
Non-technical summary

Research Question

Following the financial crisis, bank-internal and supervisory stress testing has gained im-

portance in risk management and supervisory practice. As in any exercise with scarce data

and highly collinear regressors, stress testing is susceptible to model uncertainty. Given the

prominent role of stress tests, quantifying the extent of model uncertainty and developing

tools to mitigate its effects on stress test results is of ample importance for both banks and

supervisors. This paper takes a first step in trying to address both of these challenges.

Contribution

Our contributions are twofold: first, we quantify the impact of model uncertainty on credit

risk stress test results using the German banking sector as an example. We define “model

uncertainty” as the range of stress test results that are supported by equally plausible model

frameworks. Second, we propose a stress testing framework that mitigates the impact of

model uncertainty by considering a battery of different models rather then just one model,

filtering the models for statistical, economic and “stress testing” plausibility and finally

combining the surviving specifications into a single model.

Results

We find that - depending on model specification - the dispersion in predicted increases

of default probabilities during a stress horizon can be huge. In our application they lie

in a range from −90 % to +7, 000 %. This leaves stress test results subject to significant

model uncertainty. Our proposed framework eliminates “stress test implausible” predictions

(relative to a second benchmark model) at both ends of the stressed forecast distribution.

This leads in our application to the German banking sector to a reduction in the median

stress effect, compared to the model without the “stress testing plausibility” filter, from −5.0

pp of CET1 capital to −2.5 pp.



Nicht-technische Zusammenfassung

Fragestellung

Im Zuge der Finanzkrise haben bank-interne und aufsichtliche Stresstests im Risikomana-

gement und in der aufsichtlichen Praxis an Bedeutung gewonnen. Wie alle Übungen, die

versuchen Variablen mit wenigen Beobachtungen und mit stark kollinearen Regressoren zu

prognostizieren, unterliegen auch Stresstests einer Modellunsicherheit, die die Robustheit der

Ergebnisse beeinflussen kann. Vor dem Hintergrund der prominenten Rolle von Stresstests

ist die Quantifizierung der Effekte von Modellunsicherheit auf Stresstestergebnisse und die

Entwicklung von Methoden, um diese zu reduzieren, sowohl für Banken als auch für die

Aufsicht von hoher Relevanz.

Beitrag

Dieses Papier quantifiziert am Beispiel eines Kreditrisikostresstests für das deutsche Ban-

kensystem den Einfluss von Modellunsicherheit auf Stresstestergebnisse. “Modellunsicher-

heit” ist dabei definiert als die Bandbreite möglicher Stresstestergebnisse, die durch zunächst

gleichsam plausible Modelle generiert wird. Wir schlagen einen Modellrahmen vor, der die

Modellunsicherheit reduzieren kann, indem er (anstelle von einem) viele Modelle berücksichtigt,

diese nach statistischer, ökonomischer und
”
Stresstest“-Plausibilität filtert und die verblei-

benden Modelle zu einem einzigen Modell kombiniert.

Ergebnisse

Unsere Ergebnisse legen nahe, dass der Einfluss von Modellunsicherheit auf Stresstester-

gebnisse potentiell stark sein kann. Betrachtet man beispielsweise den Anstieg der Ausfall-

wahrscheinlichkeit über den Stresshorizont, so kann dieser - je nach Modellspezifikation -

zwischen −90 % und +7000 % liegen. Unser Stresstestmodell eliminiert (gemessen an einem

strukturellen Vergleichsmodell) “unplausible” Stressprognosen an beiden Enden der Progno-

severteilung. In unserer Anwendung auf den deutschen Bankenmarkt führt dies dazu, dass

der mediane Stresseffekt von −5.0 Pp der harten Kernkapitalquote auf −2.5 Pp zurück geht.
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1 Introduction

Macro-financial stress tests have become a major supervisory tool for assessing the resilience
and capital needs of financial institutions. The 2009 Supervisory Capital Assessment Pro-
gram (SCAP) conducted by the Federal Reserve Board as a response to the 2008 US banking
crisis, may be regarded as the starting point for using comprehensive supervisory stress test-
ing exercises as a tool to determine capital needs of banks and to restore financial stability.
In the following period, stress tests were used to recapitalize the banking systems of a num-
ber of European crisis countries such as Ireland (2011), Spain (2012) and Greece (2015).
In 2014, the ECB – in collaboration with EBA – carried out one of the most extensive
stress test exercises to date (called the Comprehensive Assessment or CA) which aimed
at ensuring an adequate capitalization of the largest banks in the euro area before taking
over the responsibility for banking supervision of these banks from the national competent
authorities.
More generally, as pointed out in the guidelines for the supervisory review and evaluation
process (SREP) (European Banking Authority, 2014b), outcomes of supervisory stress tests
should be used to assess and calibrate banks’ (Basel II / Basel III) Pillar 2 capital add-
ons. The outcomes of supervisory stress tests thus augment the results of stress tests which
supervisors request banks to carry out as part of their internal risk management processes.
In particular, since Basel II stress tests have had to form an integral part of banks internal
capital adequacy assessment program (ICAAP). The outcomes of the ICAAP are assessed by
supervisors and constitute an important input for the SREP decision, which can lead – like
supervisory stress tests – to additional Pillar 2 capital add-ons.1 Supervisors also ask banks
to use stress test outcomes (including reverse stress tests) to set up their internal recovery
and resolution plans (see for example Financial Stability Board, 2013; European Banking
Authority, 2014c).
Crucially, beginning 2018, the implementation of the IFRS 9 accounting standards extends
the scope of “stress testing” beyond the regulatory and risk-management border to the ac-
counting world. Under IFRS 9, banks are required to switch from the prevailing “incurred
loss accounting” model to the more forward-looking “expected credit loss” (ECL) model
for provisioning. To compute ECL, banks need to take into account any relevant informa-
tion including forward-looking and potentially scenario-dependent factors such as adverse
macroeconomic developments, which is in a similar spirit to conducting a stress test (see
European Banking Authority, 2016b).
Given the importance assigned to outcomes of stress tests for supervisors’ and banks’ deci-
sions, the question must be raised as to how reliable these outcomes are. In recent years,
after supporting the increased usage of internal risk models to calculate capital requirements
since Basel II, supervisors have raised some doubts about the general reliability of the mod-
els used by banks to calculate capital requirements. Supervisory work streams have been
put in place to assess revisions to the internal rating based (IRB) framework due to large
discretions found in banks’ IRB capital requirements calculations (see for example European

1Under Pillar 1 of Basel II/Basel III the minimum capital requirements defined in the Capital Require-
ments Regulation (CRR) are determined based on a unified framework for all banks. Under Pillar 2 (among
others) potentially additional capital needs – using banks internal risk management processes – are assessed.
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Banking Authority, 2013, 2014a), and an updated SREP methodology was introduced which
asks supervisors to challenge banks ICAAP outcomes more strongly by using supervisory
benchmarks (see European Banking Authority, 2014b). More recently, a floor to the cal-
culation of risk-weights under the IRB approach was suggested and, later, agreed on. The
floor limits banks’ discretion in reducing risk weights too far below those of the standardized
approach (see for example Basel Committee on Banking Supervision, 2016).
Supervisory stress tests, like the EBA/ECB CA 2014, aim to cover all relevant risk drivers
for banks’ profitability and solvency. These are generally decomposed to net interest income
(NII), credit risk, market risk and operational risk (see for example European Banking
Authority, 2017). Usually the reduction in NII, which forms lending banks’ fundamental
income source and credit risk, as banks’ major source of losses may be regarded as the
core risk drivers of supervisory stress test outcomes (see for example European Banking
Authority, 2016a).
Regarding the modeling of NII, Bolotny, Edge, and Guerrieri (2015) raise the question about
the reliability of macroeconomic stress test forecasts using an array of different modeling
choices. They come to the conclusion that forecast uncertainty stemming from model risk is
not reflected in the current quantitative capital assessment framework, despite the high level
of model risk prevailing in stress test exercises. Following the lead of Bolotny et al. (2015),
our paper assesses the reliability and the impact of model risk on stress test outcomes from
credit risk. Thereby, we define “model risk” as the range of stress test results (e.g. in terms
of CET1 impact) that are supported by ex ante equally plausible model frameworks.
While model uncertainty is a frequently addressed issue in other research areas such as in
GDP forecasting, unemployment forecasting, growth theory or the analysis of stock returns,
(e.g. Doppelhofer, Miller, and Sala-i-Martin, 2004; Avramov, 2002; Cremers, 2002; Stock
and Watson, 2005; Wright, 2008; Garratt, Mitchell, Vahey, and Wakerly, 2011), this has
hardly featured so far in the literature on credit risk stress testing. This seems rather
surprising, since, in general, the same type of models and set of regressor variables are used
for forecasting default probabilities (PDs) as, for example, in the GDP or unemployment
forecasting literature (see, for example, Wilson, 1997a,b; Sorge and Virolainen, 2006; Castrén,
Dées, and Zaher, 2010; Vazquez, Tabak, and Souto, 2012; Schechtman and Gaglianone, 2012;
Schuermann, 2014; Covas, Rump, and Zakraǰsek, 2014). Possible solutions suggested in the
literature to address model uncertainty are, for instance, the statistical concepts of boosting,
shrinkage or forecast/model combination methods.
The model risk or model uncertainty found in macroeconomic forecasts is usually induced
by scarce data and a highly correlated set of regressors which lead to non-unique parameter
estimates. In such a statistical environment reduced-form models are very sensitive to small
changes in the data and/or the inclusion or exclusion of explanatory variables (see, for
example, Belsley, Kuh, and Welsch, 1980, among other). Stress tests in addition – as pointed
out, for example, by Misina and Tessier (2008) – face the problem that effects at the edge of
the “observation space” of variables are assessed, where linear approximations of regression
based models, focusing on average observations in the sample period, are likely to perform
poorly. This issue is aggravated by the fact that in a scare-data-high-collinearity environment
forecasts outside the observation space suffer from high forecast variability. These issues
translate into additional sources of model uncertainty, since none of the – usually OLS-based
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and linear – models properly describes the true, potentially non-linear relationship.
Credit risk stress test studies which deal explicitly with issues of model uncertainty are –
to our knowledge – restricted to Misina and Tessier (2008), who theoretically emphasize the
need to account for model risk and non-linearity in credit risk stress tests, Henry and Kok
(2013) who use an OLS based model combination approach called Bayesian model averaging
(BMA) to carry out their credit risk stress test exercise, and Gross and Poblacion (2016).2

More implicitly – by attempting to avoid the potential inconsistencies when modeling the
impact of stressed macroeconomic conditions on PDs via OLS – the stress testing approach
suggested by Bonti, Kalkbrener, Lotz, and Stahl (2006), too, can be classified as a study
designed to deal with model risk. Bonti et al. (2006) apply a rather simplistic approach
which builds on the Merton-Vasicek factor model for credit risk (Gupton, Finger, and Bha-
tia, 1997; Vasicek, 2002) underlying for example the Basel II IRB formula to derive risk
weighted assets for credit exposure (Basel Committee on Banking Supervision, 2005). Their
approach rests on a mapping procedure based on historical distributions of the variables.
The historical probability for, say, GDP growth levels assumed in a scenario are translated
to a systemic factor with the same historical probability of occurrence, i.e. a perfectly co-
monotonic relationship is assumed between the two variables. The systemic factor is then
translated into a corresponding PD through the Merton-Vasicek factor model.
Our contributions to the literature on model uncertainty in a stress testing context are
twofold: first, we quantify the effects of model uncertainty on top-down credit risk stress
test results for the German banking sector. To this end, we conduct a comprehensive credit
risk stress test for 1,500 German banks and study the influence of uncertainty in model
specifications that link macro variables to PD dynamics on final stress test results. Second,
we propose a framework to address and mitigate the effects of model uncertainty in top-
down stress test exercises. This framework combines the state-of-the-art BMA approach as
employed, for example, in Henry and Kok (2013) and Gross and Poblacion (2016) with a
structural filter derived from a Merton/Vasciek-type model. The structural filter augments
the reduced-form perspective of state-of-the-art stress testing frameworks with predicted
stress dynamics derived from an economic model rather than from historical correlations.
In a stress testing context historical correlations are less informative than for standard busi-
ness cycle forecasting, since adverse stress scenarios induce dynamics mostly outside of the
observation space. For top-down supervisory credit risk stress tests this issue is oftentimes
aggravated by short time series of credit risk parameters and collinear macro regressors,
which makes predictions outside of the observations space unstable and very sensitive to
model specifications. To mitigate the issue of model uncertainty, the structural filter elimi-
nates specifications from the model space which are deemed “stress test implausible” relative
to the structural benchmark model prior to applying a BMA aggregation. In addition, our
framework extends the baseline BMA model of Gross and Poblacion (2016) to the use out-
of-sample model weights. We resort to out-of-sample weights since the lack of sufficient crisis
observations in historic PD time-series renders a good out-of-sample forecasting performance

