⁱ _{t+}	h,t-1 COE	fficient (B	2) signific	cant at .0	1 level or b	etter							

 Thus the error is associated with t-period forecast, not revision per se

- In most cases, the lagged viewpoint date forecast does not enter significantly at all (note *s)
- What explains the BMGS correlation between error and *t*-period forecast?

Digging into BGMS's results

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys Additional resu

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

Test regression: Split revision into two terms:

Un-packing the test regression: p -value for test $\beta_1 + \beta_2 = 0$									
Variable	Variable t t+1 t+2 t+3 Variable t t+1 t+2 t+3							t+3	
Inflation	0.000	0.000	0.000	0.000	Unemp.	.036	.015	0.0062	0.0033*
GDP growth	0.040	0.0063	0.000	0.000	T-bill	.012	.0045	0.000*	0.000*
GDP defl.	0.000*	0.000	0.000	0.000	dEmp	.001*	.0047	0.091*	0.333
dConsump	0.002	0.000*	0.000	0.000	dRes.	0.000*	0.012	0.000	0.000
* indicates x ⁱ _{t+}	* indicates $x_{t+h,t-1}^{i}$ coefficient (β_2) significant at .01 level or better								

- Thus the error is associated with t-period forecast, not revision per se
- In most cases, the lagged viewpoint date forecast does not enter significantly at all (note *s)
- What explains the BMGS correlation between error and *t*-period forecast?

Digging into BGMS's results

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

• Test regression: Split revision into two terms:

	Un-packing the test regression: p -value for test $\beta_1 + \beta_2 = 0$									
Variable t t+1 t+2 t+3 Variable t t+1 t+2 t+3								t+3		
Inflation	0.000	0.000	0.000	0.000	Unemp.	.036	.015	0.0062	0.0033*	
GDP growth	0.040	0.0063	0.000	0.000	T-bill	.012	.0045	0.000*	0.000*	
GDP defl.	0.000*	0.000	0.000	0.000	dEmp	.001*	.0047	0.091*	0.333	
dConsump	0.002	0.000*	0.000	0.000	dRes.	0.000*	0.012	0.000	0.000	
* indicates x ⁱ _{t+}	* indicates $x_{t+h,t-1}^{i}$ coefficient (β_2) significant at .01 level or better									

- Thus the error is associated with t-period forecast, not revision per se
- In most cases, the lagged viewpoint date forecast does not enter significantly at all (note *s)
- What explains the BMGS correlation between error and t-period forecast?

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shieller *et al* results

Additional

• One possibility: Bias in forecasters' estimates of the *persistence* of macro variables

• Much simplified:

$$\begin{aligned} x_t &= \rho x_{t-1} + \varepsilon_t \\ x_{t+1,t}^i &= \hat{\rho}_i x_t \end{aligned}$$

• Of course this implies an error of

$$Error_{t+1}^{i} = x_{t+1} - x_{t+1,t}^{i} = (\rho - \hat{\rho}_{i})x_{t} + \varepsilon_{t+1}$$

• which in turn implies a covariance of the forecast error with the forecast that depends on $\rho - \hat{\rho}_i$

$$Cov(Error_{t+1}^i, x_{t+1,t}^i) = (\rho - \hat{\rho}_i)\hat{\rho}_i Var(x)$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shieller *et al* results

Additional

- One possibility: Bias in forecasters' estimates of the *persistence* of macro variables
- Much simplified:

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{x}_{t+1,t}^i &= \hat{\rho}_i \mathbf{x}_t \end{aligned}$$

• Of course this implies an error of

Error^{*i*}_{*t*+1} =
$$x_{t+1} - x_{t+1,t}^{i} = (\rho - \hat{\rho}_{i})x_{t} + \varepsilon_{t+1}$$

• which in turn implies a covariance of the forecast error with the forecast that depends on $\rho - \hat{\rho}_i$

$$Cov(Error_{t+1}^{i}, x_{t+1,t}^{i}) = (\rho - \hat{\rho}_{i})\hat{\rho}_{i} Var(x)$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions Additional

- One possibility: Bias in forecasters' estimates of the *persistence* of macro variables
- Much simplified:

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{x}_{t+1,t}^i &= \hat{\rho}_i \mathbf{x}_t \end{aligned}$$

