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Motivation
Key fact of modern growth: structural transformation & differences
in sectoral labor productivity

in the US between 1960 and 2010 annual lab. prod. growth was

I 2.74% in goods
I 1.66% in low-skilled services
I 0.90% in high-skilled services

these growth rates

I are easy to compute from readily available data

I but mask important heterogeneity both within and across
sectors

Goal of this paper: understand the origins of sectoral labor
productivity growth
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Sources of sectoral labor productivity differences

1 sectoral differences in the growth of TFP or of labor augmenting
technologies → tech. change that is biased across sectors

2 differences in capital intensity across sectors

I capital accumulation has different effects

→ computer and traditional capital

3 heterogeneity of workers within a sector

I improvements in the productivity of a subgroup of workers

I AND reallocations between different groups of workers

→ different occupations, performing different tasks
tech. change that is biased across occupations
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Differentiate between occupations

1 since tasks are different, occupations are not perfect substitutes

2 occupations are likely to use different technologies →
composition changes affects a sector’s labor productivity

3 effects of new technologies or other inputs might depend tasks
(e.g. ICT substituting routine workers)

4 Acemoglu and Autor (2011): polarization warrants to move
beyond canonical (skilled vs. unskilled) models. Bárány and
Siegel (2018): polarization started in 1950/1960s.

5 tight connection between changes in sectoral and in
occupational employment
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Sector-occupation hours worked shares 1960-2010
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1 Goods sector most intensive in routine, high-skilled services in
abstract occupations

2 Contraction in goods employment due to routine employment;
most of rise in high-sk. services due to abstract employment

⇒ important to distinguish between occupations when studying
sectoral labor productivity growth
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In this paper

we propose a supply side framework to identify the nature of
technological change → growth accounting

need a model to quantify technological change biased across
factors of production

assume nested CES function in 5 factors
I 3 types of labor: manual, routine and abstract
I 2 types of capital: computer and traditional

allow for productivity growth to be specific to sector & factor
I not taking a stance on biases in any way
I can capture general purpose technologies, sector-specific

innovations, task/occupation-biased technological change, ...

more productivity parameters to identify in this flexible setup,
but can pin down all these productivities from the data
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In this paper

We quantify the importance

→ of changing factor inputs

→ of technological improvements

by calculating sectoral labor productivity growth while holding factor
inputs or technologies at their 1960 level

We examine labor augmenting technological change further

→ use a factor model to decompose the ∆ in sector-occ technologies
into components common to sectors and to occupations

→ evaluate their role in sectoral labor productivity differences
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Data on factor use and factor income shares
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Structural transformation
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Sector-occupation share of hours worked
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Heterogeneity within and between sectors
1 each sector uses all types of occupations

I occupations perform different tasks, and are imperfect
substitutes in production

I polarization in all sectors: the reallocation of employment (and
∆ in wages)

F away from middle-earning routine occupations
F towards low-earning manual and high-earning abstract occ

I main explanation for polarization
F ICT-induced routinization
F substitutes for routine tasks, complements abstract tasks
→ technological change that is biased across occupations OR
→ computer capital deepening

2 differences across sectors
I sectoral and occupational reallocation of employment closely

linked
I capital intensity?
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Labor income share by sector 1947-2017
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ICT and non-ICT capital 1960-2015
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Computer capital across sectors 1970-2015
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We will use these data to back out sector-specific factor augmenting
technologies

1. within sectors: the shares of factor incomes and factor prices

2. across sectors: the relative price across sectors, and the price of
factor inputs

3. over time: the growth of GDP per worker
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Inferring biased technological change
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Sectoral production

⇒ inputs
I three types of occupational labor:

manual (m), routine (r), abstract (a)
I computer capital (c)
I traditional capital (k)

⇒ functional form: nested CES
I computer capital more substitutable with routine labor
I traditional capital also not Cobb-Douglas: differently changing

labor income share by sector

⇒ technological change
I as general as possible: specific to sector & factor input
I allows model to match factor input use and income shares
I do not impose a priori that tech change is specific to sector or

occupation
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Production

nested CES production function in all sectors, J ∈ {L,G ,H}

YJ =
[(

(αmJ lmJ)
ρ−1
ρ +

[
(αrJ lrJ)