2In an application of the general methodology proposed in this paper, Siemsen and Vilsmeier (2017)
conduct a top-down stress test of the German residential mortgage market. Pelster and Vilsmeier (2017)
apply a similar framework to the market for CDS. See their paper for an complementary discussion of the
methodology applied.
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relatively more important than a good in-sample performance.3 Last but not least, to map
the macro scenario to the structural benchmark model, we modify the “quantile mapping”
(QMap) framework of Bonti et al. (2006) in a way that allows it to consider model risk in a
way similar to BMA, i.e. by averaging over the entire set of plausible models in the model
space. We show how one can easily map multiple macro variables to one systematic factor
and, hence, take into account several scenario variables, and how to use the latent factor
approach in a dynamic, multi-period stress test setting.
Our findings have major implications for supervisors as well as for banks. The results of our
stress tests suggest that even when filtering the model space for economically plausible and
statistically sound models, the range of possible stress test outcomes and implied capital
depletions is still huge. For example, in our application of the framework to the German
banking sector we find that for an exemplary sector the unfiltered model space predicts PD
increases due to the adverse macroeconomic scenario in a very wide range between−90 % and
+7, 000 %. Filtering this model space for statistically and economically plausible specification
reduces this range to between 20 % and 500 %. This implies that for the initial sectoral PD
of 2.5 % the stressed PD at the end of the scenario horizon could lie in the range between 3 %
and 15 %. Crucially, since the expected loss model that most top-down credit risk stress tests
employ to predict impairments during the stress horizon is linear in default probabilities,
the model uncertainty in PDs translates directly to dispersion in expected loss and thus
stress outcomes (ceteris paribus). This uncertainty is to be kept in mind when supervisors
and also banks themselves assess the outcomes from ICAAP and supervisory stress tests.
By introducing the additional structural benchmark filter to the model space (benchmark-
constrained BMA or BCBMA), we further reduce model uncertainty related to predicted
PD increases by informing the model space with stress predictions from the structural PD
model. Thereby, model uncertainty is reduced because the benchmark filter is designed
such that it does not suffer from the same qualitative and quantitative ambiguity (due to
the reasons mentioned above) as the reduced-form models. Coming back to the example
sector, the benchmark filter reduces the range of predicted PD increases to between 60 %
and 150 % such that the sectoral initial PD of 2.5 % would end up in a region between 4 % and
6.25 %. Conducting a full-fledged top-down credit risk stress test shows that the reduction
in dispersion can have strong effects on the measured capital shortfall at the aggregate level
and thus on both the qualitative and quantitative interpretation of stress test results. In
our application to the German banking sector, we find the the aggregate capital shortfall
is reduced by 70 % comparing the benchmark constrained with the unconstrained results.
These results suggest that, rather than looking at the outcomes of single models, filtered
model spaces (model confidence sets or MCS) and their related forecast distributions should
be taken into account when assessing banks’ internal (and also supervisors’) models.4

The remainder of this paper is structured as follows. Section 2 sets out our stress testing
framework by describing how we link the macro scenario to credit risk parameters. In
particular, Section 2.1 introduces the BCBMA model. Section 2.3 shows how we translate

3We say “relatively” since the use of out-of-sample weights does not mitigate the issue that a linear model
may not be able to capture non-linear crisis dynamics very well.

4Note that we use the term “model confidence set” with a slight abuse of notation, as unlike MCS in the
Hansen, Lunde, and Nason (2011) sense, we do not conduct a formal testing that the best model is contained
in the MCS with a specific probability.
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stressed credit risk parameter dynamics to bank-specific capital impacts. Section 3 discusses
our data sources. Section 4 elaborates on the effect of model uncertainty on stress test results
by comparing the results for the unfiltered BMA model space, the filtered model space and
the benchmark- constrained model space. Finally, Section 5 concludes.

2 Methodology

Most frameworks for credit risk stress testing resort to an expect loss (EL) model (see, for
instance, Board of Govenors of the Federal Reserve System, 2016; Bank of England, 2017;
European Banking Authority, 2017). This model predicts future impairments due to credit
risk as the estimated losses on defaulted exposures, i.e.

ELt = LGDt × PDt × EaDt , (1)

where LGDt denotes the loss given default, PDt denotes the probability of default over
a given time horizon (e.g. one year) and EaDt denotes the relevant exposure at default.
Therefore, PDt × EaDt is the expected default flow over the defined time horizon. While
expected losses can readily be computed for standard business cycle fluctuations using banks’
internal parameter estimates for PD and LGD, which are, for example, calibrated to his-
torical realizations, computing expected losses in a multi-period stress test context is more
daunting. Here, the credit risk parameters need to be estimated conditional on an adverse
macroeconomic scenario that lies in the very tails of the historical distributions or even be-
yond. Thus, when estimating the co-movement of macro variables and risk parameters in
these crisis times, risk managers and supervisors have to base their estimation on very few,
if any observations.
As an illustration, Figure 1 shows the post-stress percentiles of each country participating in
the 2018 EU-wide stress test in their respective historical GDP growth distribution. While
some countries experience an adverse cumulative GDP growth over the three-year scenario
close to or even above their 20th percentile, most countries experience growth very close to
the left tail of their historical distribution, i.e. growth which has rarely been observed before.
The sparse observation space makes the mapping between the adverse macro scenario and
the credit risk parameters particularly prone to model uncertainty, as the co-movement
during normal business cycle times has to be extrapolated to severe tail events. In most
applications this issue is aggravated by short PD time series, i.e. few, mostly normal times
observations, and highly correlated macro covariates on the right-hand side of the mapping.
Under strong multicollinearity and especially in interaction with few observations, estimation
results become both qualitatively and quantitatively very sensitive to minor changes in model
specification, which makes robust model selection and thus, robust forecasting, very difficult.
To provide some intuition on the degree of collinearity between macro variables, Table B.3
shows the pairwise correlation between the macro variables (in year-on-year growth rates
and deltas) which we use in when defining our macro economic scenarios.5 It shows that,

5Note that in a multivariate setting, pairwise correlation is not a necessary condition for the existence of
collinearity. For a discussion on how multicollinearity affects OLS estimators see e.g. Gunst and Webster
(1975); Gunst and Mason (1977); Belsley et al. (1980).
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not surprisingly, some macro variables are indeed strongly correlated.
However, since stress test results can have both management and supervisory implications,
arriving at robust estimates for expected losses in a stress testing context is of ample impor-
tance for both banks and supervisors. For example, pursuant Article 32(4d) BRRD solvent
banks can receive public bailouts only to close any capital shortfall arising in a supervisory
stress testing exercise. We propose a framework to address and mitigate the effect of model
uncertainty on stress test results by studying the entire model space of all possible model
specification when mapping the adverse macro scenario to credit risk parameters and filter
it for specifications that are statistically, economically and “stress testing” plausible’ before
applying a BMA weighting scheme with out-of-sample weights. Stress testing plausibility is
assessed by augmenting the state-of-the-art reduced-form perspective on stress testing with
a structural benchmark model. To this end, the predictions of the BMA component models
are benchmarked against those of the structural model, and predictions that deviate “too
strongly” from the benchmark constraint are deemed to be “stress testing implausible”.
While our general approach of combining a reduced-form with a structural perspective can
be applied to any of the two risk parameters (PD and LGD) necessary for the expected loss
calculation, this paper applies it only to the estimation of stressed PD dynamics. This is due
mainly to data availability constraints, since time series for LGDs on a sector- or even bank-
level are seldom available in good quality, at least to supervisors, but would be necessary for
our benchmark-constrained BMA approach. In principal, any structural model could be used
to inform the benchmark constrained including sophisticated partial equilibrium credit risk
models (e.g. Corbae, D’Erasmo, Galaasen, Irarrazabal, and Siemsen, 2017) or full-fledged
general equilibrium models (e.g. Clerc, Derviz, Mendicino, Moyen, Nikolov, Stracca, Suarez,
and Vardoulakis, 2015). In our application of the BCBMA framework, we employ a standard
Merton/Vasicek one-factor model, which we believe to be particularly attractive due to its
traceability. In addition, it requires no additional data for calibration relative to the reduced-
form model. We map the macro scenario to the structural PDs using a multivariate QMap
approach.
In the absence of reliable time series, we pursue a more conventional approach for the mod-
eling of stressed LGDs. Here, we apply a constant haircut on stressed LGDs and keep them
constant during the stress horizon.
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Figure 1: GDP growth post-stress percentiles according to the adverse scenario in the EU-wide
stress test 2018

Before we move to a detailed description of the BCBMA framework and an application to
the German banking sector, Figure 2 provides a high-level summary of our framework. Our
model employs a static balance sheet assumption such that initial exposures are affected
only through default flows but not through management actions. As mentioned above, given
the data limitations we face, we pursue asimple approach for stressed LGD modeling. For
modeling stressed PDs we employ our BCBMA framework. To this end, we first compute
the unfiltered model space (MS) for the link between the historical PD time series and the
historical time series of macro variables. To be precise, we choose a standard autoregressive
distributed lag (ADL) model as standard in for stress testing purposes (see, for example,
Henry and Kok, 2013; Gross and Poblacion, 2016) and define the model space as the esti-
mation results of all possible specifications (number of covariates, lag lengths, growth rate
definitions) of this ADL model. We then filter the model space for specifications that are
statistically plausible, economically plausible and - through the benchmark constraint de-
rived from the structural one-factor model - stress test plausible. All specifications that
survive this filtering are then combined through the BMA weighting scheme using out-of-
sample weights. The final BCBMA model is then used to map the adverse macro scenario
to stressed PD time series for the stress horizon. Together with the constant stressed LGD
and the EaD we can compute expected losses according to Equation (1) over a three-year
stress horizon. Finally, stress credit risk parameters and expected losses are translated into
bank-specific capital effects for the 1,500 German banks.
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2.1 BCBMA Framework

The BCBMA model combines the standard BMA approach discussed in Henry and Kok
(2013) with a structural benchmark derived from a Merton/Vasicek-type one-factor model
(see, for example, Bonti et al., 2006). As discussed above, standard BMA is a common
approach to dealing with model uncertainty not only in a stress testing context. For stress
testing, the issue of model uncertainty is aggravated by (1) mostly short time series for
credit risk parameters, i.e. a sparse observation space, (2) often highly correlated macro
covariates, which make model predictions very sensitive to model specification, and (3)
very few (if any) crisis observations, which requires to extrapolate normal times correlations
outside of the observation space. The interaction of those three issues renders robust model
selection and thus robust forecasting conditional on a stress scenario particularily difficult,
since under collinear regressors reliable and stable estimates can only be expected within the
observation space (see, for example, Belsley et al., 1980).6

Since stress test results can have capital and management implications for banks, robust
stress testing models are key for both banks and regulators (for a similar discussion, see
also Gross and Poblacion, 2016; Siemsen and Vilsmeier, 2017). Against this backdrop, BMA
reduces model uncertainty by not only using one particular model specification (mostly the
“best” specification according to some statistical criterion), but combines the information
of the entire model space. Baele, Bruyckere, Jonghe, and Vennet (2015) show for the US
banking sector that by exploiting the full model space, BMA has a superior out-of-sample
forecast performance relative to OLS.
To compute the model space, we first estimate all possible specification of a standard ADL
model that links the PD time series to the macro variables (Henry and Kok, 2013; Gross
and Poblacion, 2016):

∆ log

(
PD

1− PD

)
t

=
K∑
k=1

αk∆ log

(
PD

1− PD

)
t−k

+
L∑
l=0

β′lxt−l + εt , (2)

where ∆ denotes the year-on-year change of the PD time series unbanned from the zero-one
constraint through the logit transformation and xt is a vector of macro variables; K and L
denote the endogenous and exogenous lag lengths, respectively.7

Now, instead of considering one particular specification of Equation (2), we consider various
specifiactions from a filtered subset of the model spaces and apply an averaging approach.
The model space (MS) is defined as the space of all parameter estimates ω = [{αk}K , {β}L]
for all possible specifications of (2), i.e. combinations of K, L ∈ N, all possible combinations
in the set of macro variables x and different definitions of macro variables (quarterly growth
rates, annual growth rates or quarterly and annual deltas).8

6For a discussion of issues related to the extrapolation of normal times co-movements between macro and
bank variables see Corbae et al. (2017).

7The estimation of Equation (2) is done at the sector level s ∈ S. The subscript s is neglected in the
following exposition without loss of information.

8For example, x could contain only one macro variable, are any possible combination of two, three, . . . ,
variables, each potentially in YoY or QoQ growth rates or deltas. The choice between deltas and growth
rates is made under the constraint of stationarity.

9



Under the standard BMA paradigm one would now apply a weighting scheme to combine all
model from the unfiltered model space,M, into a single model (see, for example, Henry and
Kok, 2013). However, due to the strictly combinative algorithm of model specification, many
specifications may not lead to statistically or economic plausible results. As discussed above,
due to the mostly short time series for banks’ credit risk parameters, which may in addition
be dominated by idiosyncratic characteristics of the financial crisis, together with potentially
highly correlated macro covariates, it is well possible, as we show below, that a significant
mass of model inM lies in the statistically and economically implausible region of the model
space. To avoid these models biasing stress test results, we will first filterM to derive a model
confidence set, Ω̄, to which the weighting will be applied. The following paragraphs describe
the different filters in detail. The first two filters for multicollinearity and autocorrelation
in residuals account for statistical plausibility; the third filter, sign restrictions, accounts for
economic plausibility, and the fourth filter, the benchmark constraint, accounts for stress
test plausibility. Note that the menu of filters could readily be extended.

Multicollinearity filter When defining all possible combination of macro covariates in
x (including lags and different frequencies), we only consider variable combinations in each
x in which the pairwise correlation between any two candidate variables is below a certain
threshold γ, i.e. for a given vector of macro variables x̂ = [x̂1, . . . , x̂n] variables x̂i are filtered
out for which

corr(x̂i, x̂j) > γ ,

for at least one j ∈ {1, . . . , n}. Let I1 denote the set of models m ∈M that are filtered out
by the multicollinearity filter, because they include variables x̂i and x̂j at the same time.