• Of course this implies an error of

$$Error_{t+1}^{i} = x_{t+1} - x_{t+1,t}^{i} = (\rho - \hat{\rho}_{i})x_{t} + \varepsilon_{t+1}$$

• which in turn implies a covariance of the forecast error with the forecast that depends on $\rho - \hat{\rho}_i$

$$Cov(Error_{t+1}^i, x_{t+1,t}^i) = (\rho - \hat{\rho}_i)\hat{\rho}_i Var(x)$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions Additional

- One possibility: Bias in forecasters' estimates of the persistence of macro variables
- Much simplified:

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{x}_{t+1,t}^i &= \hat{\rho}_i \mathbf{x}_t \end{aligned}$$

Of course this implies an error of

$$Error_{t+1}^{i} = x_{t+1} - x_{t+1,t}^{i} = (\rho - \hat{\rho}_{i})x_{t} + \varepsilon_{t+1}$$

• which in turn implies a covariance of the forecast error with the forecast that depends on $\rho - \hat{\rho}_i$

$$Cov(Error_{t+1}^{i}, x_{t+1,t}^{i}) = (\rho - \hat{\rho}_{i})\hat{\rho}_{i} Var(x)$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

- One possibility: Bias in forecasters' estimates of the *persistence* of macro variables
- Much simplified:

$$\begin{aligned} \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t \\ \mathbf{x}_{t+1,t}^i &= \hat{\rho}_i \mathbf{x}_t \end{aligned}$$

Of course this implies an error of

$$Error_{t+1}^{i} = x_{t+1} - x_{t+1,t}^{i} = (\rho - \hat{\rho}_{i})x_{t} + \varepsilon_{t+1}$$

• which in turn implies a covariance of the forecast error with the forecast that depends on $\rho - \hat{\rho}_i$

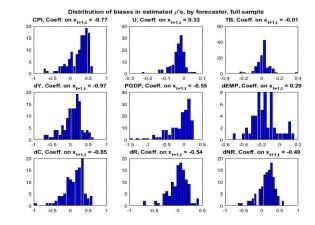
$$Cov(Error_{t+1}^i, x_{t+1,t}^i) = (\rho - \hat{\rho}_i)\hat{\rho}_i Var(x)$$

Biases in estimated autocorrelation

Intrinsic Expectations Persistence Jeff Fuhrer

Motivation

Data


Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* results

Additional

Yes we do. Distributions that skew positive generate negative test coefficients, and vice versa. • 1998-2018 •

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

SPF

Other surveys Additional resul

Imperfect information theories Learning Information models Shleifer et al results

Conclusions

Additional materials

• Micro data reject sticky, noisy information, and diagnostic expectations

Sticky information:

Professionals update all the time, but inefficiently
 Households update less frequently, but not at all efficiently

Noisy information

Individual forecast errors highly predictable

Which they shouldn't be if agents are filtering

information efficiently. They're not.

• Diagnostic expectations

- Micro-data exhibit pervasive <u>under-</u>reaction, not the over-reaction predicted by DE
- BGMS test shown to be a weak test of under- vs over-reaction

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys

Additional result

Imperfect information theories Learning Information models Shleifer et al results

Conclusions

Additional materials

 Micro data reject sticky, noisy information, and diagnostic expectations

- Sticky information:
 - Professionals update all the time, but inefficiently
 - Households update less frequently, but not at all efficiently

Noisy information

 Individual forecast errors highly predictable
 Which they shouldn't be if agents are filtering information efficiently. They're not.

• Diagnostic expectations

- Micro-data exhibit pervasive <u>under-</u>reaction, not the over-reaction predicted by DE
- BGMS test shown to be a weak test of under- vs over-reaction

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

SPF Other surveys

Additional results

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

 Micro data reject sticky, noisy information, and diagnostic expectations

- Sticky information:
 - Professionals update all the time, but inefficiently
 - Households update less frequently, but not at all efficiently
- Noisy information
 - Individual forecast errors highly predictable
 - Which they shouldn't be if agents are filtering information efficiently. They're not.