σc−1
σc + (αcJcJ)

σc−1
σc

]
σc
σc−1

ρ−1
ρ

+(αaJ laJ)
ρ−1
ρ

)
ρ
ρ−1

σ−1
σ + (αkJkJ)

σ−1
σ

]
σ
σ−1

αoJ sector-occupation specific labor augmenting technology

αcJ , αkJ sector-type specific capital augmenting technology

ρ, σ, σc common across sectors

firms operate under perfect competition: take as given
I the rental rates of ICT and non-ICT capital
I and the sector-occupation specific wage rates
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Optimal input use and relative αs within sectors
→ firm FOCs on manual and abstract labor give

laJ
lmJ

=

(
wmJ

waJ

)ρ(
αaJ

αmJ

)ρ−1

θaJ
θmJ

=

waJ laJ
wmJ lmJ

=

(
wmJ

waJ

)ρ−1(
αaJ

αmJ

)ρ−1

αaJ

αmJ
=

waJ

wmJ

(
θaJ
θmJ

) 1
ρ−1

→ similarly the FOCs on routine labor and computer capital give

αcJ

αrJ
=

Rc

wrJ

(
ΘcJ

(1−ΘJ)θrJ

) 1
σc−1

→ express relative αs in terms of observables and elasticities
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Optimal input use and relative αs within sectors

→ given optimal routine labor/computer capital use, the FOCs on
routine and manual labor imply

αmJ
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=

wmJ
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→ given optimal routine labor/computer capital and optimal
manual/abstract labor use, the FOCs on capital and manual
labor imply
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Relative αs across sectors and over time

→ optimal input use and the FOC on non-ICT capital implies

pJ =
R

αkJ
(ΘJ −ΘcJ)

1
σ−1

αkH

αkG
=

pG
pH

(
ΘH −ΘcH

ΘG −ΘcG

) 1
σ−1

→ can calculate YJ conditional on αmH given lmJ and relative
optimal input use

⇒ evolution of αmH over time pinned down by growth in real GDP
per worker
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Implementation
We need three elasticities

1. elasticity of capital and aggregate labor: σ = 0.8
consensus lies between 0.6 and 0.85

2. elasticity of computer capital and routine labor: σc = 8
consensus is that these are very good substitutes σc � 1.5

3. elasticity between different occupations: ρ = 0.7
values used in the literature between 0.5 and 0.9

We need from the data

labor income shares of occupations within each sector details

sector-occupation wages details

capital & computer capital income share for each sector,
both rental rates details

relative sectoral prices

sector-occ emp shares, growth rate of real GDP per worker
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Growth rates of factor-augmenting technologies

Annualized change in α between 1960 and 2010

occupations capital
manual routine abstract non-ICT ICT

L 0.9894 1.0319 0.9931 1.0096 1.0420
G 0.9299 1.0682 1.0152 0.9762 1.0759
H 0.9869 1.0120 0.9750 1.0224 1.0120

→ amongst all production factors, routine labor and ICT capital
have the highest growth in all sectors

→ differences across sectors in tech progress of a given factor

→ higher measured labor productivity growth in G masks
differential tech progress of factors
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The role of changing input use and technologies
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Quantifying the role

1. of changing input use

I use extracted αs

I fix inputs at initial level

2. of changing technologies

I use actual inputs

I fix αs at initial level
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Role of changing capital inputs
sectoral lab. prod. growth using extracted αs and

FIXED growth rate diff in growth rate
INPUTS L G H G – L G – H
data 1.0166 1.0274 1.0090 0.0108 0.0184
all 1.0127 1.0117 1.0041 -0.0010 0.0076

capital 1.0117 1.0226 1.0008 0.0109 0.0218
non-ICT cap 1.0122 1.0230 1.0020 0.0108 0.0210
ICT cap 1.0161 1.0270 1.0077 0.0109 0.0193

→ changing input use important both for level of growth and
sectoral differences

→ (differential) capital deepening important for level

→ especially non-ICT capital deepening

→ ICT capital deepening not that important
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Role of changing labor inputs
sectoral lab. prod. growth using extracted αs and