Autocorrelation filter Quite straightforwardly, we filter for model specifications for
which the Durbin-Watson test cannot be rejected at the confidence level d, i.e. models
m ∈ I2 with

pDW (m) < d

are filtered out.

Sign restrictions We filter out models m ∈ I3 for which the estimated long-run multiplier
(LRM), θi, of at least one covariate xi ∈ x does not satisfy an exogenously imposed sign
restriction, i.e. for a given sign restriction si on variable xi with i ∈ {1, . . . , n}, a model m
is filtered out if

∃i.sgn(θi) 6= si .

Note that by imposing the restriction on θi instead of βi we do not constrain the impact
response of the endogenous variable, but rather the long-run response after all transitional
dynamics have faded off (see Gross and Poblacion, 2016, for a similiar assumption).

When we stop the filtering process after these three filters, without imposing the benchmark
constraint, we call the induced MCS Ω unconstrained.
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Benchmark constraint To derive the benchmark constraint we employ the standard
Merton/Vasicek one-factor model of credit risk (Vasicek, 2002). The model allows us to
derive a structural dependency between PDs and a systemic factor z, which we interpret as
reflecting general macroeconomic conditions. The adverse macro scenario is mapped to the
structural PDs using a quantile mapping approach (QMap) (Bonti et al., 2006). The QMap
maps the nth quantile of the historical distribution of macro variables to the nth quantile
of the systemic factor distribution which is then translated back into a PD. We extend the
framework of Bonti et al. (2006) by applying a multivariate QMap, which – similar to BMA
– combines all univariate QMaps in to a single model using a weighting scheme.
The intuition for adding the benchmark constraint to the model space is that by augment-
ing the reduced-form BMA perspective with a structural benchmark, we mitigate potential
estimation bias still present in Ω, say, due to the short time series or dominating effects of
single crisis events, which cannot be accounted for solely within the ADL regime. QMap
is a traceable approach to deriving a non-linear relationship between variables and requires
the assumption of a co-monotonic relationship between the variables to be mapped. Using a
QMap approach to map the macro scenario to the Merton/Vasicek PDs guarantees plausible
stress test results since, through the co-monotonicity assumption, a more adverse scenario,
i.e. worse quantiles in the corresponding distributions, always imply higher PDs. Hence, the
QMap is particularly suitable within the “stress test plausibility” filter. A further advan-
tage of using QMap to derive benchmark constraints for the ADL-derived model space M
is that the two model classes are fully independent of each other. Thus, the Merton/Vasicek
benchmarks are not affected by biased or imprecise estimation ofM. Still, we use the Mer-
ton/Vasicek QMap predictions only as an additional filter to the ADL-derived model space,
instead of basing our entire prediction on it, in order to combine two perspectives on PD
forecasts: the reduced-form and the structural perspective. Eventually, the Merton/Vasicek
model, as any other structural model, hinges on another set of assumptions that are not
necessarily weaker than those assumed for unbiased OLS estimates.
Following Vasicek (2002), we assume that the charter value of borrower j in quarter t, Vj,t, is
driven by a systemic factor zt and an idiosyncratic factor uj,t. By assumption, both factors
are standard normally distributed. We assume that the law of motion for Vj,t is given by

Vj,t = ρzt +
√

1− ρ2uj,t ,

where ρ captures the strength of the dependency between charter value and systemic factor,
i.e. the larger ρ, the more the charter value and thus the PD will move together with macro
conditions. Borrower j defaults if her charter value drops below an exogenous threshold D.
Therefore, the probability of default conditional on the realization of zt is given by

PDj,t =P (Vj,t < D) = P
(
ρzt +

√
1− ρ2uj,t < D

)
=P

(
uj,t <

D − ρzt√
1− ρ2

)
= Φ

(
D − ρzt√

1− ρ2

)
= PDt , (3)

where Φ denotes the standard normal cumulative distribution function. Equation (3) gives a
structural dependency between the PD, on the one hand, and the systemic factor z and the
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two parameters ρ and D on the other hand. Assuming we would observe zt under stressed
macroeconomic conditions, this equation would give us the corresponding PD dynamics.
Therefore, in the next step we link the macro variables to the systemic factor in order to
be able to compute zt conditional on the adverse macro scenario. We do so by mapping the
quantiles of the historical distributions of the macro variable xt = [x1, . . . , xn], {Fxi}ni=1 to
the quantiles of the zt distribution, Fz, using a QMap model averaging. Given our initial
model assumptions Fz = Φ.
Let ˜PDt and z̃t denote the empirical counterparts for PDt and zt, respectively. Given an
observed PD time series (on the aggregate, sector or bank level) and calibrations for D and
ρ (discussed in Section 3.3), we can derive the implied time series for the systemic factor by
solving (3) for z̃t:

z̃t =
D − Φ−1( ˜PDt)

√
1− ρ2

ρ
(4)

To derive {Fxi}ni=1, we first standardize and transform x in order to impose a negative co-
monotonic relationship between PD and all elements in x (a deterioration in macro condi-
tions induces an increase in PD). The co-monotonicity assumption is required for the QMap
in order to preserve the correct ranking of the percentiles between the two distributions (the
nth percentile must correspond to the nth worst realization in both Fxi and Fz, where, for
example, a worse realization implies a higher percentile in the unemployment distribution
but a lower percentile in the GDP growth distribution). To be precise

x̃i,t = Ii
xi,t − x̄i
σxi

,

where x̄i denotes the time average of xi,t and Ii = ±1 such that a negative co-monotonicity
between xi and the PD can be expected. We estimate {Fx̃i}ni=1 by fitting a univariate skewed
t distribution on the time series of each element of x̃t using the maximum likelihood estimator
(see Theodossiou, 1998). The skewed t distribution is very flexible, nesting the t distribution,
the normal distribution and the Cauchy distribution as special cases (see Hansen, McDonald,
and Newey, 2010), and is heavy-tailed, which makes it suitable for our application in the
benchmark filter since higher probabilities are assigned to adverse macro conditions relative
to a standard normal distribution. Crucially, when computing stressed PD predictions, we
dynamically update the calibration of ρ and D after each stress period using updated time
series for {x̃i}ni=1 and ˜PDt. This dynamic approach amplifies the stress implied by the QMap
as discussed in Section 3.3. Following Bonti et al. (2006) a univariate QMap would now map
the percentiles of the of each macro time series x̃i,t on the corresponding percentile of Fz,
i.e.

ẑi,t = F−1
z (Fx̃i(x̃i,t)) ,

and choose the macro variable x?i that minimizes the RMSE between z̃t and ẑt. We pursue a
slightly different route by not considering only one macro variable in the QMap but rather
combining all univariate QMaps into a single model using a flexible weighting scheme. Thus,
the QMap model averaging is similar in spirit to BMA, as no information from the model
space is thrown away. Thus, we map the macro variables xt to the systemic factor z through
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ẑt = F−1
z

(
n∑
i=1

πiFx̃i(x̃i,t)

)
, (5)

where the weights πi of are computed as πi =
(

1− RMSEi

maxi(RMSEi)

)k
and RMSEi is the in-

sample root mean squared error of the univariate QMap using xi and k is chosen such that
the RMSE of the combined model is minimized. By plugging the time series of stressed
macro variables into Equation (5) we derive the Merton/Vasicek-implied stressed PD time
series using Equation (3).
Finally, we derive the benchmark constraint by defining a region in Ω where the scenario-
implied PD increases over the stress horizon must lie for them to be “stress test plau-
sible”. Let t ∈ {−1, 0, . . . , T} denote the stress horizon such that ˆPD−1 denotes the
Merton/Vasicek-implied PD one year prior to the stress horizon, ˆPD0 denotes the initial
Merton/Vasicek-implied PD pre stress and ˆPDT denotes the Merton/Vasicek-implied PD at
the end of the stress horizon. Then, we define the benchmark constraint as

c =
Φ
(

Φ−1
(
µ
(
{ ˆPD}Tt=1

))
± υ
)

µ
(
{ ˆPD}0

t=−1

) , (6)

where µ(·) denotes the mean operator and

υ = ῡ ×
(
Φ−1 (PD0(1 + σPD))− Φ−1 (PD0)

)
, (7)

ῡ being a parameter, PD0 being the last PD observation pre stress and σPD being the
historical PD volatility. υ defines the width of the region around the Merton/Vasicek-implied
PD increases in which a model prediction has to lie in order to be “stress test plausible”.
υ is proportional to observed volatility of the historical (sector-specific) PD time series.
We apply a distance-to-default transformation on the PDs in order to first map the PDs
to the ] − ∞, +∞[ space to ensure that the stressed PDs always lie in the unite interval.
The distance-to-default transformations also makes the benchmark constraint sensitive to
starting values, since smaller PDs will experience a relatively stronger increases than higher
PDs. While this transformation can be derived from the Merton model, in our reduced-form
application it simply boils down to applying the standard normal quantile function Φ−1 to
the PDs. Models m ∈ I4 that imply a mean PD increase over the stress horizon under the
adverse scenario that lies outside the benchmark constraint, i.e. a model for which

µ
(
{ ˆPD(m)}Tt=1

)
ˆPD0(m)

/∈ c ,

are filtered out.

All filters are applied simultaneously, i.e. models m /∈ I1 ∩ I2 ∩ I3 ∩ I4 survive the filtering
process and define the MCS Ω (without the benchmark constraint, i.e. neglecting I4) or Ω̄
(with benchmark constraint) which is then combined into a single model using BMA. BMA
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uses the posterior model probabilities of model mi in Ω/Ω̄ given data D, pi = P (mi|D), as
model weights. Thus, to apply BMA we need estimations of pi for each model mi in the
MCS.
The model spaceM and thus the corresponding MCS Ω and Ω̄ can be extremely large.9 To
avoid having to estimate the entire model space Madian and Raferty (1994) propose Occam’s
windows which subsets the model spaceM to those models that predict the data far better
than models outside the subset and thus focuses only on the relevant region in the model
space. Models outside the subset are neglected, i.e. the model space is trimmed. To identify
this subset we apply the “Leaps-and-Bounds” algorithm (Furnival and Wilson, 1974). This
algorithm efficiently identifies the Q best models in the models space for each model size
using the adjusted R2 as benchmark. If Q is chosen sufficiently high, the subset includes
all models in Occam’s windows plus many more models, which are then trimmed off. In
other words: we approximate the entire model space M by the Q best models according to
adjusted R2, zoom in on the relevant region of the model space using Occam’s windows and
then apply the filters to arrive at the MCS Ω and Ω̄. Samuels and Sekkel (2012) show that
employing BMA on a trimmed model space reduces the prediction error relative to BMA on
untrimmed model spaces. To be precise, the posterior model probabilities are given by

pi = P (mi|D) =
P (D|mi)P (mi)∑
i∈Q P (D|mi)P (mi)

, (8)

where P (mi) denotes the prior model probability which we assume to be uniform. As a
consequence P (mi) = P (m) ,∀i and it cancels out in Equation (8). P (D|mi) is given by
the marginal likelihood P (D|mi) =

∫
P (D|ωi,mi)P (ωi|mi)dωi, where ω = [{αk}K , {βl}L].

However, instead of deriving the posterior model probabilities and the implied BIC model
weights based on this marginal likelihood, we follow Burnham and Anderson (2002) and
instead use model weights based on a smoothed AIC, which induces model weights δi that
are proportional to the probability of being the best Kullback and Leibler (1951) model in
repeated samples (see also Pelster and Vilsmeier, 2017, for a discussion). Then,

pi = δi =
exp(−0.5∆i)∑
i∈Q exp(−0.5∆i)

, (9)

with ∆i ≡ AICi −mini{AICi}. Assuming that εi,t ∼ N(µε, σi,ε), AICi = O log(σ2
i,ε) + 2N ,

where O denotes the number of observations. We calculate σ2
ε on the basis of the out-of-

sample estimates of the sum of squared residuals. To this end, we apply the leave-one-
out method, where repeatedly one observation from the sample is dropped and the model
is estimated using the remaining data. To be precise, for each specification q ∈ Q, we
drop observation o with o ∈ 1, . . . , O and predict the logit PD using the remaining O − 1
observations. Let ŷo denote the predicted logit PD using the parameters estimated on
the O − 1 observations and let yo denote the realized logit PD in period o. Then σ2

i,ε =

9Computing the entire model space may require the estimation of an enormous number of models, de-
pending on the number of macro covariates in x and lag length K and L. For example, for ten macro
covariates, K = L = 4 and considering both annual and quarterly changes, the number of models in the
unfiltered model space M is larger than 1014.
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1/O
∑O

o=1[ŷi,o − yi,o]
2. To identify the relevant region of the approximated model space

through Occam’s window, we compute δi for all Q models identified by the “Leaps-and-
Bounds” algorithm according to the highest adjusted R2. Then, we trim off all models i
with

maxQ {{δq}q∈Q} /δi > o ,

with o being the threshold parameter. This implies that all models which have a probability
of being the best Kullback-Leibler model in the model space o times smaller than the model
with the highest probability are trimmed off. The remaining subset of the model space
defines the sample from which the MCSs are derived.
We combine all models in the MCS Ω/Ω̄ into a single model applying the weights given by
Equation (9). To this end, we re-compute the weights based only on models in the MCS

δi =
exp(−0.5∆i)∑

i∈Ω/Ω̄ exp(−0.5∆i)
, (10)

and use these weights to combine the single model parameter estimates

ωBMA =
∑
i∈Ω/Ω̄

δiωi ,with ωi = [{αk,i}K , {βl,i}L] (11)

Given the final BMA parameter estimates, the LRM for covariate xi can be computed as

θ̃i ≡
+∞∑
s=0

∂EYt+s
∂xi,t

=

∑L
l=1 βi,l

1−
∑K

k=1 αk
(12)

To make LRM comparable across covariates, we normalize θ̃i via

θi =
σxi
σy
× θ̃i ,

which allows the interpretation of θi having the effect of a permanent increase of xi by one
standard deviation on y (in terms of standard deviations of y). The posterior inclusion
probability on xi in the BMA model is given by

poipi =
∑
i∈Ω/Ω̄

Ii 6=0δi . (13)

The posterior inclusion probability summarizes the aggregate evidence of xi in the MCS by
summing the posterior model probability of all models in the MCS in which the covariate
coefficient takes a non-zero value. In Bayesian model inference, a variable is said to be
significant if the posterior inclusion probability is higher than the prior inclusion probability.
Under our assumption of uniform prior model probability, the prior inclusion probability is
given by the ratio of average model size over the total number of potential regressors. Below,
we let N̄ denote the maximum number of right-hand-side variables we allow in Equation (2),
including endogenous lags, and N the number of all possible right-hand-side variables, such
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that N̄ ≤ N (equality holds of the maximum number of right-hand-side variables is left
unconstrained). Then the prior inclusion probability is given by

pripi =

∑N̄
i=1 i

N !
i!(N−i)!∑N̄

i=1
N !

i!(N−i)!