Diagnostic expectations

- Micro-data exhibit pervasive <u>under-</u>reaction, not the over-reaction predicted by DE
- BGMS test shown to be a weak test of under- vs over-reaction

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results

SPF Other surveys

Additional results

Imperfect information theories Learning Information models Shleifer et al results

Conclusions

Additional materials

 Micro data reject sticky, noisy information, and diagnostic expectations

- Sticky information:
 - Professionals update all the time, but inefficiently
 - Households update less frequently, but not at all efficiently
- Noisy information
 - Individual forecast errors highly predictable
 - Which they shouldn't be if agents are filtering information efficiently. They're not.
- Diagnostic expectations
 - Micro-data exhibit pervasive <u>under-</u>reaction, not the over-reaction predicted by DE
 - BGMS test shown to be a weak test of under- vs over-reaction

Building blocks of a model of expectations formation

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

- Agents are not naïve-they use a fair amount of information
 - May not be fully updated (depends on type of agent)
 - But not a trivial information set
- They do not use information efficiently→hard to explain with a rational filtering story.

They under-react to news at the micro level.

- They smooth through news. The consistency with which they smooth–across agents, variables and time–is striking.
- A related implication is that they forget earlier news at a much more rapid rate than is optimal.

Building blocks of a model of expectations formation

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of ke findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning

Shleifer et al results

Conclusions

Additional materials

- Agents are not naïve-they use a fair amount of information
 - May not be fully updated (depends on type of agent)
 - But not a trivial information set
- They do not use information efficiently → hard to explain with a rational filtering story.
 - They under-react to news at the micro level.
 - Their forecast errors are correlated with their own lagged and current forecasts→ inefficient filtering.
 - They smooth through news. The consistency with which they smooth–across agents, variables and time–is striking.
- A related implication is that they forget earlier news at a much more rapid rate than is optimal.

Building blocks of a model of expectations formation

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of ke findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Imperfect information theories Learning Information models Shleifer *et al* results

Conclusions

Additional materials

- Agents are not naïve-they use a fair amount of information
 - May not be fully updated (depends on type of agent)
 - But not a trivial information set
- They do not use information efficiently → hard to explain with a rational filtering story.
 - They under-react to news at the micro level.
 - Their forecast errors are correlated with their own lagged and current forecasts→ inefficient filtering.
 - They smooth through news. The consistency with which they smooth–across agents, variables and time–is striking.
- A related implication is that they forget earlier news at a much more rapid rate than is optimal.

Building blocks of a model of expectations formation, cont'd.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

 This type of inefficiency could imply a key source of persistence for macro models ("intrinsic expectations persistence")

Take information smoothing as a primitive? Or as a useful reduced-form for now?

Building blocks of a model of expectations formation, cont'd.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

- This type of inefficiency could imply a key source of persistence for macro models ("intrinsic expectations persistence")
- Take information smoothing as a primitive? Or as a useful reduced-form for now?

Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revisio inefficiency mean?

Results SPF Other surveys

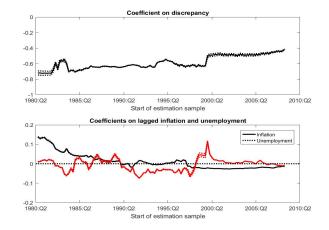
Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

Appendix Materials

Learning vs. inefficient updating



Additional result

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

Common information

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of k findings

Implications What does revisio inefficiency mean?

Results

SPF Other surveys

Additional resu

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

The effect of common information									
Response of forecast revisions to lagged discrepancies between individual forecasts and central tendency									
measures, controlling for revision in aggregate forecast, 1981-2018:Q1									
$\pi_{t+1,t}^{i,SPF} - \pi_{t+1,t-1}^{i,SPF} = \gamma[\pi_{t+1,t-2}^{\textit{Median}} - \pi_{t+1 t-1}^{\textit{Median}}] + \delta[\pi_{t+1,t-1}^{i,SPF} - C(\pi_{t+1,t-1})] + a\pi_{t-1}^{i} + cZ_{t}^{i} + \delta_{i} + \mu_{t} + \varepsilon_{t}^{i}$									
			Inflation re	esults					
Variable		Lagged	revision		(Contempo	raneous r	evision	
$\pi'_{t+1,t-1} - \pi^{Median}_{t+1 t-1}$	-0.56	-0.55	-0.56	-0.53	-0.58	-0.58	-0.56	-0.56	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
$\pi_{t+1,t-1}^{Median} - \pi_{t+1 t-2}^{Median}$		0.11	0.16	0.19					
		(0.386)	(0.204)	(0.172)					
$\pi_{t+1,t}^{Median} - \pi_{t+1 t-1}^{Median}$					0.91	0.88	0.87	0.62	
+++++++++++++++++++++++++++++++++++++++					(0.000)	(0.000)	(0.000)	(0.006)	
π_{t-1}^i	0.02	0.02	0.03	0.03	-0.01	0.00	0.00		
	(0.116)	(0.337)	(0.093)	(0.153)	(0.506)	(0.963)	(0.917)		
$\pi^{Median}_{t+1,t-1}$			-0.24	-0.36		-0.07	-0.07		
			(0.000)	(0.000)		(0.007)	(0.060)		
Additional forecast variables	N	N	N	Y	N	N	Y	Instrumented	
Adjusted R ²	0.16	0.15	0.17	0.17	0.29	0.29	0.28		
Observations	3988	3952	3952	3685	3988	3988	3717	3962	
* "Additional forecast var	iables" inc	clude real-	time estin	nates of la	gged une	mploymer	nt, Treasu	ry bill rate.	

