Monetary and Macroprudential Policy with Endogenous Risk

Tobias Adrian Fernando Duarte Nellie Liang Pawel Zabczyk

December 2018

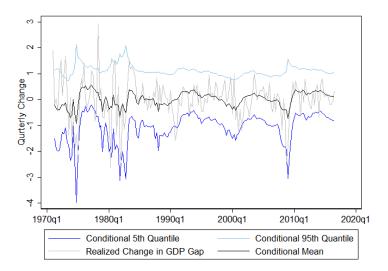
Adrian, Duarte, Liang, Zabczyk Monetary and Macroprudential Policy with Endogenous Risk 12/2018

Disclaimer

- The results are preliminary and incomplete
- The views expressed in the presentation might not reflect the views of the IMF or the Federal Reserve

1. Introduction

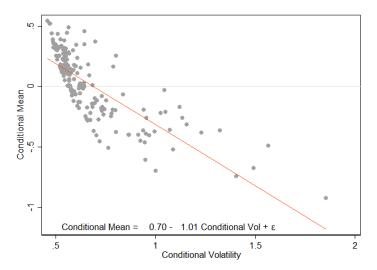
Forecast Distributions

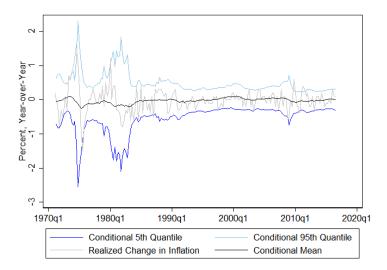

- Policy makers surely want to know the density of state variables (Timmermann (2000))
- But the literature has not yet proposed parsimonious structural models of macroeconomic conditional densities

1. Introduction

NKV

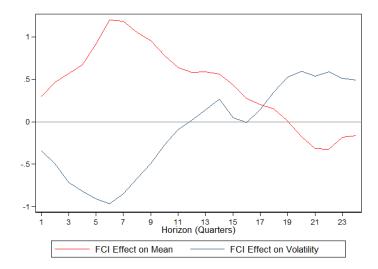
- We present a New Keynesian model with financial vulnerability that matches macroeconomic forecast densities closely
- NKV model: "New Keynesian Vulnerability"
- Movements in risk are linked to state variables


Stylized Fact 1: Financial Variables Predict Tail of Output Gap Distribution


Adrian, Duarte, Liang, Zabczyk

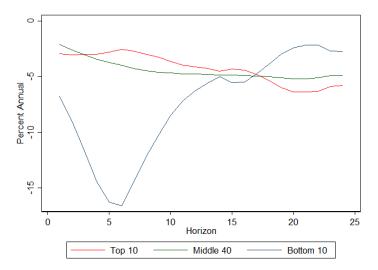
Monetary and Macroprudential Policy with Endogenous Risk

Stylized Fact 2: Output Gap Mean and Variance Correlate Negatively


Stylized Fact 3: Financial Variables Do Not Predict Inflation

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk


Stylized Fact 4: The Volatility Paradox

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Stylized Fact 5: Term Structures of Growth-at-Risk Cross

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Goal: Match the 5 Stylized Facts

- 1. Financial Variables Predict Tail of Output Gap
- 2. Output Gap Mean and Variance Correlate Negatively
- 3. Financial Variables Do Not Predict Inflation
- 4. The Volatility Paradox
- 5. Term Structures of Growth-at-Risk Cross

Goal: Match the 5 Stylized Facts

- 1. Financial Variables Predict Tail of Output Gap
- 2. Output Gap Mean and Variance Correlate Negatively
- 3. Financial Variables Do Not Predict Inflation
- 4. The Volatility Paradox
- 5. Term Structures of Growth-at-Risk Cross
- NKV: Parsimonious DSGE model

Adrian, Duarte, Liang, Zabczyk Monetary and Macroprudential Policy with Endogenous Risk 12/2018 10

Outline

Outline

- 1. Introduction
- 2. Stylized Facts
- 3. The NKV Model
- 4. Matching the Facts
- 5. Monetary Policy
- 6. Macroprudential Policy
- 7. Conclusion

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

The IS Curve

Assume a consumption log pricing kernel with a wedge ω_t

$$m_{t+1} = -\sigma \left(c_{t+1} - c_t \right) - \omega_t$$

The IS Curve

Assume a consumption log pricing kernel with a wedge ω_t

$$m_{t+1} = -\sigma \left(c_{t+1} - c_t \right) - \omega_t$$

By no arbitrage $E_t[m_{t+1}] = -(i_t - E_t[\pi_{t+1}])$

The IS Curve

Assume a consumption log pricing kernel with a wedge ω_t

$$m_{t+1} = -\sigma \left(c_{t+1} - c_t \right) - \omega_t$$

By no arbitrage $E_t[m_{t+1}] = -(i_t - E_t[\pi_{t+1}])$ hence assume

$$m_{t+1} = -(i_t - E_t[\pi_{t+1}]) - \sigma \eta_t \varepsilon_{t+1}^{\mathcal{Y}}$$