N
. (14)

This completes the description of the BCBMA model which will be employed to map the
time series of PDs to the adverse macro scenario in the credit risk stress test.

2.2 LGD Modeling

In contrast to the BCBMA-PD model which addresses model uncertainty, our LGD model
follows a simpler approach. We assume that stressed LGDs are constant during the stress
horizon, such that the stress is imposed only on initial LGDs. This approach reflects the
non-availability of robust and long LGD time series for supervisors, which would be required
to map the macro scenario to LGDs in a reduced-form manner. For a given uncollateralized
and unstressed parametric ¯LGD we compute the scenario-implied LGD for loans in sector
s ∈ S of bank b ∈ B as

LGDb,s = max

{
0.10, ¯LGD × Eb,s − Cb,s(1 + hs)

Eb,s

}
, (15)

where E denotes the corresponding exposure, C the corresponding collateral and h a haircut
on the collateral value. The haircut is defined by

hs ≡

{
H−1

s (0.2)

H−1
s (0.5)

− 1 , adverse scenario

0 , baseline scenario
,

where H−1
s denotes the quantile function of the collateral value distribution in sector s.

Equation (15) transforms the uncollateralized LGD into a collateralized LGD: the homoge-
neous ¯LGD is scaled down by the share of bank-specific collateralized exposure, such that all
initial LGDs lie in the [0.10, ¯LGD] interval. The haircut in the adverse scenario is modeled
as a reduction of the collateral value from the median value to the value corresponding to
the 20th percentile of the collateral value distribution. 10

2.3 Stress Impact

At this stage we have derived stressed values for the two credit risk parameters PD and LGD.
What is now left to describe is how we link these parameters to banks’ capital position at the
end of the stress horizon. Generally, we model all stress effects bank-specifically wherever

10See Siemsen and Vilsmeier (2017) for a version of the model with dynamics LGDs during the stress
horizon. In contrast to the residential mortgage sector, structural dependencies between the collateral value
and the macro scenario do not exist in most other credit sectors such as retail business. Therefore, we cannot
pursue the same approach as for the residential mortgage stress test here.
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possible (see Section 3.1 for a more detailed discussion), i.e. stress effects are heterogeneous
at the bank level.
The stressed credit risk parameters affect banks’ capital positions through two channels:
first, they determine the default flow and thus the expected losses over the stress horizon
(see Equation (1)). Second, they increase unexpected losses through an increase in the
variance of the loss distribution under stress. According to regulatory standards (see, for
example, Basel Committee on Banking Supervision, 2005) banks are required to hold capital
to safeguard the institution against losses in excess of expected losses. Ceteris paribus, an
increase in unexpected losses reduces banks CET1 ratio as regulatory requirements tighten.
Neglecting or underestimating the effect of unexpected losses on banks’ capital position may
lead to downward-biased stress effects and may thus overestimate the banks’ resilience to
adverse macroeconomic conditions. In contrast to risk weights computed under the standard-
ized approach (SA) for credit risk, risk weights derived from the IRB formula are theoretically
founded and measure unexpected losses, defined as the distance between mean and value-at-
risk at the 99.9 percentile of the loss distribution. By linking the calculation of risk weights
to the dynamics of credit risk parameters, IRB risk weights become sensitive to macroeco-
nomic conditions. The SA, in contrast, has often been criticized of being too risk insensitive
as risk weights respond only sluggishly to changes in the risk environment.11 To get a full
picture of expected and unexpected losses in our stress test, we model RWA according to
the IRB formula for both IRB and for SA loans. Thus, we pursue an economic view instead
of a purely regulatory view of stress test losses, since the RWA dynamics we derive for SA
exposures would not be observed if the macro scenarios were to materialize. The “true” SA-
RWA dynamics would be more sluggish and would likely underestimate unexpected losses
(see Siemsen and Vilsmeier, 2017, for a more detailed discussion and a quantification of the
effect between IRB and SA risk weights on stress test outcomes).
Below, let b ∈ B denote the bank, s ∈ S the sector of the relevant exposure, u ∈ U one loan,
and t ∈ T a year during the stress horizon. The computation of capital effects is performed
in two steps: first, the default, impairment and risk weight factors are computed and second,
these factors are scaled to euro amount through multiplication by the relevant exposures.
This dichotomy is due to our data sources and will be explained in detail in Section 3.1.

Expected losses Extending Equation (1) we can write the expected loss at the bank-
sector-level as

LGDb,s,t × PDb,s,t × EaDb,s,t =

[∑U
u=1 (PDu,b,s,t × LGDu,b,s,t × EaDu,b,s,t)

EaDb,s,t

)

]
× EaDb,s,t

= Impb,s,t × EaDb,s,t , (16)

11In response Basel Committee on Banking Supervision (2015) suggests more risk sensitive risk weights.
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where Imp denotes the impairment factor. Similarly, we can express the default flow as

PDb,s,t × EaDb,s,t =

[∑U
u=1 (PDu,b,s,t × EaDu,b,s,t)

EaDb,s,t

]
× EaDb,s,t = Defb,s,t × EaDb,s,t ,

(17)

where Def denotes the default flow factor. Given these definitions of the impairment and
default flow factors, the expected loss dynamics over the stress horizon can be written as a
simple system of recursive equations:12

ImpF lowb,s,t = Impb,s,t × EaDb,s,t ,∀t ∈ T (18)

DefF lowb,s,t = Defb,s,t × EaDb,s,t ,∀t ∈ T (19)

EaDb,s,t+1 = EaDb,s,t −DefF lowb,s,t ,∀t ∈ T and EaDb,1,s given (20)

Unexpected losses To approximate unexpected losses occurring during the stress hori-
zon we use the IRB formula originally intended to compute risk weight for IRB loans. As
discussed above, the formula is derived from a standard Merton credit risk model to ap-
proximate unexpected losses. It is then calibrated to approximate unexpected losses as the
difference between the expected value of the loss distribution (expected losses) and the value
at risk at the 99.9 percentile (unexpected loss, see Basel Committee on Banking Supervision,
2005). Thus, independently of the regulatory view of RWA, the IRB formula can be used to
measure unexpected losses from an economic perspective.
The IRB risk weight formula, R(·), computes risk weights as a function of through-the-cycle
adjusted (TTC) PDs, downturn LGDs and exposure (to scale risk weights up to RWA)

R(PDttc
b,s,t, LGD

dt
bs,t, EaDb,s,t) . (21)

Thus, before we can derive risk weights assets, we need to obtain the transformations of the
original credit risk parameters derived in Sections 2.1 and 2.2. Here, we take a pragmatic
approach constrained by data availability. Since we do not have a time series for LGDs and
since stressed LGDs remain constant throughout the stress horizon, we use these constant
LGDs directly in Equation (21) without applying a adjustment to condition LGDs on an
economic downturn.13 For TTC PDs we compute a-year rolling windows of the PD time series
ranging from the first historical observation to the last quarter of the stress horizon. The
a-year rolling windows PDs are used in Equation (21). For the scaling of risk weights to RWA
we assume that the relevant exposure stays constant over the stress horizon, i.e. in Equation
(21) EaDb,s,t = EaDb,s. This assumption reflects a conservative floor on RWA during the
stress horizon, as RWA are floored below at their initial value and cannot decrease below
this value. This floor is also imposed during the EU-wide stress tests (European Banking

12Note that in contrast to the EBA credit risk methodology, we cannot consider impairments to the default
stock since these are driven by changes in the LGD over the stress horizon. In our model, LGDs are currently
constant.

13In any top-down stress test application the computation of downturn LGDs based on regulatory data
only is cumbersome and always subject to ad hoc assumptions. See, for example, Rösch and Scheule (2009)
for an ad hoc model for downturn LGDs.
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Authority, 2017) and prevents fully written down default flows from reducing RWA during
the stress horizon. Thus, the RWA factor is computed as

RWAfb,s,t =

∑U
u=1R

(
, PDttc

u,b,s,t, LGDu,b,s, EaDu,b,s

)
EaDb,s

. (22)

Then, RWA are computed as

RWAflowb,s,t = RWAfb,s,t × EaDb,s,0 , (23)

where EaDb,s,0 denotes the initial bank- and sector-specific risk exposure. This reflects the
assumption that exposures, for the purpose of calculating RWA, stay constant to enforce a
floor on RWA.

Capital Impact At this stage, we have a set of variable paths over the stress horizon,
{Impflowb,s,t, Defflowb,s,t, RWAflowb,s,t}Tt=1 ,∀s ∈ S , ∀b ∈ B, derived above. Now, we
map these paths to banks’ capital position. To this end, we first aggregate all flows over all
sectors s ∈ S by summing up., i.e. we now have {Impflowb,t, Defflowb,t, RWAb,t}Tt=1 ,∀b ∈
B. Let the ∆ operator denote the difference of variable x between year t and the initial value
at date 0, such that ∆(xt) ≡ xt − x0.
In our framework, the stress tests affects interest income (II), impairments (Imp) and
profits/losses (π). For interest income, we approximate the average return on one unit of
interest bearing assets as

rb,0 =
IIb,0
Ab,0

,

where A denotes a bank’s interest-bearing assets and t = 0 corresponds to the initial pre-
stress year. We define

∆II
b,t ≡

{
r0,b ×∆(Defflowb,t), adverse scenario

0 , baseline scenario

as the reduction in interest income due to the default flow relative to the starting period.
Note that in the baseline scenario, the reduction in interest income is floored at zero. Then,
the interest income level during the stress horizon as given as

IIb,t = rb,0 × Ab,0 −
t∑

k=1

∆II
b,t . (24)

The impairment level during the stress horizon is straightforward to derive as

Impb,t = Impi,0 + ∆(Impflowb,t) . (25)

To map stressed interest income and impairments to profits, we subtract the initial obser-
vations of these variables from profits and then add the stressed variables back to it. Thus
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πb,t = π̃b,0 − Impb,t + IIb,t , (26)

with π̃b,0 = πb,0 + Impb,0 − IIb,0. Therefore, all other P&L components which affect profits,
except for interest income and impairments (e.g. interest expenses), are assumed to be
constant during the stress horizon. Finally, the level of RWA is computed as

RWAb,t = RWAb,0 + ∆(RWAflowb,t) . (27)

Now, we can compute the stress capital level and the stressed capital ratio:

Cb,t = Cb,0 +
t∑

k=1

πb,t (28)

crb,t =
Cb,t

RWAb,t
. (29)

3 Data and Calibration

This section provides details of the data sources (and corresponding data limitations) of our
top-down stress test application (Section 3.1). Section 3.2 shows the baseline and adverse
macro scenario that we use to compute stress effects. Section 3.3 discusses how we calibrate
the general framework to our concrete application to the German banking system.

3.1 Data Sources for Stress Test

The data we use to conduct the top-down credit risk stress test relies on two main data
sources: the German Credit Register (GCR) and the German Borrower Statistics (GBS).
Intuitively, the GCR is used to derive the impacts factors discussed in Section 2.3 and the
exposures in the GBS are used to scale these GCR factors to euro amounts.

German Credit Register The GCR features quarterly loan observations of German
banks to borrowers (including foreign branches and off-balance-sheet exposures) starting
in 2008Q1. The data are reported at the single borrower level and includes information
(among others) on collateral and risk-weighted assets; for IRB loans also the regulatory
PD is reported. Moreover, loans can be assigned to sectors according to the NACE code.
However, for the GCR only loans with a total volume exceeding e1 million are reported.
This constraint clearly reduces the representativeness of the GCR data as (1) large parts of
the retail exposure is likely to be excluded from the GCR and (2) banks that do not provide
loans exceeding a total volume of e1 million will not be observed in the GCR.
Below, we will denote banks that are observed in the GCR in the most recent quarter
employed for the stress test as GCR banks, g ∈ G, and we will denote banks that are not
observed in the GCR in the most recent quarter as non-GCR banks n ∈ N ; thus G+N = B.
Since the GCR does not capture the complete universe of loan exposures, we do not use
the GCR exposures for our stress test purposes but only the GCR PD and collateral values.
Crucially, for non-GCR banks N for which no bank-specific impact factors can be derived
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from the GCR, sector-specific GCR impact factors will be derived. However, we do an ad hoc
adjustment to the impairment factor {Impn,s,t}n∈N in Equation (16) to make it bank-specific
for all banks as discussed below. In particular, we use the GCR to derive

• sector-specific time series for PD, PDs,t, based on all IRB loans of GCR banks G.
These time series are used for the BCBMA algorithm discussed in Section 2.1; in
particular they are used in Equations (2) and (4). Sector -specific PDs are derived
from volume-weighted single IRB loan PDs in each quarter.