Common information, cont'd.

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivatior

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results

Other surveys

Additional results

Imperfect information theories Learning Information model Shleifer et al result

Conclusions

Additional materials

Unemployment results								
Variable		Lagged revision Contemporaneous revision					evision	
$U_{t+1,t-1}^{i} - U_{t+1 t-1}^{Median}$	-0.68	-0.65	-0.67	-0.72	-0.66	-0.66	-0.70	-0.67
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
$U_{t+1,t-1}^{Median} - U_{t+1 t-2}^{Median}$		0.44	0.53	0.61				
		(0.000)	(0.000)	(0.000)				
$U_{t+1,t}^{Median} - U_{t+1 t-1}^{Median}$					0.96	0.96	0.99	0.99
					(0.000)	(0.000)	(0.000)	(0.000)
U_{t-1}^i	0.01	-0.01	0.26	0.41	0.00	-0.01	-0.00	
	(0.471)	(0.401)	(0.000)	(0.000)	(0.606)	(0.139)	(0.935)	
$U_{t+1,t-1}^{i}$			-0.29	-0.44		0.02	0.00	
			(0.000)	(0.000)		(0.091)	(0.986)	
Additional forecast variables	N	Ν	Ν	Y	N	Ν	Y	Instrumented
Adjusted R-squared	0.21	0.37	0.41	0.45	0.77	0.77	0.79	-
Observations	5807	5363	5363	3764	5807	5807	3796	5371
*"Additional forecast v	ariables"	includes r	eal-time e	estimates	of lagged	inflation, 7	Freasury b	oill rate.

▶ back

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

Michigan responses are rounded to nearest integer Dependent variable (revision) thus truncated

Could cause problems with OLS regression

• How bad is it?

• Setup:

10,000 observations, x = RN(0,1)
 y = -ax + b + 0.5RN(0,1)

 Coefficient
 Raw data
 Rounded to 0.1
 Integer

 -a
 -0.50
 -0.50
 -0.460

 (0.005)
 (0.005)
 (0.006)

 b
 2.00
 2.00
 2.00

 (0.005)
 (0.005)
 (0.006)
 0.006

Similar to modest classical measurement error?

▶ bac

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys Additional result

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

Michigan responses are rounded to nearest integer
 Dependent variable (revision) thus truncated

• Could cause problems with OLS regression

How bad is it?

Setup:

10,000 observations, x = RN(0,1)
 y = -ax + b + 0.5RN(0,1)

• *a* = .5, *b* = 2

> bacl

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

Michigan responses are rounded to nearest integer
 Dependent variable (rovision) thus truncated

- Dependent variable (revision) thus truncated
- Could cause problems with OLS regression
- How bad is it?

• Setup:

```
10,000 observations, x = RN(0,1)
y = -ax + b + 0.5RN(0,1)
a = .5, b = 2
```

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• Michigan responses are rounded to nearest integer

- Dependent variable (revision) thus truncated
- Could cause problems with OLS regression
- How bad is it?
- Setup:
 - 10,000 observations, *x* = *RN*(0, 1)

•
$$y = -ax + b + 0.5RN(0, 1)$$

• *a* = .5, *b* = 2

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Additional results

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

- Michigan responses are rounded to nearest integer
 - Dependent variable (revision) thus truncated
- Could cause problems with OLS regression
- How bad is it?
- Setup:
 - 10,000 observations, *x* = *RN*(0, 1)

•
$$y = -ax + b + 0.5RN(0, 1)$$

Coefficient	Raw data	Rounded to 0.1	Integers
— <i>a</i>	-0.50	-0.50	-0.460
	(0.005)	(0.005)	(0.006)
b	2.00	2.00	2.00
	(0.005)	(0.005)	(0.006)
0			

Similar to modest classical measurement error?

