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Goal of Research

Develop methods to:

generate forecasts for a large number of cross-sectional units (e.g., firms, banks,
households, assets)

based on relatively short time series (e.g., due to data availability, mergers, regulatory
changes, structural breaks).

Example:

Yit = λi + Uit , Uit ∼ N(0, 1), t = 1, . . . ,T , i = 1, . . . ,N.

Forecasting YiT+1 requires estimate λ̂i : ŶT+1|T = λ̂i .

Naive (but indadmissible ...) estimate: λ̂i = 1
T

∑T
t=1 Yit .
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How Can We Do Better?

Suppose we knew that λi was drawn from a prior distribution π(·) ...

We could construct a posterior distribution, using Bayes Theorem:

p(λi |λ̂i ) =
p(λ̂i |λi )π(λi )∫
p(λ̂i |λi )π(λi )dλi

, λ̂i |λi ∼ N
(
λi , 1/T

)
, λ̂i =

1

T

T∑
t=1

Yit .

Then minimize posterior expected prediction loss (risk):

ŶiT+1 = argminδ

∫ ∫
L
(
λi + UiT+1, δ

)
p(λi |λ̂)p(UiT+1)dUiT+1dλi .

This also minimizes integrated risk (averaging over λi and λ̂i ).

In practice: estimate π(·) from the cross-sectional information.
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What To Do in Practice?

Option 1 – Full Bayesian analysis:

Create a model for π(λi ), e.g. normal distribution or mixture of normal distributions with
parameters ζ.

Specify prior for ζ and estimate ζ along with the λi ’s:

Liu (2017) provides Bayesian implementation in linear model.
Today’s talk focuses on Bayesian implementation in dynamic Tobit model.

Option 2 – Empirical Bayes

Condition on π(λ|ζ̂).

In a linear model for forecasting under quadratic loss one can use Tweedie’s formula:

ŶiT+1 = λ̂i +
1

T

∂

∂λ̂i
ln p(λ̂i ).

Only requires an estimate of p(λ̂i ). Implementations: Gu and Koenker (2015); Liu, Moon,
and Schorfheide (2017).
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Application: Modeling Loan Charge-Off Data

Forecast loan charge-off rates for a panel of “small” banks (< 1b in assets).

Assume banks operate in local markets and use local economic indicators (unemployment
and house price) as additional predictors.

Model – we also allow for cross-sectional heteroskedasticity:

yit = max
{
y∗it , 0

}
, i = 1, . . . ,N, t = 0, . . . ,T

y∗it = λi + ρy∗it−1 + β1 ln HPIit + β2URit + uit , uit
iid∼ N(0, σ2), y∗i0 ∼ N(µi∗, σ

2
i∗),

yit is loan charge off-rate (for a particular type of loans) of bank i in quarter t.

Implementation:

π(λ): either Normal or Dirichlet process mixture of normals

Posterior: use Metropolis-within-Gibbs sampler with data augmentation for y∗
it
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A Simplified Tobit Model

yit = y∗it I{y∗it ≥ 0}, i = 1, . . . ,N, t = 0, . . . ,T

y∗it = λi + ρy∗it−1 + uit , uit
iid∼ N(0, σ2), y∗i0 ∼ N(µi∗, σ

2
∗)

λi
iid∼ π(λ).

Complications in the Tobit setup:

latent variables;
identification, esp. finite sample.

Some Bayesian Tobit references:

Chib (1992): static model, use data augmentation for posterior sampling.
Wei (1999): dynamic model, extend posterior sampler.
Li and Zheng (2008): panel model, semiparametric analysis.
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Theory

Benchmark: oracle forecast

Know π(λ) and homogeneous parameters, but not λi .

From oracle to feasible forecast

Most importantly requires an estimate of π(λ).

Theoretical properties of feasible forecast (for linear model)

Liu (2017), Liu, Moon, and Schorfheide (2017)

Identification (for Tobit model)

Identification in population: Hu and Shiu (2017)
Finite sample: left tail in π(λ)
=⇒ matters for posterior mean of λi , but not matter much for forecasts

Estimation: parametric vs flexible treatment of π(·)
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Identification Heuristics

Model: yit = max{0, λi + Uit}, Uit ∼ N(0, 1), T = 1.

Forecaster j has prior π(j) Likelihoods are (almost) identical:
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Identification Heuristics

Model: yit = max{0, λi + Uit}, Uit ∼ N(0, 1), T = 1.

Posteriors after observing yi1 = 0 Forecasts after observing yi1 = 0

=⇒ Posteriors differ, but density forecasts are (almost) identical.
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Application: Bank Loan Charge-Off Rates

yit = max
{
y∗it , 0

}
, i = 1, . . . ,N, t = 0, . . . ,T

y∗it = λi + ρy∗it−1 + β1 ln HPIit + β2URit + uit ,

uit
iid∼ N(0, σ2

i ), y∗i0 ∼ N(µi∗, σ
2
i∗),

Background:

Charge-off rates reflect bank losses.
Forecast loan charge-off rates for a panel of “small” (< 1b in assets) banks.
Assume banks operate in local markets and use local economic indicators (unemployment
and house price) as additional predictors.
yit : loan charge off-rate (for a particular type of loans) of bank i in quarter t.

