Discussion of the paper "From Secular Stagnation to Robocalypse? Implications of Demographic and Technological Changes", by H. Basso and J. Jimeno

Mirko Abbritti

Universidad de Navarra

14th ECB LM Workshop

Background

Very ambitious project that merges elements of different macro trends

- **Demographic changes**: old age dependency rates projected to increase from 20.6% in 1990 to more than 50% in 2050
- New wave of automation, robotics and artificial intelligence: since 2012, the industrial use of robots have increased by 11% per year
- Labour market trends: declining labour income share, reduction of low and middle income workers' employment and wages, polarization, inequality
- **TFP and GDP growth are slowing down**: average TFP growth down from more than 2% to around 0.8%. A new secular stagnation? Are ideas harder to find?

What are the effects of demography on innovation and growth?

- Aksoy, Basso, Smith and Grasl (2018): population ageing and low fertility are projected to reduce output growth, investment and real interest rates
- Acemoglu and Restrepo (2017, 2018): ageing boosts automation, which could boost growth offsetting the direct effects of lower labour force participation and productivity
 - Acemoglu and Restrepo (2018): Cross-country evidence of a *positive* effect of ageing on gdp per capita for 169 countries between 1990-2015

THIS PAPER

New, rich, tractable general equilibrium model with 2 main elements

- Demographic structure á la Gertler (1999)
- Two types of R&D activities:
 - Innovation (creation of new tasks/varieties)
 - Automation (substitute labour with robots)

Main question: How does demographics affect technological change, automation and growth?

Demographic structure and labor

- Tractable OLG structure based on Gertler (1999). Two types of agents workers and retirees who are born, retire and die with fixed probabilities
- Marginal propensity to consume is age-dependent and affected by mortality and fertility
- All workers are employed a fixed share Sw_{RD} in the research sector and the remaining $(1 - Sw_{RD})$ in production
- Workers in the research sector are employed either in automation or in innovation

OBS: In the baseline model, workers do not respond to differences in wages

Production

$$y_t = \left[\int_{0}^{Z_t} y_{it}^{\frac{\psi-1}{\psi}} di\right]^{\frac{\psi}{\psi-1}}$$

Specialized varieties can be produced with labor or robots:

$$y_{it} = \left\{ K_{it}^{\alpha} \left(\theta_{t} M_{it} \right)^{1-\alpha} \right\}^{1-\gamma} Y_{it}^{\gamma} \text{ for } i \in A_{t}$$

$$y_{it} = \left\{ K_{it}^{\alpha} \left(L_{it} \right)^{1-\alpha} \right\}^{1-\gamma} Y_{it}^{\gamma} \text{ for } i \in Z_{t} \setminus A_{t}$$

Robots are produced with production function

$$M_t = \varrho \Omega_t^\eta$$

OBS: Different from Acemoglu and Restrepo (2017, 2018) and Aghion, Jones and Jones (2017)

- Distinction between robots and capital; complementarity capital and labour

- Robots are not a durable factor...

R&D activities

• Innovation: creation of new tasks/varieties sustain long run growth:

$$\frac{Z_{t+1}}{Z_t} = \chi \left(\frac{S_t}{V_t A_t}\right)^{\rho} \left(\frac{L_{lt}}{N_t}\right)^{\kappa_L} + \phi$$

• Automation: over time more tasks are automated

$$\frac{A_{t+1}}{A_t} = \lambda \left(\Xi_t, \frac{L_{A,t}}{N_t} \right) \phi \frac{(Z_t - A_t)}{A_t} + \phi$$

OBS:

- Automation is seen as a subsidiary activity of innovation: long run growth depends on Z_t
- Direct link between population and innovation through $\frac{L_{lt}}{N_{\star}}$
- No impact of investment in automation, robotics, A.I. on innovation (assumption relaxed in an extension)