Anchoring to long-run expectations

Intrinsic Expectations Persistence

.

Data

Summary of ke findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys

Additional result

Imperiect information theories Learning Information mod

Conclusions

Additional materials

	SPF inf	lation fore	cast revis	ions, vary	ing horizo	ns		
Revision regres	sions with	the revisi	on in the	long-term	(10-year)	forecast,	full sampl	е
		Rev	ision		Revision			
	t	t+1	t+2	t+3	t	t+1	t+2	t+3
$\pi_{t,t-1}^{i} - \pi_{t t-1}^{Median}$	-0.59				-0.64			
41 · · · · · · · · · · · · · · · · · · ·	(0.000)				(0.000)			
$\pi_{t+1,t-1}^{i} - \pi_{t+1 t-1}^{Median}$		-0.47				-0.48		
(1),, (t+1)t=1		(0.000)				(0.000)		
$\pi_{t+2,t-1}^{i} - \pi_{t+2 t-1}^{Median}$, ,	-0.43			. ,	-0.43	
(+2,(-) (+2)(-)			(0.000)				(0.000)	
$\pi_{t+3,t-1}^{i} - \pi_{t+3 t-1}^{Median}$			()	-0.51			()	-0.52
110,1 1 110,1 1				(0.000)				(0.000)
Lagged revision, 10-yr	-0.43	0.33	0.19	0.08	-0.64	0.31	0.10	-0.06
	(0.425)	(0.057)	(0.288)	(0.692)	(0.223)	(0.120)	(0.592)	(0.777)
Other controls	N	N	N	N	Ý	Y	Ý	Ý
Adjusted R-squared	0.09	0.11	0.15	0.18	0.19	0.12	0.17	0.22
Observations	3252	3251	3239	3166	3000	2999	2991	2947

A quick check: Revision correlations in the SPF

Intrinsic Expectations Persistence

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?

Results SPF Other surveys Additional resu

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

Correlation of revision from viewpoint t - 1 to t with revisions from t - k to t for all k available in SPF dataset, for various

terminal dates t + j

		Terminal dates								
	Inflat	Inflation forecasts			Unemp. forecasts			T-bill forecasts		
Viewpoint	t	t+1	t+2	t	t+1	t+2	t	t+1	t+2	
t-2	0.86	0.71	0.55	0.75	0.74	0.76	0.71	0.75	0.74	
t-3	0.82	0.56	-	0.64	0.62	-	0.55	0.60	-	
t-4	0.80	-	-	0.56	-	-	0.48	-	-	
Observs.	2177	2523	3000	3003	3524	4250	2129	2478	2958	

Null hypothesis is that these correlations are 0, as they reflect "news" (easily rejected)

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

SPF

Additional result

Imperfect information theories Learning Information model Shleifer *et al* resul

Conclusions

Additional materials

• Consider a simple model

$$\pi_t = \beta E_t \pi_{t+1} + \gamma y_t + \varepsilon_t$$
$$y_t = \rho y_{t-1} + u_t$$

 RE solution implies the t and t – 1 period expectations for t + 1:

$$E_{t}\pi_{t+1} = \frac{\rho\gamma}{1-\rho\beta}y_{t}; E_{t-1}\pi_{t+1} = \frac{\rho^{2}\gamma}{1-\rho\beta}y_{t-1}$$

- So the revision is $E_t \pi_{t+1} E_{t-1} \pi_{t+1} = \frac{\rho \gamma}{1 \rho \beta} u_t$, which is just news
- But if revisions are inefficient as in paper, then this implies a smoothed/muted response to news
- Use *t* 1 efficient expectation, and update inefficiently

$$F_t \pi_{t+1} = a E_{t-1} \pi_{t+1} + \frac{\rho \gamma}{1 - \rho \beta} u$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information mode Shleifer *et al* resu