• the bank- and sector-specific stressed LGDs in Equation (15). To this end, the IRB loan
exposures E and the corresponding collateral values (C) are used. H−1 is the empirical
quantile function derived from all IRB loan collaterals in a given sector s. For GCR
banks LGDs are computed bank-specifically, for non-GCR banks sector-specific LGDs
are computed by summing E and C within each sector.

• the calibration of the IRB risk weight in Equation (21) using the reported RWA (see
also Section 3.3).

Thus, all impact factors Impb,s,t (Equation (16)), Defb,s,t (Equation (17)) and RWAfb,s,t
(Equation (22)) are based on GCR data. The sector-specific stressed PD time series PDs,t

are mapped to bank-specific (GCR banks) and sector-specific (non-GCR banks) starting
values using a distance-to-default transformation, such that for bank g ∈ G

PDg,s,t = Φ
(
Φ−1 (PDg,s,0) +

[
Φ−1 (PDs,t)− Φ−1 (PDs,0)

])
and for n ∈ N

PDn,s,t = Φ
(
Φ−1 (PDs,0) +

[
Φ−1 (PDs,t)− Φ−1 (PDs,0)

])
= PDs,t ,

where t = 0 denotes the last PD observation in the GCR before the stress horizon begins.
Generally, there are 23 different NACE sectors in the GCR data.14 However, we do not
estimate the BCBMA model on all of the 23 PD series, since for some sectors erratic time
series behavior, induced, for example, by a few large sectoral exposures, does not allow for
a robust modeling of these sectors. Thus, we combine these sectors with other sectors to
mitigate the erratic behavior. The choice which sectors to combine is made based on pairwise
correlation of the sector PD time series. In particular we identify candidate partners as
sectors with a pairwise correlation higher than 0.6. We merge sectors with their candidate
partners if the median adjusted R2 in the unconstrained model space is below 0.3. All
combined sectors have the same sectoral PD dynamics. Appendix A shows which sectors are
combined. Figure 3 shows the historical PD time series for the 13 uniquely modeled sectors.

14See Appendix A for a description of the sectors including exposure distributions.
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Notes: See Table A.1 for sector descriptions.

Figure 3: Sectoral historical PD time series

German Borrower Statistics The GBS features quarterly observations of all on-balance-
sheet loans of German banks to domestic borrowers. In contrast to the GCR, the GBS thus
includes all loans at the bank level, independently of the volume, but no foreign and off-
balance sheet exposures. Also, business sectors are reported, which can be mapped to the
GCR’s NACE sectors.
We use the GBS exposures to scale the GCR different impact factors to euro amounts and
to make sector-specific impairments factors for non-GCR banks bank-specific. We use GBS
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exposures, because the exposures reported in the GBS provide a more complete picture of
total credit exposures of all German banks than the GCR exposures do, which are floored
at a minimum volume of e1 million. The GBS cannot, however, be used to derive thorough
impact factors, as PD and collateral are not reported. As mentioned above, the GBS does
not include foreign and off-balance-sheet exposures of banks. Since the GCR does include
those exposures, we extract them from the GCR data and add them to the GBS exposures
for all GCR banks. This provides a better approximation of the total risk position of banks
participating in the stress test.
In addition, the GBS includes gross impairments of loans at the bank level. In contrast to
the impairment factor derived from the GCR, which is only sector-specific but not bank-
specific for the non-GCR banks, the GBS allows us to derive approximations of bank-specific
impairments for those banks, too. We use the GBS impairments to compute bank-specific
adjustment factors on the sectoral GCR impairment factors for the non-GCR banks; for the
GCR banks no adjustment is made. In particular, ∀g ∈ G

Impg,s,t = Φ
(
Φ−1

(
ImpGCRs,t

)
+
[
Φ−1

(
ImpGBSg,s

)
− Φ−1

(
ImpGBS,Gs

)])
, (30)

where ImpGCRs,t denotes the sector-specific impairment factor from the GCR, ImpGBSg,s denotes
the non-GCR bank-specific impairment factor derived from the GBS and ImpGBS,Gs denotes
the three-year average impairment factor of all GBC banks G from the GBS. The impairment
factors from the GBS are computed as

ImpGBSg,s =
min

{
0, gross impairmentsg,s

}
total exposureg,s

.

The intuition behind the adjustment is the following: both ImpGCRs,t and ImpGBS,Gs,t are based
on the same sample of GCR banks, where the latter is a three-year average impairment
factor and the former is the contemporary impairment factor. Thus, all non-GCR banks
get an adjustment to the sector-specific GCR impairment factor given by how strong their
contemporary GBS-implied impairment factor deviates from the average impairment factor
of GCR banks in the GBS. To make the adjustment starting value specific, we apply, with
a slight abuse of notation, a distance-to-default transformation to these impairment factors.
Note that the adjustment factor is time-invariant and is derived from the latest available
quarterly observation (except for ImpGBS,Gs which is computed as the average factor over
three years). We have to cap the gross impairments since write-ons on previous write-downs
can induce positive gross impairments.
Table 1 summarizes the data sources and levels of granularity in modeling when applying
the BCBMA framework to the German banking sector, and Table 2 shows briefly some
descriptive statistics.
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Table 1: Summary of Data Sources for GCR and non-GCR Banks

GCR Banks non-GCR Banks

Impairment Factors at bank and sector level at sector level from GCR
from GCR but made bank-specific

through adjustment by
GBS-approximated bank
specific impairment factors

Default Flow Factors at bank and sector level at sector level from GCR
from GCR

Risk Weight Factors at bank and sector level at sector level from GCR
from GCR

Exposures at bank and sector level at bank and sector level
from GBS with addon from GBS
from foreign and off-
balance-sheet exposures
from GCR

Table 2: Some Descriptive Statistics

GCR GBS

number of loans 102,372 -
total exposure (e billion) 592.7 2,511.7
number of banks 38 1,672

Notes: All data as of 2017Q2

Regulatory Data In addition to the two data sources discussed above, we require regu-
latory data at the bank level to derive the final stress impact on banks’ capital position. As
discussed in Section 2.3, we model stressed P&L dynamics for interest income, impairments
and profits. The main metric for assessing the severity of the stress impact will be the effect
on the common equity tier 1 ratio (CET1 ratio). The CET1 ratio is defined as the ratio of
CET1 capital to RWA. Thus, we also require regulatory data on CET1 capital and aggre-
gate RWA (at the bank level and not at the borrower level as provided in the GCR). The
starting values for the P&L items as well as for interest-bearing assets are taken from the
Bundesbank’s quarterly balance sheet statistics, and the regulatory variables are taken from
the Corep reporting. Appendix B provides additional details of the data.
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3.2 Stress Scenario

The scenarios we employ to study the effect of model uncertainty on top-down credit risk
stress testing closely follow the EBA 2018 scenario.15 We consider a baseline and an ad-
verse macroeconomic scenario. The scenarios include the following set of ten macro vari-
ables at a quarterly frequency: German real GDP growth (GER.GDP ), change in German
ten-year bond yields (GER.bond), growth in German consumer price index (GER.CPI),
growth in German commercial house price index (GER.CHPI), growth in German residen-
tial house price index (GER.RHPI), German unemployment rate (GER.unemp), change
in the German equity index DAX (GER.DAX), change in the one-year EURIBOR rate
(EU.EURIBOR), growth in EU real GDP (EU.GDP ) and growth in US real GDP (US.GDP ).
Table B.2 gives an overview of the data sources.
We impose a three-year stress horizon with initial values as of 2017Q2, such that the 12
stress quarters go until 2020Q2. Traditionally, the scenario of the EU-wide stress test is
defined annually, such that we employ the annual value values and interpolate them to a
quarterly frequency by keeping the quarterly growth rates constant within each year. Table
3 shows the annual path of each variable for the baseline scenario and the adverse scenario,
respectively. Figure 4 plots the scenario paths together with one year of the corresponding
historical time series.

Table 3: Macro scenarios

Baseline Adverse
Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

GER.GDP 1.5 1.6 1.4 -1.9 -2.8 1.4
GER.bond† 0.5 0.7 0.9 1.2 1.4 1.5
GER.CPI 1.6 1.7 1.9 1.5 0.9 0.3
GER.CHPI 4.0 3.8 3.7 -10.6 -7.1 -2.6
GER.RHPI 4.8 4 3.8 -8.8 -9.5 0.2
GER.unemp† 3.3 3.1 2.9 4.2 5.5 6.1
GER.DAX 0.0 0.0 0.0 -30.6 3.8 8.0
EU.EURIBOR† -0.17 0.02 0.3 0.39 0.5 0.7
EU.GDP 2.2 1.9 1.8 -1.2 -2.2 0.7
US.GDP 2.3 1.9 1.8 -0.3 -0.6 3.1

Notes: † denotes variables in levels instead of annual growth rates.

15See European Banking Authority (2018) for a discussion of the corresponding narrative.
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Figure 4: Macro Scenario

3.3 Calibration

This section discusses the calibration of the exogenous parameters, exogenous constraints
and exogenous functions in our model. The choice of parameters is strongly driven by data
sources, as well as jurisdiction and time period under consideration and is thus very specific
to the precise application of the framework. The baseline calibration shown here should thus
be understood as exemplary for our application to the German banking sector. An adoption
of the framework to other banking sectors or data sources would warrant a thorough re-
calibration.
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As discussed above, our credit risk stress test, like most top-down stress tests, is constrained
by the availability of long time series for the credit risk parameters. The PD time series we
use for the BCBMA framework starts only in 2008Q1 which gives us 38 observations up to
2017Q2. To economize on degrees of freedom when specifying the maximum lag lengths in
Equation (2) we allow - given the quarterly frequency - for a maximum of L = 4 exogenous
lags but only a maximum of K = 2 endogenous lags.
The unconstrained vector of macro variables, xt, contains all variables discussed in Section
3.2. To be precise

xt = [GER.GDP,GER.bond,GER.CPI,GER.CHPI,GER.RHPI,GER.unemp,

GER.DAX,EU.EURIBOR,EU.GDP,US.GDP ]′ .

Thus, the number of possible variables before the application of filters to be included in xt,
N , is equal to 2× [4× 10] + 2 = 82. The BCBMA framework considers model specifications
of all sizes (i.e. using 1 up to N̄ covariates, including endogenous and exogenous lags,
but neglecting the constant). Again, given our short time series, we do not allow all N
covariates plus the endogenous lags to be included into one model specification at the same
time. Instead, we constrain the maximum number of covariates to N̄ = 4. Note that, since
finally all models in Ω̄ (or Ω) are combined into a single model, this constraint does not
affect the number of covariates in the combined model.
When filtering the original model spaceM, we set the maximum allowed correlation between
macro covariates within the same model specification, γ, to 0.8. The p-value threshold for the
Durbin-Watson test is set to 0.10, which means that the H0 that there is no autocorrelation
in residuals cannot be rejected at the 10 % level. Table 4 shows the sign restrictions that
we impose on the LRM, where + denotes a positive sign, − a negative sign and 0 an
unconstrained LRM16:

Table 4: LRM Sign Restrictions

Variable LRM Restriction

GER.GDP -
GER.bondyield +
GER.CPI 0
GER.CHPI -
GER.RHPI -
GER.unemp +
GER.DAX -
EU.EURIBOR 0
EU.GDP -
US.GDP -

16Note that relative to Gross and Poblacion (2016) we relax the sign restriction on CPI and EURIBOR,
as the effect of these variables on PDs seems to be ambiguous. For example, if increases in inflation and
EURIBOR are driven by strong economic growth rather than supply side shocks, PDs may decrease and
vice versa.
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The Merton/Vasicek one-factor model outlined in Section 2 requires the calibration of
two parameters D and ρ. For the former, we calibrate D to be sector-specific and to
correspond to the time-average sector-specific PD in a distance-to-default transformation:
Ds = Φ−1

(
¯PDs

)
,∀s ∈ S. The structural PD Equation (3) was derived under the assump-

tion that zt ∼ N(0, 1) and is valid only if this assumption holds. Thus, we calibrate ρ such
that – given sector-specific PD time series PDt,s – V ar(z̃t,s) = 1 using a simple line search
procedure. To be precise, we initially set ρs = 0, compute the time series z̃t using Equa-
tion (4), compute the variance and then repeat these steps for marginally increased ρs. We
choose the ρs for which V ar(zt,s) is closest to unity. As mentioned above, we update the
calibrations of Ds and ρs after each stress period, i.e. we update the time series for ¯PDs

and ˜PDt,s with the predicted stressed PD to derive a new set {{ρs}s∈S , {Ds}s∈S}. This
dynamic approach amplifies the stressed PD dynamics, since during the stress horizon the
increased volatility in the PDs are compensated by an increased ρs in order to ensure that
V ar(z̃t,s) = 1. Thus, in the next period, the macro conditions will have a stronger impact on
the PD dynamics than in the previous period. The parameter for the cluster width around
the benchmark prediction for the PD increases under the adverse scenario, ν̄, is set to 2,
i.e. we allow a cluster of two times the historical volatility-implied PD change around the
benchmark estimate (see Equation(7)). This calibration is chosen such that in all sectors at
least one ADL model specification survives the benchmark filtering. 17