FIXED growth rate diff in growth rate
INPUTS L G H G-L G-H
data 1.0166 1.0274 1.0090 0.0108 0.0184
all 1.0127 1.0117 1.0041 -0.0010 0.0076
labor 1.0174 1.0165 1.0116 -0.0009 0.0049

occ shares within sec 1.0158 1.0248 1.0074 0.0090 0.0174
sec emp 1.0183 1.0188 1.0134 0.0005 0.0054

→ changing labor use important for level of growth (in G ) and
sectoral differences

→ occupational employment share changes within sectors have a
rather small effect

→ sectoral employment share changes are important
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Role of changing technologies
sectoral lab. prod. growth using actual factor inputs and

FIXED growth rate diff in growth rate
TECHNOLOGIES L G H G – L G – H
data 1.0166 1.0274 1.0090 0.0108 0.0184
all 1.0024 1.0077 1.0044 0.0053 0.0033

capital 1.0120 1.0391 0.9988 0.0271 0.0403
ICT capital 1.0162 1.0270 1.0085 0.0108 0.0185
non-ICT capital 1.0124 1.0396 0.9992 0.0272 0.0404
labor 1.0083 1.0084 1.0160 0.0001 -0.0076

→ tech. progress key for level of and for differences in growth rates

→ capital-augmenting tech. change increases L & H prod. growth,
and depresses G – driven by non-ICT capital

→ labor-augmenting technological change is key
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Recap of results so far

changing input use important for both level of and differences in
sectoral growth rates

I capital (especially non-ICT) important for level
I changing labor use, especially cross-sector allocation important

for differences

factor-augmenting technological change important for level and
differences

I capital-augmenting tech. change increases L & H prod. growth
and depresses G

I labor-augmenting tech. change key

⇒ closer inspection of labor-augmenting tech. change

are there components common to occupations/sectors?
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Decomposing labor-augmenting tech. change
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Labor augmenting technological change
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Factor model decomposition

Relate cell technology change to a neutral, a sector, an occupation
effect, as well as a residual

∆ lnαoJ,t ≡ lnαoJ,t − lnαoJ,t−1

=βt + γJ,t + δo,t + εoJ,t

where

βt – changes common to all cells

γJ,t – changes common within a sector

δo,t – changes common within an occupation

εoJ,t – changes idiosyncratic to a cell

use weights ωoJ,t =
VAJ,t(1−ΘJ,t)θoJ,t+VAJ,t−1(1−ΘJ,t−1)θoJ,t−1

2
to reflect

relative importance of cells
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Factor model decomposition

∆ lnαoJ,t = βt + γJ,t + δo,t + εoJ,t

restrict average sector effect to be zero∑
o

∑
J ωoJ,tγJ,t = 0 for every t

restrict average occupation effect to be zero∑
J

∑
o ωoJ,tδo,t = 0 for every t

⇒ βt captures average labor augmenting technological change
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Changes due to Sector and Occupation Factors

’Full factor’ technology: ∆̂ lnαoJ,t = β̂t + γ̂J,t + δ̂o,t

’Sector-only’ technology: ∆̂ lnα
sec

oJ,t = β̂t + γ̂J,t

→ shut down differences coming from the occ components

’Occupation-only’ technology: ∆̂ lnα
occ

oJ,t = β̂t + δ̂o,t

→ shut down differences coming from the sec components

’Neutral’ technology: ∆̂ lnα
neut

oJ,t = β̂t
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Predictions based on common components
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Measuring the importance of occupation and

sector components

Distance measure between baseline and predicted ∆ lnαoJ

Dist =

∑
o,J,t ωoJ,t(∆̂ lnαoJ,t −∆ lnαoJ,t)

2∑
o,J,t ωoJ,t(∆ lnαoJ,t −∆ lnα)2

≥ 0

Related to R2, in certain cases R2 = 1− Dist

R2 =

∑
o,J,t ωoJ,t(∆̂ lnαoJ,t −∆ lnα)2∑
o,J,t ωoJ,t(∆ lnαoJ,t −∆ lnα)2
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Contribution of Sector and Occupation Factors
Distance measures for a range of elasticities: ρ ∈ (0.5, 0.9)

ρ neutral full factor sector occupation
0.5 0.814 0.068 0.282 0.431
0.6 0.842 0.095 0.395 0.380
0.7 0.882 0.134 0.556 0.320
0.8 0.933 0.184 0.765 0.266
0.9 0.981 0.233 0.968 0.250