Conclusions

Additional materials

Consider a simple model

$$\pi_t = \beta E_t \pi_{t+1} + \gamma y_t + \varepsilon_t$$
$$y_t = \rho y_{t-1} + u_t$$

RE solution implies the *t* and *t* - 1 period expectations for *t* + 1:

$$\boldsymbol{E}_{t}\boldsymbol{\pi}_{t+1} = \frac{\rho\gamma}{1-\rho\beta}\boldsymbol{y}_{t}; \boldsymbol{E}_{t-1}\boldsymbol{\pi}_{t+1} = \frac{\rho^{2}\gamma}{1-\rho\beta}\boldsymbol{y}_{t-1}$$

- So the revision is $E_t \pi_{t+1} E_{t-1} \pi_{t+1} = \frac{\rho \gamma}{1-\rho \beta} u_t$, which is just news
- But if revisions are inefficient as in paper, then this implies a smoothed/muted response to news
- Use t 1 efficient expectation, and update inefficiently

$$F_t \pi_{t+1} = a E_{t-1} \pi_{t+1} + \frac{\rho \gamma}{1 - \rho \beta} \mu$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model Shleifer *et al* result

Conclusions

Additional materials

• Consider a simple model

$$\pi_t = \beta E_t \pi_{t+1} + \gamma y_t + \varepsilon_t$$
$$y_t = \rho y_{t-1} + u_t$$

RE solution implies the *t* and *t* - 1 period expectations for *t* + 1:

$$\boldsymbol{E}_{t}\boldsymbol{\pi}_{t+1} = \frac{\rho\gamma}{1-\rho\beta}\boldsymbol{y}_{t}; \boldsymbol{E}_{t-1}\boldsymbol{\pi}_{t+1} = \frac{\rho^{2}\gamma}{1-\rho\beta}\boldsymbol{y}_{t-1}$$

• So the revision is $E_t \pi_{t+1} - E_{t-1} \pi_{t+1} = \frac{\rho \gamma}{1-\rho \beta} u_t$, which is just news

But if revisions are inefficient as in paper, then this implies a smoothed/muted response to news
Use t - 1 efficient expectation, and update inefficiently

$$F_t \pi_{t+1} = \mathbf{a} E_{t-1} \pi_{t+1} + \frac{\rho \gamma}{1 - \rho \beta} \mathbf{u}$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

• Consider a simple model

$$\pi_t = \beta E_t \pi_{t+1} + \gamma y_t + \varepsilon_t$$
$$y_t = \rho y_{t-1} + u_t$$

RE solution implies the *t* and *t* - 1 period expectations for *t* + 1:

$$\boldsymbol{E}_{t}\boldsymbol{\pi}_{t+1} = \frac{\rho\gamma}{1-\rho\beta}\boldsymbol{y}_{t}; \boldsymbol{E}_{t-1}\boldsymbol{\pi}_{t+1} = \frac{\rho^{2}\gamma}{1-\rho\beta}\boldsymbol{y}_{t-1}$$

- So the revision is $E_t \pi_{t+1} E_{t-1} \pi_{t+1} = \frac{\rho \gamma}{1-\rho \beta} u_t$, which is just news
- But if revisions are inefficient as in paper, then this implies a smoothed/muted response to news

Use t – 1 efficient expectation, and update inefficiently

$$F_t \pi_{t+1} = a E_{t-1} \pi_{t+1} + \frac{\rho \gamma}{1 - \rho \beta} u$$

Intrinsic Expectations Persistence

Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information mode Shleifer *et al* resu

Conclusions

Additional materials

• Consider a simple model

$$\pi_t = \beta E_t \pi_{t+1} + \gamma y_t + \varepsilon_t$$
$$y_t = \rho y_{t-1} + u_t$$

RE solution implies the *t* and *t* - 1 period expectations for *t* + 1:

$$\boldsymbol{E}_{t}\boldsymbol{\pi}_{t+1} = \frac{\rho\gamma}{1-\rho\beta}\boldsymbol{y}_{t}; \boldsymbol{E}_{t-1}\boldsymbol{\pi}_{t+1} = \frac{\rho^{2}\gamma}{1-\rho\beta}\boldsymbol{y}_{t-1}$$

- So the revision is $E_t \pi_{t+1} E_{t-1} \pi_{t+1} = \frac{\rho \gamma}{1-\rho \beta} u_t$, which is just news
- But if revisions are inefficient as in paper, then this implies a smoothed/muted response to news
- Use *t* 1 efficient expectation, and update inefficiently

$$F_t \pi_{t+1} = \mathbf{a} \mathbf{E}_{t-1} \pi_{t+1} + \frac{\rho \gamma}{1 - \rho \beta} \mathbf{u}$$

Intrinsic Expectations Persistence

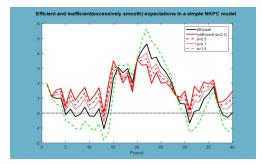
Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?