When approximating the models space, M, we set Q = 10, 000. We set the threshold for
Occam’s windows to o = 20, i.e. we filter out models that have a probability of being the
best Kullback/Leibler model 20 times lower than the model with the highest probability.18

For the LGD model we set homogeneous unscaled initial LGD, ¯LGD to 0.45 such that any
LGDs in the stress test lie in the [0.10, 0.45] interval. The calibrated value corresponds
to regulatory value prescribed in CRR Art. 161(1a) for uncollateralized senior corporate
exposures. For the TTC adjustment of the point-in-time PDs (PDpit) derived from the
BCBMA model we use an a = 4 year rolling windows.
We use the IRB formula to derive dynamics in RWA over the stress horizon for both GCR
banks g ∈ G (at the bank level) and non-GCR banks n ∈ N (at the sector level). However,

17While an extensive elaboration on the effect of the calibration of ν̄ is outside the scope of this paper, and
potentially of little interest, since the results are rather specific to country, loan sector and stress scenario,
our analyses suggest that for ν̄ = 0.3 the BCBMA-implied and the Merton/Vasicek-implied stress result
distributions are barely distinguishable. In contrast, our baseline calibration of ν̄ = 2.0 induces a rather
loose benchmark constraint. A more thorough calibration of ν̄ needs to optimize on the trade-off between
reducing dispersion in Ω̄, i.e. reducing model uncertainty, and maintaining the dichotomy in the BCBMA
by combining both reduced-form and structural perspectives, i.e. not setting the benchmark constraint
that tight as no ADL-specification survives the filtering. Also, a more thorough calibration would need to
feature a sector-specific ν̄s in order to better reflect sector-specific model uncertainty and to avoid that in
some sectors only one model specification survives. Alternatively, one could pursue a pragmatic calibration
approach by fixing the minimum number of ADL-specification which should survive the benchmark filtering
in each sector, e.g. 10, stetting ν̄ = 1, which induces the benchmark constrained only to be influenced by
historical volatility of the time series and then increasing ν̄ until the minimum number of ADL-specifications
survives. While the qualitative and quantitative effect of the benchmark constraint strongly depends on data
and calibration the intuition of its effect is straightforward: the tighter the benchmark constraint is set, the
more trust is put in the structural filter relative to the reduced-form estimations. Thus, the closer the final
stress results will lie to the stress test results implied by the structural model alone.

18Madian and Raferty (1994) recommend a threshold between 20 and 100.
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there is are several IRB formulas, depending on exposure type (see Articles 153 and 154
CRR). Therefore, we need to calibrate function R(·) in Equation (21) to reflect the cali-
bration corresponding to the underlying exposure types. Unfortunately, we do not observe
exposure type (retail, SME,. . . ) in the GCR. Thus we cannot directly infer the calibration
of R(·) from our data source. However, for the GCR banks we do observe the RWA cor-
responding to each borrower in the GCR. We use this information to deduce the loan type
and approximate the calibration of R(·) at the borrower level. To this end, we guess a set
of different initial loan types for each borrower of a given GCR bank, calibrate {Rg,s(·)}G,S
following the CRR, compute the implied RWA and compare these with the RWA given in
the GCR. We then choose the loan type from the set that minimizes the difference between
IRB-implied and observed RWA. Let {R?

g,s(·)}G,S denote the optimal calibration at the bor-

rower level. Then, for GCR banks RWAg,s,t =
∑U

u=1R?
g,s (PDu,g,s,t, LGDu,g,s, EaDu,g,s,t).

19

For non-GCR banks we compute RWA dynamics at the sector level, i.e. these dynamics
depend only on the sector of the loans exposure but not on the bank. To compute sector-
specific RWA dynamics we aggregate the optimal calibrations of the GCR banks at the
borrower level to the sector level by computing for each of the GCR banks the mean optimal
calibration over all loans within each sector, {R̄?

g,s(·)}G,S . We then use R̄?
g,s to compute

RWA using sector-aggregated PD, LGD and exposure over the stress horizon, which gives
us {RWAg,s,t}G,S,T . Finally, we eliminate the G dimension by weighting these RWA by how
often each R̄?

g is the optimal calibration among all GCR banks relative to all GCR banks in
sector s; let {wg,s}G̃,S denote those weights. Then RWAs,t =

∑
g∈G̃ wg,sRWAg,s,t. Table 5

summarizes the calibration.

19To be precise, we include six different calibrations into the choice set: corporate exposure with size
parameters 5, 25 and 50, retail exposures with size parameter 5, qualifying revolving retail exposures with
size parameter 5 and retail exposure secured by immovable property with size parameter 5. This relatively
small choice set is due to computational constraints. The IRB formula has to be calibrated for each of the
more than 100, 000 loans in the GCR such that an extensive grid search would increase computation time
exponentially.
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Table 5: Summary parameter calibration

Parameter Description Calibration

K endogenous lags in ADL model 2
L exogenous lags in ADL model 4
N̄ max. number of right-hand-side variables in ADL specification 4

γ correlation restriction 0.80
d Durbin Watson p value restriction 0.10
Ds default threshold in Merton/Vasicek model Φ−1

(
¯PDs

)
ρs systemic impact in Merton/Vasicek model line search
ν̄ cluster width for benchmark constraint 2

o Occam’s Window threshold 20
Q best models in untrimmed MCS according to leaps-and-bounds 10,000

¯LGD unscaled initial LGD 0.45
a rolling windows horizon for TTC PDs (years) 4

4 Quantitative Results

This section studies the quantitative effects of model uncertainty on top-down stress test
results using the German banking sector as an example case. In a first step, Section 4.1
analyzes the model space and elaborates on the effects of imposing the filters and the bench-
mark constraint on predicted PD increases over the adverse macro scenario. In a second,
step Section 4.2 then extends the scope to the final stress test results at the bank level by
studying the effect of model uncertainty on predicted capital depletion.

4.1 Model Uncertainty and predicted PD increases

As discussed in Sections 1 and 2.1, a scare data environment can make estimation results
highly sensitive to model specification. To put some flesh on this thought, Table 6 provides
some moments of the forecast distribution in the unfiltered model spaceM for the uniquely
modeled NACE sectors in the GCR. It shows that the dispersion in predicted PD increases
over the adverse macro scenario is – over all sectors – huge. The standard deviation of the
forecast distribution ranges from 41 % to 1, 782 % PD increase, implying that any stance on
the economic and statistical significance of PD effects, let alone on the implied size of the
capital effects, is a judgment call. This results clearly shows that, in a stress test application
if it is deemed necessary to hand pick a given model specification to link the scenario to
credit risk parameters, it is crucial to have at least an understanding of the dispersion in the
relevant model space in order to be able to judge whether the chosen specification lies in a
dense or very sparse model space region.
Even better, as argued by Henry and Kok (2013) and Gross and Poblacion (2016), in such an
environment one should not just pick one specification but rather employ all the information
available in the model space, say, by using BMA. However, as Table 6 shows, some sectors
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have a significant mass of model that predicts a PD decrease in response to the adverse
macroeconomic scenario. While this may be plausible from a statistical point of view, for
example, owing to strong impacts of idiosyncratic crisis events on the time series, it is
hardly plausible or desirable from an applied stress testing perspective.20 However, the
baseline BMA model would assign a positive weight to models predicting a (substantial) PD
decrease, which either reduces predicted PD increases or even induces aggregate decreasing
PDs at the sector level.

Table 6: M-implied PD increases in adverse scenario (%)

Sector Min Median Max SD Median(R2)

1 -85.7 -36.6 7027.7 146.9 82.5
2 -97.3 133.5 4753.4 909.2 38.5
3 -85.2 144.3 5066.9 543.2 65.6
4 -76.5 -52.8 6763.6 180.3 57.1
5 -73.4 19.8 2131.6 110.5 73.7
6 -91.3 30.7 2237.0 200.8 34.9
7 -98.9 -84.6 810.4 40.7 72.7
8 -98.6 -35.8 4172.0 346.1 68.8
9 -92.0 509.3 2880.1 705.9 29.8
10 -99.9 -80.9 30463.1 1782.1 71.5
11 -96.4 -29.6 9698.6 570.0 48.3
12 -93.3 -23.6 3049.7 62.9 60.5
13 -93.3 28.9 5567.6 509.8 60.5

Notes: PD increase over the three years in adverse scenario. All
values as a percentage. Number of models for each sector Q = 10, 000.

Figure 5 zooms in on Sector 5 and shows the full forecast distribution of the unfiltered model
space (Panel a, gray bars) as well as the implied dependency between the adjusted R2 and
the predicted PD increase under the adverse scenario (Panel b, gray circles). The figure
emphasizes that the adjusted R2 – a metric often used when hand picking a given model
specification – is not necessarily of good predictor for statistic and economic plausibility.
This becomes evident when we impose the filters for statistic and economic plausibility on
the unfiltered model space (filters 1-3 in Section 2.1, i.e. all filters except the benchmark
constraint). After filtering M to the unconstrained model confidence set Ω, both the dis-
persion in the forecast distribution and the adjusted R2 decrease strongly. In particular, the
filtering eliminates any model that predicts a decrease in sector PDs over the horizon of the
adverse scenario. Table C.1 in Appendix C shows which fraction of model in the unfiltered
model space survives each filtering criterion. This shows that in this sector the most binding
filter is the sign restriction filter, which only 8.4 % of models pass. Table C.2 extends Table

20For example, a crisis events that originates in the financial sector with less contagion to the real economy
may lead, for example, to stable unemployment dynamics. Since unemployment is a mayor determinant of
PDs in the retail sector, PDs may remain stable or even decrease in these retail sectors. In Germany such
dynamics may have been amplified due to the introduction of short-time work during the recent financial
crisis.
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6 by comparing moments of the forecast distribution in the unfiltered model space M and
filtered model confidence set Ω.

(a) Forecast Distribution
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Notes: Unfiltered MS corresponds to M, filtered MCS corresponds to Ω. Number of model in M: 10,000.
X-axis in Panel (b) cut off at 1, 000 %.

Figure 5: Impact of Model Specification on predicted PD increases: Sector 5

While filtering reduces the dispersion of the predicted PD increases in Ω and eliminates im-
plausible specification, the overall dispersion of the remaining models remains large in most
sectors with sectoral standard deviations between 15 % and 4, 500 % (see Table C.2). As the
adverse PD dynamics strongly affect stress test results at the bank level, obtaining sound
estimates for those dynamics in the scarce data environment is of ample importance for
both banks and supervisors. Our suggested BCBMA framework aims at reducing the MCS
dispersion in a theoretically founded way, thereby limiting the weight of models with im-
plausible predicted PD increases over the stress horizon in the final BMA model by applying
the additional benchmark constraint to Ω.
To this end, we map the adverse macro scenario to the structural PDs from the Mer-
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ton/Vasicek model using a multivariate QMap approach as discussed in Section 2.1. The
QMap-implied PD increases are then transformed into the benchmark-constrained (or stress
test plausible) region according to Equations (6) and (7). Table 7 shows the Merton/Vasicek-
implied average PD increases over the stress horizon at the uniquely modeled sector level
for both a univariate QMap and our multivariate extension. Two results deserve emphasis:
first, QMap does not rely on the identification of historical correlations but hinges instead
on the assumption of a co-monotonic relationship between the macro variables and the sys-
temic factor z.21 Thus, by assumption, decreasing PD dynamics in response to deteriorating
macro conditions are not feasible. This is why the benchmark constraint imposes “stress test
plausibility” on the model space. Second, the multivariate QMap model that we employ in-
creases the in-sample fit between predicted and observed sectoral PDs. Relative to the lowest
normalized root-mean-square error (NRMSE) of a univariate QMap, which only employs the
macro macro variable with the highest predictive power for the sectoral PDs, the multivariate
QMap approach reduces the NRMSE by on average 20 % and by up to one-third. Thus, we
suggest the multivariate QMap discussed in Section 2.1 as an easy and traceable approach
to increasing the quality of the fit for quantile mapping models.22 The PD increases in the
first column of Table 7 define the middle of the symmetric benchmark-constrained region in
Ω.

Table 7: Multivariate QMap-implied PD increases in adverse Scenario

Sector ∆ PD (%) NRMSE(MA) min{NRMSE(Uni)}

1 93.9 0.54 0.63
2 73.4 0.94 1.31
3 64.6 0.63 0.79
4 29.1 0.82 1.01
5 18.8 0.89 1.13
6 44.9 0.88 1.10
7 46.5 0.76 0.83
8 133.2 0.88 1.03
9 17.7 0.94 1.40
10 136.8 0.90 1.22
11 407.1 0.51 0.58
12 91.8 0.74 0.98
13 85.4 0.90 1.12

Notes: ∆ PD (%) denotes the average relative PD increase over the
three-year stress horizon. NRMSE(MA) denotes the normalized RMSE
of the multivariate QMap model and min{NRMSE(uni)} denotes the
minimum normalized RMSE over all univariate QMap models.