Adrian, Duarte, Liang, Zabczyk Monetary and Macroprudential Policy with Endogenous Risk 12/2018 12

The IS Curve

Assume a consumption log pricing kernel with a wedge ω_t

$$m_{t+1} = -\sigma \left(c_{t+1} - c_t \right) - \omega_t$$

By no arbitrage
$$E_t[m_{t+1}] = -(i_t - E_t[\pi_{t+1}])$$
 hence assume

$$m_{t+1} = -(i_t - E_t[\pi_{t+1}]) - \sigma \eta_t \varepsilon_{t+1}^{y}$$

We will assume that the wedge is proportional to the price of risk

$$c_{t+1} - c_t = \frac{1}{\sigma} \left(i_t - E_t[\pi_{t+1}] \right) + \frac{\gamma \eta_t}{\gamma \eta_t} + \frac{\eta_t}{\gamma \eta_t} \varepsilon_{t+1}^{y}$$

Hence consumption features "accelerator" and "endogenous risk"

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

The Endogenous Price of Risk η

Then the output gap is

$$y_{t+1} - y_t = \frac{1}{\sigma} (i_t - E_t[\pi_{t+1}] - r^*) + \gamma(\eta_t - \eta^*) + \eta_t \varepsilon_{t+1}^y$$

The Endogenous Price of Risk η

Then the output gap is

$$y_{t+1} - y_t = \frac{1}{\sigma} \left(i_t - E_t[\pi_{t+1}] - r^* \right) + \gamma(\eta_t - \eta^*) + \eta_t \varepsilon_{t+1}^y$$

 η_t is endogenous risk

$$\eta_t = \sqrt{E_t[y_{t+1}^2] - (E_t[y_{t+1}])^2}$$

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

The Endogenous Price of Risk η

- Assume that the price of risk η is determined by financial intermediaries
- Competitive banks solve the following optimization problem

$$\max_{x_t} x_t \left[E_t[y_{t+1}] - y_t + \frac{1}{\theta} (Vol_t[y_{t+1}] - Vol^*[y] + \varepsilon_t^{\eta} - \xi \varepsilon_{t-1}^{\eta}) \right]$$

The Endogenous Price of Risk η

- Assume that the price of risk η is determined by financial intermediaries
- Competitive banks solve the following optimization problem

$$\max_{x_t} x_t \left[E_t[y_{t+1}] - y_t + \frac{1}{\theta} (Vol_t[y_{t+1}] - Vol^*[y] + \varepsilon_t^{\eta} - \xi \varepsilon_{t-1}^{\eta}) \right]$$

The first order condition is

$$\eta_t = \eta^* - \theta(E_t[y_{t+1}] - y_t) + \varepsilon_t^{\eta} - \xi \varepsilon_{t-1}^{\eta}.$$

- Competition ensures that this first order condition always holds
- Captures the economics of leverage cycles

Adrian, Duarte, Liang, Zabczyk

The NKV Model

The full model also features a standard Phillips curve and Taylor rule

(IS)
$$y_{t+1} - y_t = \frac{1}{\sigma} (i_t - E_t[\pi_{t+1}] - r^*) + \gamma(\eta_t - \eta^*) + \eta_t \varepsilon_{t+1}^y$$

(Vulnerability)
$$\eta_t = \eta^* - \theta(E_t[y_{t+1}] - y_t) + \varepsilon_t^\eta - \xi \varepsilon_{t-1}^\eta$$

(Phillips)
$$\pi_t = \beta E_t[\pi_{t+1}] + \kappa y_t$$

(Taylor Rule)
$$i_t = r^* + \phi_y y_t + \phi_\pi \pi_t$$

Feedback from y to η and η to y

Extension of standard NK model (Woodford (2003), Galí (2015))

Adrian, Duarte, Liang, Zabczyk

Bayesian Estimation and Model Behavior

- Standard NK parameter priors
- Complemented by ML parameter estimates
- For the estimated parameter values our model is saddle-path stable around the zero inflation steady state

Bayesian Estimation and Model Behavior

- Standard NK parameter priors
- Complemented by ML parameter estimates
- For the estimated parameter values our model is saddle-path stable around the zero inflation steady state

Next: The NKV model matches the 5 stylized facts

Adrian, Duarte, Liang, Zabczyk Monetary and Macroprudential Policy with Endogenous Risk 12/2018 16