Example:

Credit card charge-off rates
Sample: N = 875, T = 10 (2001Q2-2003Q4), fraction of 0s = 33%
Forecast period: 2004Q1
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Posterior Means of λi vs. Estimated Random-Effects Distributions

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: The figure depicts histograms for E[λi |Y1:N,0:T ], i = 1, . . . ,N for four different model specifications.

The shaded areas are obtained by generating draws from the posterior distribution of the random effects density:

π(λ)|Y1:N,0:T . The estimation sample for the dynamic Tobit models ranges from 2001Q2 to 2003Q4 (T = 10).
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Posterior Means of σ2
i∗ vs. Estimated Random-Effects Distributions

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: The panels depict histograms for lnE[σ2
i |Y1:N,0:T ], i = 1, . . . ,N. The shaded areas are obtained by

generating draws from the posterior distribution of the random effects density: π(σi )|Y1:N,0:T . The estimation

sample for the dynamic Tobit models ranges from 2001Q2 to 2003Q4 (T = 10). The point estimates are

indicated through red vertical lines.

Liu, Moon, and Schorfheide Panel Tobit Forecasting



Forecast Performance

Point Fcst Interval Fcst Density Fcst
Estimator RMSE Cov.Freq CI Length LPS
Homoskedastic Models
Pooled Tobit (4.54) 0.92 (8.84) (-2.28)
Param π(λ) -7% 0.92 -0.94 0.09
Flex π(λ) -7% 0.92 -0.95 0.08
Flat π(λ) -4% 0.92 -0.87 0.06
Heteroskedastic Models
Param π(λ), π(σ2) 5% 0.89 -1.96 0.34
Flex π(λ), π(σ2) 5% 0.88 -2.00 0.32

RMSE percentage change relative to pooled Tobit
CovFreq nominal coverage frequency is 90%
CI Length, LPS deviations relative to pooled Tobit
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Scatter Plot of Forecast Errors

Parametric π(λ, σ2) Flexible π(λ, σ2)

Notes: The panels depict scatter plots of bank-level forecast errors of the homoskedastic (x-axis) versus

heteroskedastic (y -axis) specification under a parametric and a flexible prior distribution, respectively. We

overlay 45-degree lines in each panel.
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Interval Forecast and Density Forecast Performance

Interval Forecast Density Forecast
Estimator Cover Freq CI Len LPS CRPS

Credit Card Charge-Off Rates – Homoskedastic Models
Normal π(λ) 0.92 7.90 -2.19 1.83
Flexible π(λ) 0.92 7.89 -2.20 1.82
Flat π(λ) 0.92 7.97 -2.22 1.86
Pooled Tobit 0.92 8.84 -2.28 1.98
Pooled OLS 0.95 16.98 -2.96 2.28

Credit Card Charge-Off Rates – Heteroskedastic Models
Normal π(λ), InvGam π(σ2) 0.89 6.88 -1.94 1.71
Flexible π(λ), π(σ2) 0.88 6.84 -1.96 1.71

Notes: The estimation sample ranges from 2001Q2 to 2003Q4 (T = 10). We forecast the observation in

2004Q1.
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Forecast Evaluation – Flexible π(λ, σ2), Other Samples

RMSE Ratios Log Probability Score Diffs
vs. pooled linear vs. pooled Tobit
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Some Intuition

Naive vs. Pooled vs. Bayes:

Not much cross-sectional heterogeneity: it’s good to pool; naive is bad; we estimate a
tight prior; imposing homogeneity works well.

A lot of cross-sectional heterogeneity: it’s bad to pool; naive is decent; we estimate a
loose prior which does not generate much shrinkage.

Intermediate cases: neither pooling nor naive is good; Bayes procedure works well.

Homoskedastic vs. Heteroskedastic:

Estimate of σi determines relative weight of weight in likelihood and prior.

Large estimate of σi implies lots of weight on prior which may not be good for point
forecasts.
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Conclusions

Forecasting with dynamic panel data models:

Important to have “good” estimates of the individual effects λi .
Estimate cross-sectional distribution of λi .
Then use it as prior for Bayesian inference to sharpen inference and increase forecast
accuracy.

Complications in the Tobit setup:

latent variables,
identification, especially in finite samples.

Bank loan charge-off rates application:

Bayes procedure works generally well.
Point forecasts: homoskedastic models
Interval and density forecasts: heteroskedastic models

Future work:

Missing at random observations, correlated random effects...
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