Using Sector 5 again as an example, Figure 6 shows the forecast distribution of Ω̄ relative

21As mentioned above, QMap is not affected by a scarce data environment to the same extent as reduced-
form models, as long as the skewed-t distribution can be fit thoroughly.

22Appendix D shows some additional exemplary model output for Sector 5.
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to both M and Ω.23 Unlike the unconstrained MCS, the “stress test plausible” models do
neither predict very low nor extremely high increases in PDs. Table 8 shows the full details
for all sectors. Comparing columns Ω and Ω̄, we see that the benchmark constraint trims
off specifications at both tails of the forecast distribution, thereby reducing its standard
deviation substantially. In our application the constraint mainly affects very high predicted
PD increases. However in some sectors (e.g. sectors 1 and 12) the median PD increases rises
due to the benchmark constraint. On average over all sectors the maximum predicted PD
increase is reduced from 2, 912 % in Ω to 132 % in Ω̄. The average minimum predicted PD
increase rises from 56 % to 79 %.

(a) Forecast Distribution
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Figure 6: Impact of Model Specification on predicted PD increases: Sector 5

23Appendix E shows posterior inclusion probabilities and long-run multipliers for Sector 5.
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Table 8: M-, Ω- and Ω̄-implied PD increases in adverse scenario (%)

M Ω Ω̄
Sector Min Median Max SD Min Median Max SD # Min Median Max SD #

1 -85.7 -36.6 7027.7 146.9 16.8 57.5 505.5 104.7 62 62.1 83.8 149.9 30.4 18
2 -97.3 133.5 4753.4 909.2 41.1 562.7 3652.6 862.0 664 41.1 50.2 89.4 21.6 4
3 -85.2 144.3 5066.9 543.2 70.9 204.6 938.6 137.2 439 70.9 70.9 70.9 – 1
4 -76.5 -52.8 6763.6 180.3 9.7 112.2 2025.1 201.4 146 9.7 29.5 34.0 7.6 9
5 -73.4 19.8 2131.6 110.5 0.3 24.1 340.8 33.0 1789 0.3 22.6 67.4 15.1 1665
6 -91.3 30.7 2237.0 200.8 11.8 143.9 1367.0 168.9 850 16.4 56.4 88.2 13.7 323
7 -98.9 -84.6 810.4 40.7 94.1 160.2 546.7 81.1 29 94.1 143.8 150.7 19.2 8
8 -98.6 -35.8 4172.0 346.1 160.2 360.3 637.3 155.5 11 160.2 170.3 200.3 20.8 3
9 -92.0 509.3 2880.1 705.9 71.5 978.0 2607.6 612.6 1514 11.6 12.7 13.8 1.6 2
10 -99.9 -80.9 30463.1 1782.1 196.3 2862.8 13089.1 4520.9 9 196.3 196.3 196.3 – 1
11 -96.4 -29.6 9698.6 570.0 46.6 446.7 7520.8 1541.3 348 318.4 404.4 544.4 61.5 150
12 -93.3 -23.6 3049.7 62.9 0.3 16.0 67.9 14.1 107 39.4 48.9 67.9 10.4 9
13 -93.3 28.9 5567.6 509.8 1.8 72.1 4559.1 665.9 654 9.4 32.1 46.8 9.1 239

Notes: PD increase over the three years in adverse scenario. All values, except #, in percentages. Number of models for each sector Q = 10, 000. “#”
denotes surviving models post applying the respective filters.
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Considering the effect when applying the benchmark constraint to the unfiltered model space
in terms of the in-sample performance (R2) but also in terms of the out-of-sample predictive
performance, it is important to bear in mind that the BCBMA does not aim at predicting
the PD conditional on observed normal business cycle times but rather conditional on rarely
observed severe tail events outside the bounds of the observation space. The benchmark
constraint filters out some informational content by imposing a plausibility benchmark on the
range of PD increases, thereby reducing the forecast performance of the BCBMA-combined
model measured against the observation space. But since the observation space is less relevant
in a stress testing context, where normal business cycle correlations are less representative
for expected crisis dynamics, the BCBMA model increases the plausibility of predicted PD
increases that lie outside the observation space by assuming a second, structural perspective
on PD increases. Table 9 compares the out-of-sample forecast performance measures as the
normalized root-mean-squared error (NRMSE) for the filtered but unconstrained MCS Ω
and for the benchmark constrained MCS Ω̄. To be precise, we compare the out-of-sample
NRMSE between Ω and Ω̄ but also, within each MCS, between the singular model with the
lowest NRMSE in the MCS (best component model, BCM) and the combined model. Two
points should be emphasized: first, in both MCS the combined model induces a (weakly)
lower NRMSE compared to the BCM. This result is in line with Baele et al. (2015) and
reflects the fact that the combined BMA or BCBMA is founded on a larger observation
space than a single model. Second, we see that the NRMSE of Ω̄ is indeed higher relative
to the NRMSE in Ω. As discussed above, the BCBMA model increases the plausibility of
stressed credit risk parameters – benchmarked against the Merton/Vasicek-implied PDs –
at the cost of filtering out information which is contained and employed in Ω.24

24It shall also be mentioned that the BMA also has lower NRMSE compared to a pure QMap approach. In
addition, the use of out-of-sample weights reduces the out-of-sample NRMSE relative to in-sample weights.
These results are available from the authors upon request.
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Table 9: Out-of-sample Performance Ω vs Ω̄

Ω Ω̄
Sector NRMSE NRMSE ∆ (%) NRMSE NRMSE ∆ (%)

(BCM) (BMA) (BCM) (BCBMA)

1 0.42 0.41 -2 0.46 0.44 -4
2 0.75 0.68 -9 0.82 0.74 -10
3 0.47 0.47 -1 0.74 0.74 0
4 0.65 0.54 -18 0.71 0.70 -2
5 0.44 0.44 0 0.44 0.44 0
6 0.76 0.69 -10 0.77 0.76 -2
7 0.53 0.52 -2 0.53 0.52 -2
8 0.60 0.55 -8 0.65 0.64 -3
9 0.76 0.70 -8 0.96 0.95 -1
10 0.57 0.47 -18 0.62 0.62 0
11 0.61 0.60 -1 0.67 0.64 -3
12 0.58 0.56 -4 0.68 0.65 -3
13 0.55 0.48 -13 0.55 0.50 -8

Mean 0.59 0.55 -7 0.66 0.64 -3

Notes: NRMSE denotes the normalized root-mean-squared error; BCM denotes the
best component model in the respective model confidence set; Ω denotes the MCS
without the benchmark constraint; Ω̄ denotes the benchmark constrained MCS. A ∆
of zero implies that only one model survives the benchmark filter. This is induced by
our exemplary calibration of ν̄ = 2 for all sectors. A more through calibration should
ensure that sufficient models survive the benchmark filter in order to keep the dual
perspective of reduced form and structural (see also footnote 17).

4.2 Model Uncertainty and predicted capital impact

The previous section discussed the effect of model uncertainty on predicted stress dynamics
of sectoral default probabilities. However, from the perspective of applied credit risk stress
testing, the effect of model uncertainty on predicted capital depletion at the bank level is
of greater importance. Thus, in this section we conduct a full-fledged top-down credit risk
stress test for the German banking sector and analyze the impact of PD model choice on final
stress test results. This exercise is intended as an illustration and the quantitative results
depend on model calibration as well as on data quality. The calibration suggested in Section
3.3 should be considered as a working example, and the model may require re-calibration
depending on the macro scenario, data or the banking sector under consideration.
For the credit risk stress test we consider German banks for which we have recent starting
value data as of 2017Q2, which leaves us with a total of 1,513 banks.25 The sample of banks
consists mainly of cooperative banks (' 60 %) and savings banks (' 30 %).
We consider the distribution of stress effects across the the German banking system (cap-
turing both effects on CET1 capital due to impairments and on RWA due to PD increases)

25For a detailed description of starting values see Table B.1.
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within both Ω (unconstrained MCS) and Ω̄ (benchmark constrained MCS). Within each of
the two MCS, we consider three different estimators for the PD dynamics in each sector:

1. the BMA combination with out-of-sample weights for each sector of all non-filtered
model specifications in Ω and Ω̄, respectively,

2. the single model specification in each sector for both Ω and Ω̄, which predicts the
lowest increase (or highest decrease if occurring) in sectoral PDs at the end of the
stress horizon (“lower”) and

3. the single model specification in each sector for both Ω and Ω̄, which predicts the
highest increase in sectoral PDs at the end of the stress horizon (“upper”)

Table 10 shows moments for each of these six different stress effect distributions over all
banks under the adverse macro scenario. The table features two core insights:
First, consider the two extreme bounds of stress distributions by comparing the “Upper”
and the “Lower” single model specifications both within each MCS and between MCSs. We
find that the choice of one particular specification of Equation (2) may strongly effect stress
test results. In our application to the German banking sector, the most optimistic stress test
outcome could actually results in a positive median stress effect of 3.6 pp (2.3 pp) in Ω (Ω̄),
while the most pessimistic median stress outcome would lead to a substantial capital deple-
tion of −35.3 pp and −23.5 pp in Ω and Ω̄, respectively. Despite its rather loose calibration of
ν̄ = 2 the benchmark constraint reduces the range of extreme bounds of stress distributions
from 38.9 pp to 25.8 pp, or by roughly 35 %. The large distance between these two extreme
stress effect distribution translates to a large variance in implied capital shortfalls. As an
illustrative example we measure any bank level capital shortfall against an exogenous hurdle
rate of 8 % of CET1 capital.26 We find that for both Ω and Ω̄ a factor of 100 lies between
the most optimistic and the most pessimistic single model specification. Clearly, the range
between these bounds would strongly affect the interpretation and consequences of any stress
test exercise. These results suggest that prior to choosing one particular specification from
the model space of Equation (2) one should at least be aware of the model space dispersion.
Better yet, instead of relying on one particular model calibration, one should employ the
informational content of various specifications to reduce model uncertainty, for example, by
using a BMA weighting scheme.
Second, however, Table 10 also suggests that the pure BMA approach may be susceptible
to data issues that cannot be addressed solely within the reduced-form paradigm, as , for
example, short available time series and collinear macro covariates. In our application to
the German banking sector we find that filtering the model space only for statically and
economically plausible specifications leaves us with a substantial mass of specifications that
predict very strong PD increases in response to the adverse macroeconomic scenario. For
example, the average maximum PD increase within the three scenario years over all 13
sectors is 2, 912 % in Ω (see Table 8). A significant fraction of these strong increases is
deemed “implausible” relative to our structural benchmark model, even with a rather loosely
calibrated benchmark constraint for most sectors. As a consequence, filtering out these

26The results is independent of the particular calibration of the hurdle rate.
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implausible specifications reduces the average maximum PD increase over all sectors to 132 %
and the median BMA stress effect from −5.0 pp to −2.5 pp, or by 50 % in our application.
The rightwards shift of the stress effect distribution due to the benchmark constraint induces
a reduction of the measured capital shortfall from e29,144 million to e8,196 million, or by
72 %. Against this quantitative background, we argue that the BCBMA model offers a
more precise estimation of stress effects and capital shortfalls by trimming off extreme stress
prediction on both sides of the model space. Those specifications may appear plausible
from within the reduced-form paradigm but are deemed implausible against the structural
benchmark filter.

Table 10: Model Uncertainty and Stress Effects

Unconstrained MCS Constrained MCS
BMA Upper Lower BMA Upper Lower

Stress Effect

10th Quantile -7.7 -52.4 -0.7 -3.7 -34.5 -0.5
Median -5.0 -35.3 3.6 -2.5 -23.5 2.3
90th Quantile -3.1 -17.2 9.8 -1.7 -11.5 6.3
Mean -5.5 -36.4 5.1 -2.8 -23.4 3.1
Std. dev. 3.7 45.0 28.5 3.0 10.9 18.8

Capital Shortfall -29,144 -608,558 -5,675 -8,196 -403,816 -3,824

Notes: Stress in percentage points of CET1 capital. Capital shortfall (in emillion) indicates the aggregated
shortfall in CET1 capital conditional on an 8 % hurdle rate measured in CET1 capital.