Stylized Fact 1: Financial Variables Predict Tail of Output Gap Distribution

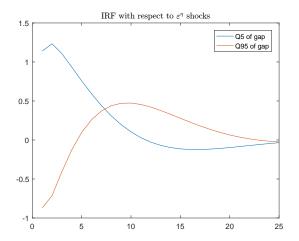
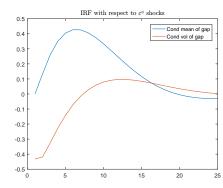
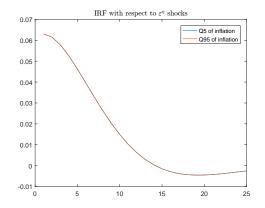


Figure: Conditional density of y_t becomes narrower, then wider after 6 quarters


Adrian, Duarte, Liang, Zabczyk

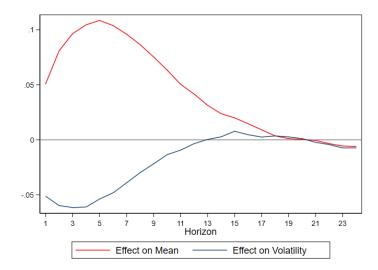
Monetary and Macroprudential Policy with Endogenous Risk


Stylized Fact 2: Output Gap Mean and Variance Correlate Negatively

 $E_{t}\left[y_{t+1}\right] = a + b Vol_{t}\left[y_{t+1}\right] + \varepsilon_{t}$

	Data	Model*
â	0.70	0.95
	(0.06)	
ĥ	-1.01	-1.03
	-1.01 (0.04)	
*Mean over simulations		
with same number of obs.		

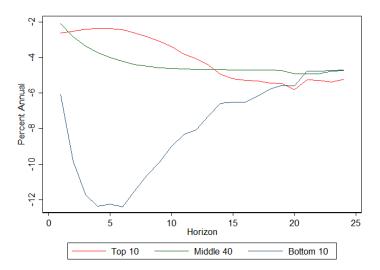
Stylized Fact 3: Financial Variables Do Not Predict Inflation



The size of IRF is 6 basis points and Q5 lies on top of Q95

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk


Stylized Fact 4: The Volatility Paradox

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Stylized Fact 5: Term Structures of Growth-at-Risk Cross

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

NKV Empirical Bottom Line

NKV model features overshooting behavior (Dornbusch (1976))

Crossing of the term structures/volatility paradox

NKV Empirical Bottom Line

- NKV model features overshooting behavior (Dornbusch (1976))
 - Crossing of the term structures/volatility paradox
- NKV captures the 5 stylized facts about the conditional densities

NKV Empirical Bottom Line

- NKV model features overshooting behavior (Dornbusch (1976))
 - Crossing of the term structures/volatility paradox
- NKV captures the 5 stylized facts about the conditional densities
- What are policy implications?

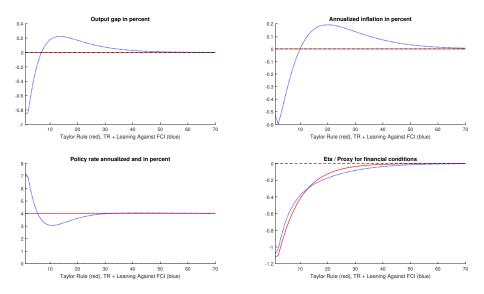
Outline

Outline

- 1. Introduction
- 2. Stylized Facts
- 3. The NKV Model
- 4. Matching the Facts
- 5. Monetary Policy
- 6. Macroprudential Policy
- 7. Conclusion

Adrian, Duarte, Liang, Zabczyk

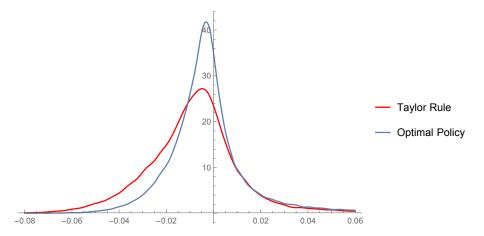
Monetary and Macroprudential Policy with Endogenous Risk 12/2018


Monetary Policy

- Use the NKV model for monetary policy purposes
- Alternative policy paths should account for endogenous risk
- Thus more fully capture the tradeoffs facing policymakers

Monetary Policy

- Use the NKV model for monetary policy purposes
- Alternative policy paths should account for endogenous risk
- Thus more fully capture the tradeoffs facing policymakers
- Alternative policy rules
 - 1. Standard Taylor (1993) rule
 - 2. Adrian and Duarte (2018) rule conditioning on η


Alternative Paths with Endogenous Risk

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Steady State Output Gap Distribution

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk 12/2018

Macroprudential Policy: 3 Steps

- 1. Contemporaneously Effective Macroprudential Policy
- 2. Lagged Effective Macroprudential Policy
- 3. Less Effective Macroprudential Policy