Results SPF Other surveys Additional result:

Imperfect information theories Learning Information model Shleifer et al result

Conclusions

Additional materials

Efficient and inefficient expectations in NKPC model

• Note: if a>1, implies over-reaction to news

- cf. to BGMS, who find over-reaction
- These are clearly different agents
- Note: a static exercise—no feedback from expectations to realizations.

Intrinsic Expectations Persistence

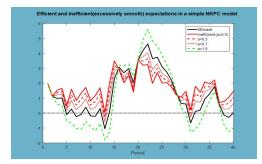
Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?


Results SPF Other surveys Additional result

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

Efficient and inefficient expectations in NKPC model

- Note: if a>1, implies over-reaction to news
- cf. to BGMS, who find over-reaction

These are clearly different agents

 Note: a static exercise—no feedback from expectations to realizations.

Intrinsic Expectations Persistence

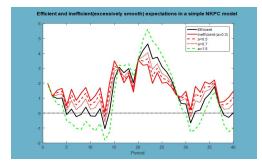
Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?


Results SPF Other surveys Additional results

Imperfect information theories Learning Information mode Shleifer *et al* resu

Conclusions

Additional materials

Efficient and inefficient expectations in NKPC model

- Note: if a>1, implies over-reaction to news
- cf. to BGMS, who find over-reaction
- These are clearly different agents

 Note: a static exercise—no feedback from expectations to realizations.

Intrinsic Expectations Persistence

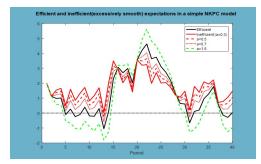
Jeff Fuhrer

Motivation

Data

Summary of key findings

Implications What does revisior inefficiency mean?


Results SPF Other surveys Additional results

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

Efficient and inefficient expectations in NKPC model

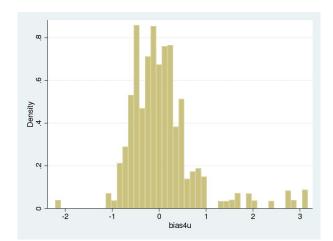
- Note: if a>1, implies over-reaction to news
- cf. to BGMS, who find over-reaction
- These are clearly different agents
- Note: a static exercise-no feedback from expectations to realizations.

Bias by forecaster, 4-qtr. Unemployment rate

Motivation

Data

Summary of key findings


Implications What does revisio inefficiency mean?

Results SPF Other surveys Additional results

Imperfect information theories Learning Information mode Shleifer et al resu

Conclusions

Additional materials

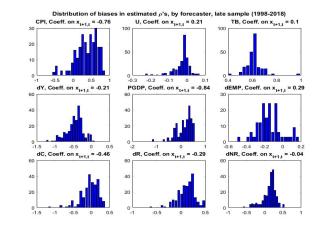
Biases in estimated autocorrelation, 1998-2018

Intrinsic Expectations Persistence Jeff Fuhrer

Motivation

Data

Summary of key findings


Implications What does revision inefficiency mean?

Results SPF Other surveys

Imperfect information theories Learning Information model

Conclusions

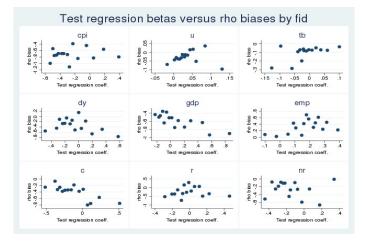
Additional materials

Bin scatter of ρ biases versus test regression $\beta{\rm 's}$

Motivation

Data

Summary of ke findings


Implications What does revisior inefficiency mean?

Results SPF Other surveys Additional resul

Imperfect information theories Learning Information models Shleifer *et al* result

Conclusions

Additional materials

Same result. Distributions that skew positive generate negative test coefficients, and vice versa. • back