R&D activities: mechanism

 Value of innovation J_t depends on profits of labour intensive firms and are negatively affected by labour costs and demographic changes

$$\frac{N_t^w}{N_t} \downarrow \Longrightarrow J_t \downarrow \Longrightarrow S_t, L_{lt} \downarrow \Longrightarrow Z_t \downarrow$$

 Value of automation depends on the difference between the value of an automated and a labour intensive good, V_t - J_t

$$\frac{N_t^w}{N_t} \downarrow \Longrightarrow (V_t - J_t) \uparrow \Longrightarrow \Xi_t, L_{At} \uparrow \Longrightarrow A_t \uparrow$$

• Key trade-off: automation increases and can generate short-run growth, but resources are diverted from innovation and the production of new ideas is compromised

Main results:

(1) Ageing boosts automation and lowers wages and labour share

(2) Despite the productivity gains brought by automation, per capita output growth invariably declines

(3) Results are robust to:

- No labour in innovation
- Endogenous movements of workers to R&D sector
- Increases in retirement age
- Different assumptions on productivity of robots
- Robots in R&D sectors

Comments 1: Robots and the Baumol's cost disease

- **Baumol cost disease**: sectors with rapid productivity growth (e.g. agriculture, manufacturing) see their share to GDP decline
 - The relative price of automated goods is declining faster (Aghion, Jones and Jones 2017)).
- In the long run equilibrium, the **relative price of robots** q_t is increasing over time

$$g_q = g^{1-\eta}$$

Is this consistent with empirical evidence?

• Possible solution: assume that over time robots become cheaper to produce

$$\begin{aligned} \varrho_t &= \varrho A_t^{\mu} \text{ in } M_t = \varrho_t \Omega_t^{\eta} \\ \implies g_q = \frac{(g)^{1-\eta}}{g_{\varrho}} = (g)^{1-\eta-\mu} \end{aligned}$$

Problem: Implications for the medium run and long run equilibrium?

Figure 1: The Price of Robots in Six Countries 1990-2005

Graez and Michaels (2018)

Discussion of Basso and Jimeno (2018)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
14th ECB LM Workshop

11 / 15

Comments 2: Spillovers between innovation and automation

- In the *baseline* version of the model there is **no link between automation and innovation**
- Many authors suggest that A.I. and robotics will greatly increase R&D productivity (see e.g. Mokyr 2014, Aghion et al. 2017)
- This issue is discussed very briefly and with a given calibration in an extension, where R&D innovation investment is a CES of labour and robots
- Why don't you consider the possibility of spillovers directly in the baseline model?

$$\frac{Z_{t+1}}{Z_t} = \chi \left(\frac{S_t}{V_t A_t}\right)^{\rho} \left(\frac{L_{lt}}{N_t}\right)^{\kappa_L} \left(\frac{M_{lt}}{N_t}\right)^{\kappa_R} + \phi$$

Comments 3: Labour markets

- In the *baseline* version of the model, there is basically **no labour choice**: labour supply is inelastic, and the R&D share is fixed
- This is a strong assumption: following automation workers are likely to respond to wage differentials and go towards the R&D sector.
- If this mechanism is strong enough, it could actually sustain growth even after population ageing
- In an extension, the paper allows for labour choice, but only for new entrants (which are a small portion of population)

What would happen if labour moves freely across sectors?

Other Comments

Quantitative exercise:

- How sensitive are the results to the specific calibration? Steady state and sensitivity analysis?
 - For example, to achieve balance growth you need $\eta = 0.15$ in $M_t = \varrho_t \Omega_t^{\eta}$.
- How well does the model fit "in sample"? How well does it match evolution between 1990-2007?

How do you reconcile your findings with Acemoglu and Restrepo (2017, 2018)?

Conclusion

- Very nice paper on a very important question
- Well written and quite powerful explanation of the effect of demography on innovation, automation and growth
- A lot of interesting policy implications and directions for future research!
 - Implications for the pension system, social security, health system, fertility choices and policies, immigration policy, etc....