Macroprudential Policy 1: Contemporaneously Effective Macroprudential Policy

$$y_{t+1} - y_t = \frac{1}{\sigma} (i_t - E_t[\pi_{t+1}] - r^*) + \gamma(\eta_t - \eta^*) + \eta_t \varepsilon_{t+1}^y$$

$$\eta_t = -\mu_t + \eta^* - \theta(E_t[y_{t+1}] - y_t) + \varepsilon_t^\eta - \xi \varepsilon_{t-1}^\eta$$

$$\pi_t = \beta E_t[\pi_{t+1}] + \kappa y_t$$

$$i_t = r^* + \phi_y y_t + \phi_\pi \pi_t$$

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk 1

Macroprudential Policy 1: Contemporaneously Effective Macroprudential Policy

Proposition 1: "Divine Coincidence"

Assume that policies are set according to

$$\mu_t = \eta^* + \varepsilon_t^{\eta} - \xi \varepsilon_{t-1}^{\eta}$$
$$i_t = r^*$$

Then

$$y_t = \pi_t = \eta_t = 0$$

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Macroprudential Policy 2: Lagged Effective Macroprudential Policy

$$y_{t+1} - y_t = \frac{1}{\sigma} (i_t - E_t[\pi_{t+1}] - r^*) + \gamma(\eta_t - \eta^*) + \eta_t \varepsilon_{t+1}^y$$

$$\eta_t = -\mu_{t-1} + \eta^* - \theta(E_t[y_{t+1}] - y_t) + \varepsilon_t^\eta - \xi \varepsilon_{t-1}^\eta$$

$$\pi_t = \beta E_t[\pi_{t+1}] + \kappa y_t$$

$$i_t = r^* + \phi_y y_t + \phi_\pi \pi_t$$

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Macroprudential Policy 2: Lagged Effective Macroprudential Policy

Proposition 2: "Divine Coincidence in Expectation"

Assume that policies are set according to

$$\mu_t = \eta^* - \xi \varepsilon_t^{\eta}$$
$$i_t = r^* - \sigma y_t - \sigma \gamma \mu_t$$

Then

$$E_t[y_{t+1}] = 0$$

 $E_t[\pi_{t+1}] = 0$
 $E_t[\eta_{t+1}] = 0$

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Macroprudential Policy 3: Relatively Ineffective Macroprudential Policy

In reality, we do not observe the divine coincidence

This is due to additional constraints on effectiveness:

- 1. Tools do not address all sources of risk
- 2. Implementation lags
- 3. Governance has often shortcomings

Macroprudential Policy 3: Relatively Ineffective Macroprudential Policy

$$y_{t+1} - y_t = \frac{1}{\sigma} (i_t - E_t[\pi_{t+1}] - r^*) + \gamma(\eta_t - \eta^*) + \eta_t \varepsilon_{t+1}^y$$

$$\eta_t = -\mu_{t-4} + \eta^* - \theta(E_t[y_{t+1}] - y_t) + \varepsilon_t^\eta - \xi \varepsilon_{t-1}^\eta$$

$$\pi_t = \beta E_t[\pi_{t+1}] + \kappa y_t$$

$$i_t = r^* + \phi_y y_t + \phi_\pi \pi_t$$

Result: Macroprudential policy is ineffective

Adrian, Duarte, Liang, Zabczyk

Monetary and Macroprudential Policy with Endogenous Risk

Monetary and Macroprudential Policy

- When the divine coincidence does not hold, monetary and macroprudential policy are linked
 - Monetary policy tracks financial conditions and vulnerabilities
 - Cyclical macroprudential policy conditions on monetary policy

7. Conclusion

7. Conclusion

- NKV model features endogenous risk
 - Tractable and parsimonious
 - Matches the conditional output gap distribution
 - Provides a basis for endogenous risk considerations in policy
- Allows joint determination of monetary and macroprudential policies

Literature

- ADRIAN, T., AND F. DUARTE (2018): "Financial Vulnerability and Monetary Policy," Federal Reserve Bank of New York Staff Reports, 804.
- DORNBUSCH, R. (1976): "Expectations and Exchange Rate Dynamics," <u>Journal of</u> <u>Political Economy</u>, 84(6), 1161–1176.
- GALÍ, J. (2015): Monetary Policy, Inflation, and the Business Cycle: an Introduction to the New Keynesian Framework and its Applications. Princeton University Press.
- TAYLOR, J. B. (1993): "Discretion versus Policy Rules in Practice," in Carnegie-Rochester Conference Series on Public Policy, vol. 39, pp. 195–214.
- TIMMERMANN, A. (2000): "Density Forecasting in Economics and Finance," Journal of Forecasting, 19(4), 231–234.
- WOODFORD, M. (2003): Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton University Press.