Figure 7 shows the distributions of the CET1 effects (only considering the effect on CET1
capital due to impairments and neglecting RWA dynamics) and stress effects for Ω BMA
model (unconstrained MCS, first row) and Ω̄ BCBMA model (benchmark-constrained MCS,
second row).
Due to the lower sectoral PD increases in the BCBMA framework the distribution of both
CET1 effects and stress effects are tighter compared to the BMA framework. In our appli-
cation to the German banking sector, banks which would suffer a strong capital depletion
under the BMA framework experience lower depletions under the BCBMA framework, while
banks with low CET1 effects and stress effects are less affected by the benchmark constrained.
While this results is of course not an intrinsic feature of the BCBMA model in general but
intrinsic to our application, it again emphasizes the potential impact of model uncertainty
for microprudential regulation. Data issues in supervisory top-down stress tests, such as
short time PD time series or collinear regressors, could potentially be pivotal in a pass-fail
exercise.27

27As a rough indication of how the BCBMA stress testing framework compares to the bottom-up stress
testing exercise of the EBA, we feed the 2016 adverse macroeconomic scenario into our model and compute
the capital effects for the German EBA 2016 sample. We find that the median deviation for those banks
from the EBA 2016 EU-wide capital effects (including RWA) amounts to 0.12% or 0.36 pp CET1 ratio. This
deviation is, among others, driven by differences in methodology, data sources and level of aggregation.
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Figure 7: Bank Distributions depending on PD model

5 Conclusion

In this paper we elaborate on the quantitative effects of model uncertainty - when linking
the macro scenario to stressed PD dynamics - on stress test results. We show for the case of
PDs that aggregated BMA stress predictions may be affected by a sufficient large mass of
extreme predictions in the model space. If these extreme outcomes are due to data issues,
such as short PD time series or multicollinear regressors, this may systemically bias stress
test results. To mitigate the impact of such issues in stress testing, we introduce a filtering
criterion to the model space which filters out PD increases which can be deemed “implau-
sible” according to the predicted PD increases of a structural Merton/Vasciek one-factor
model. To map the one-factor model to the macro scenario we suggest a multivariate quan-
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tile mapping approach which - similar in spirit to BMA - combines various univariate models
according to their RMSE and reduces the NRMSE relative to the best component model.
Due to the assumption of co-monotonicity, the quantile mapping has the advantage that
it guarantees plausible PD dynamics during the stress horizon. The benchmark constraint
increases the theoretical coherence of the ADL-predicted PD increases at the cost (contra
the BMA paradigm) of neglecting information from the observation space. However, we
argue that information from the observation space, while potentially relevant in a standard
forecasting context, is of less importance in a stress testing context, which is concerned with
predicting dynamics conditional on severe tail events.
In an application of the BCBMA top-down stress testing framework to the universe of
1,513 German banks sector we show that the BCBMA-predicted stress test results suggest
substantially weaker stress effects than the standard BMA (which also accounts for statistical
and economic plausibility): while, under the standard BMA, the median stress effect is
predicted to be −5.0 pp of the CET1 ratio, the median effect under the BCBMA model is
only −2.5 pp. These weaker impacts on banks’ capital position reduce the predicted capital
shortfall against a hypothetical hurdle rate of 8 % CET1 capital by 72 % from e29, 144 million
to e8, 196 million. These results highlight the importance of being aware of and accounting
for the effects of model uncertainty in stress testing applications, since the interpretation
and also the consequences of an internal or supervisory stress test could strongly depend on
the choice of model specification.
That said, the exact quantitative effects of the BCBMA model depend the particular appli-
cation, data and calibration at hand. To further mitigate the effects of model uncertainty on
stress test results, the calibration of the benchmark constraint should be based on thorough
back testing instead of on an ad hoc calibration as used in this paper. Also, this paper has
neglected the role of uncertainty when linking the macro scenario to stressed LGD dynamics.
Both tasks are left for future research.
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A NACE Sectors

Table A.1: Overview NACE Sectors 2017Q2

GCR GBS

Sector Description Comined Sector IRB Exp. Risk Imp. Exp.
with Sector ID Share Weight Factor Share

A Agriculture, Forestry & Fishing E 1 0.36 0.46 0.0034 1.21
B Mining & Quarrying 2 1.47 0.52 0.0046 2.02
C Manufacturing M, O 3 11.60 0.54 0.0040 4.32
D Electricity, Gas, Steam and air conditioning supply 4 7.77 0.62 0.0034 1.01
E Water Supply A 0.87 0.62 0.0031 1.01
F Construction H, L, R 5 2.02 0.87 0.0092 1.66
G Wholesale and Retail trade N 6 5.38 0.48 0.0058 3.99
H Transportation & Storage F, L, R 8.53 0.34 0.0050 1.40
I Accomadation & Food Service Activities 7 0.48 0.51 0.0051 0.48
J Information & Communication Service 8 1.63 0.75 0.0040 1.07
K Financial & Insurance sector S 9 4.12 0.94 0.0136 5.64
L Real Estate Activities F, H, R 13.95 0.51 0.0055 3.10
M Professional, Scientific & Technical Activities C, O 5.34 0.48 0.0040 2.29
N Adminstrative & Support Service Activities G 4.31 0.36 0.0033 2.32
O Public Adminstration & Defence, Compulsary Social Security C, M 0.48 0.17 0.0023 0.00
P Education 10 0.23 0.33 0.0009 0.34
Q Human Health Services & Social Work Activities T, U 11 1.86 0.32 0.0022 1.71
R Arts, Entertainment & Recreation F, L, H 0.44 0.52 0.0060 0.67
S Other Service Activities K 0.42 0.78 0.0094 0.51
T Activities of Households as Employers Q, U 1.45 0.25 0.0011 15.75
U Activities of Extraterritorial Organisations T, Q - - - 0.00
V Residential Real Estate 12 7.89 0.28 0.0014 30.22
W Commercial Real Estate 13 19.23 0.18 0.0020 18.90
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B Data sources

As discussed in Section 3, we require regulatory data to compute the final stress impact on
banks’ CET1 capital position. To obtain initial values for each bank’s CET1 ratio we draw
on the Corep reporting. Corep has generally to be reported at the single bank level. However
according to CRR Art. 7(1-3) competent authorities may waive the requirement to report
at the single bank level under certain conditions. If a subsidiary waiver (CRR Art. 7(1)) or
a parent waiver (CRR Art. 7(3)) is granted to an institute, Corep and Finrep only have to
be reported at the group level. Also, for those institutes capital requirements apply only at
the group level.
This possibility makes the construction of a consistent data basis slightly more cumbersome
as (1) for waiver banks there is no Corep reporting on the single bank level available and
(2) there is no reporting at the group level for P&L items using Bundesbank’s quarterly
reporting consistent with Corep. Thus, for P&L items of waiver institutes we need to draw
on Finrep reporting at the group level to obtain data consistent with the reporting of CET1
capital and RWA. Therefore, three types of institutes participate in our top-down credit risk
stress test:

1. single institutes without any group membership,

2. single institutes with group membership which may be either partially consolidated
subsidiaries or parents without a parent waiver in the sense of CRR Art. 7(3) or

3. groups which are the fully consolidated unit of parent waiver institute and all fully
consolidated subsidiaries.

In Germany, we currently have nine institutes with a parent waiver, eight of those with IFRS
reporting and one with nGAAP reporting. Table B.1 summarizes the various data sources
of the starting values for the three different types of participating banks together with the
exact items used from the reporting sheets.

43



Table B.1: Data sources for bank-specific starting values

Variable Single institute level Group level Group level
(all institutes except without parent waiver) (parent waivers with nGAAP) (parent waivers with IFRS)

CET 1 capital Corep, single EC01.00 020.010 Corep, group QC01.00 020.010 Corep, group QC01.00 020.010
RWA institute reporting EC02.00 010.010 reporting QC02.00 010.010 reporting QC 02.00 010.010

Interestbearing quarterly BBk HV11 040 + 050 + FinaRisikoV QV1 040 + 050 + Finrep, group F01.01 080 + 090 +
assets reportings 060 + 070 + 080 060 +070 + 080 reporting 120 + 130 + 160 +

170 + 173 +174 +
177 + 178 + 190 +
200 + 220 + 230 +
232 + 233 + 236 +
237

Interest Income GVKI 010 QGV 010 F02.00 010.010
Interest expenses GVKI 020 QGV 020 F02.00 090.010
Impairments SAKI 340 QSA1 340 F02.00 460.010
Profit EGV EGV 58 KGV KGV 21 F 02.00 670.010
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Table B.2: Data description of variables in macroeconomic stress scenarios

Variable Description Source

GER.GDP real GDP Germany; quarterly; seasonally adjusted St. Louis FED, CLVMNACSCAB1GQDE

GER.bond

long-term interest rate for convergence purposes Germany,

ECB, IRS.M.DE.L.L40.CI.0000.EUR.N.Z
unspecified rate type, debt security issued, 10 years maturity,
new business coverage, denominated in euro,
unspecified counterpart sector

GER.CPI
German inflation measured by harmonized consumer

Destatis, 61111-0001
price index (CPI), all items

GER.CHPI
German construction price index for office and industrial

Destatis, 61261-0002
buildings including turnover tax

GER.RHPI
German residential property prices, new and

ECB, RPP.Q.DE.N.TF.00.5.00existing flats; residential property in good & poor condition,
whole country; neither seasonally nor working-day adjusted

GER.unemp
German standardised unemployment rate,

ECB, STS.M.DE.S.UNEH.RTT000.4.000all ages, male and female, seasonally adjusted,
not working day adjusted, percentage of civilian workforce

GER.DAX German blue chip stock market index Yahoo Finance, GDAXI

EU.EURIBOR
Euro area (changing composition) Euribor 1-year

ECB, FM.M.U2.EUR.RT.MM.EURIBOR1YD .HSTA
historical close rate, average of observations through period

EU.GDP European Union (28 countries) GDP at 2010 reference levels,
ECB, AME.A.EU28.1.0.0.0.OVGD

at constant prices
US.GDP real GDP US; quarterly; seasonally adjusted St. Louis FED, GDPC1

Notes: All data from 2008Q1 to 2017Q2.
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Table B.3: Pairwise Correlation Matrix

GDP Bond CPI CHPI RHPI UE Swap1Y DAX US-GDP

GDP 1.00
Bond 0.41 1.00
CPI 0.34 0.33 1.00
CHPI 0.35 0.35 0.44 1.00
RHPI -0.02 -0.08 -0.27 -0.23 1.00
UE -0.55 -0.32 -0.37 -0.73 0.28 1.00
Swap1Y 0.82 0.49 0.50 0.55 -0.22 -0.57 1.00
DAX 0.36 0.22 -0.11 0.19 0.20 -0.17 0.21 1.00
US-GDP 0.61 0.12 0.10 -0.06 0.11 0.13 0.54 0.48 1.00
EU-GDP 0.79 0.47 0.37 0.22 -0.14 -0.19 0.78 0.17 0.68

Notes: For a definition of the variables see Table B.2. All variables in year-on-year transformations (growth
rates, except for “Bond” and “Swap1Y” which are absolute changes.

C Descriptive Statistics for Model Spaces and Model

Confidence Sets

Table C.1: Fraction of Surviving Models in Unfiltered Model Space (%)

Sector Multicoll. Autocorr. Sign Res. Benchmarkt Constr. Occams’s Windows

1 71.7 47.3 0.9 12.8 0.1
2 63.5 92.8 11.9 69.6 0.6
3 63.7 98.1 8.4 81.6 0.0
4 66.9 21.0 5.5 14.6 0.2
5 93.9 44.0 57.2 71.7 0.1
6 64.7 51.5 21.1 63.2 0.4
7 76.6 30.5 0.7 2.3 0.3
8 68.4 99.9 0.4 11.6 0.1
9 62.8 93.6 26.2 88.4 0.7
10 75.3 94.0 0.2 10.8 0.0
11 69.0 94.5 5.0 23.2 0.1
12 78.3 35.4 9.3 11.8 0.1
13 76.5 15.3 34.0 73.3 0.2

Notes: All values expressed relative to models in unfiltered model spaceM except for Occam’s Windows
which is imposed once the previous filters have been applied. Number of models for each sector Q =
10, 000.
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Table C.2: M- and Ω-implied PD increases in adverse scenario (%)

M Ω
Sector Min Median Max SD Min Median Max SD

1 -85.7 -36.6 7027.7 146.9 16.8 57.5 505.5 104.7
2 -97.3 133.5 4753.4 909.2 41.1 562.7 3652.6 862.0
3 -85.2 144.3 5066.9 543.2 70.9 204.6 938.6 137.2
4 -76.5 -52.8 6763.6 180.3 9.7 112.2 2025.1 201.4
5 -73.4 19.8 2131.6 110.5 0.3 24.1 340.8 33.0
6 -91.3 30.7 2237.0 200.8 11.8 143.9 1367.0 168.9
7 -98.9 -84.6 810.4 40.7 94.1 160.2 546.7 81.1
8 -98.6 -35.8 4172.0 346.1 160.2 360.3 637.3 155.5
9 -92.0 509.3 2880.1 705.9 71.5 978.0 2607.6 612.6
10 -99.9 -80.9 30463.1 1782.1 196.3 2862.8 13089.1 4520.9
11 -96.4 -29.6 9698.6 570.0 46.6 446.7 7520.8 1541.3
12 -93.3 -23.6 3049.7 62.9 0.3 16.0 67.9 14.1
13 -93.3 28.9 5567.6 509.8 1.8 72.1 4559.1 665.9

Notes: PD increase over the three years in adverse scenario. All values in as percentages Number
of models for each sector Q = 10, 000.

D Multivarite QMap: Exemplary Output

This section shows some additional output of the multivariate QMap model for sector 5.
Figure D.1 shows the fitted and the observed sectoral PD time series. Figure D.2 shows the
model weights of all models that are candidates to be included in the MA-QMap and Figure
D.3 shows the MA-QMap-implied sectoral PD predictions conditional on the baseline and
the adverse macroeconomic scenario.
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Figure D.1: Multivariate QMap - Fitted VS Observed Values: Sector 5
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Figure D.2: Multivariate QMap - Covariate Weights: Sector 5
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E BCBMA Model: Exemplary Output

This section shows some additional BCBMA model output for Sector 5. Figure E.1 shows
the posterior inclusion probabilities of all variables included in the final BCBMA model.
For the calculation of the posterior inclusion probabilities, see Equation (13). In the BMA
context a variable is judged to be significant if the posterior inclusion probability exceeds
the prior inclusion probability (see Equation (14)).
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Figure E.1: BCBMA - Posterior Inclusion Probabilities: Sector 5

Figure E.2 shows the LRM of all models included in the final BCBMA model. The LRM
(except for CPI and EURIBOR) are subject to the sign restrictions in Section 3.3.

Figure E.2: BCBMA - Long-Run Multipliers: Sector 5
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