→ labor-augmenting technology is not neutral

→ sector & occupation components jointly explain the evolution of
productivities well

→ occupation component drives a large fraction of this, esp. for
higher elasticities

→ sector component also plays a role
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Role of occupation and sector components
sectoral lab. prod. growth using actual inputs and

counterfactual growth rate diff in growth rate
technologies L G H G-L G-H
data 1.0166 1.0274 1.0090 0.0108 0.0184
neutral 1.0113 1.0101 1.0186 -0.0012 -0.0085
full factor 1.0165 1.0280 1.0083 0.0115 0.0197
sector 1.0141 1.0235 1.0136 0.0094 0.0099
occupation 1.0161 1.0144 1.0167 -0.0017 -0.0023

→ bias in tech. change across cells important

→ joint sector & occupation prod. changes replicate data well

→ neither sec nor occ component alone is enough → points to
interaction between sector and occ component

I note: occupation component is not driving sectoral differences
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Summary

nested CES production function in each sector
I with sector-factor specific productivities
I to allow matching rich pattern of factor income shares across

sectors
I use data to extract productivity paths

analyze role of factor inputs and technologies in measured
sectoral labor productivity

I changing input use important
→ capital deepening for level of growth
→ sectoral labor use for differences

I technological change is key
→ especially labor-augmenting tech. change
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Summary

Examine labor-augmenting technological change

factor model to decompose sector-occupation specific
labor-augmenting tech. change

I sec & occ components jointly explain tech. changes well
I largest role of tech. change that is biased across occupations
I relatively small role for technology biased across sectors

however, for measured sectoral lab. productivity growth both
components are crucial
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Thank you
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Industry classification

1 Low-skilled services: personal services, entertainment, transport,
low-skilled business and repair services (automotive rental and
leasing, automobile parking and carwashes, automotive repair and
related services, electrical repair shops, miscellaneous repair services),
retail trade, wholesale trade

2 Goods: agriculture, forestry and fishing, mining, construction,
manufacturing

3 High-skilled services: professional and related services, finance,
insurance and real estate, communications, high-skilled business
services, communications, utilities, public administration

back
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Occupation classification

1 Manual: low-skilled non-routine
housekeeping, cleaning, protective service, food prep and service,
building, grounds cleaning, maintenance, personal appearance,
recreation and hospitality, child care workers, personal care,
service, healthcare support

2 Routine
farmers, construction trades, extractive, machine operators,
assemblers, inspectors, mechanics and repairers, precision
production, transportation and material moving occupations,
sales, administrative support

3 Abstract: skilled non-routine
managers, management related, professional specialty,
technicians and related support

back
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Occupational income shares 1960-2010
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Source: Authors’ own calculations from US Census, ACS & BEA data back
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Sector-occupation wage rates

wages pinned down by accounting identity:

I income received by occupation o workers in sector J can be
written in two ways

F Y · VAJ(1−ΘJ)θoJ
F woJ loJ

I normalize all prices and wages by nominal GDP

woJ =
VAJ(1−ΘJ)θoJ

loJ

difference from the one implied by the Census: non-wage
compensation included in labor income share

back
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Efficiency labor
→ implicit assumption: each hour worked in a sec-occ cell is the same
→ alternative: Mincer wage regression

logwioJt = δoJt + β′Xit + εioJt

two options:
I construct sec-occ cell efficiency units per hour êioJt
I construct sec-occ cell unit wages ŵoJt → back out

ẽioJt =
labor income of i (in o, J, t)

lioJtŵoJt

take average by cell-year and back out

woJt =
VAJt(1−ΘJt)θoJt

loJteoJt

in both cases the firm chooses noJ ≡ eoJ loJ in each period
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Implied relative wages within sectors
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back
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Additional data
from BEA get for ICT and non-ICT capital:

- price index: pc and pk
- depreciation rate: δc and δk

infer
rental rates from

I no arbitrage between the two types of capital

Rc + (1− δc)p′c
pc

=
R + (1− δk)p′k

pk

I accounting identity

Rk + Rcc =
∑
J

VAJΘJ

income share of ICT capital by sector from

VAJΘcJ = Rc c̃Jc

back
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