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This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output

Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap

unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output

Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap

unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output

Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap

unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output
Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap

unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output
Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap
unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output
Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap
unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output
Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap
unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: what it is about

Two issues in macroeconomic:

1 Estimate aggregate output
Measuring aggregate output accurately is difficult.
GDP − GDI 6= 0

2 Decompose it into potential output and output gap
unobservable =⇒ statistical/economic model to estimate them

We tackle both issue by letting the data speak

Non-Stationary Dynamic Factor Model for large datasets
Barigozzi, Lippi & Luciani, 2016ab

Non-parametric Trend-Cycle decomposition

Introduction 1/24



This paper: preview of results

1 Aggregate output

Since 2015 growth was on average 0.4 p.p. higher than BEA’s estimate

Higher growth has been concentrated in Q1

GDP Q1 weakness due to mismeasurement rather than seasonality

2 Output gap

Growth before the GFC was heavily boosted by temporary factors

Growth after the financial crisis is due primarily to permanent factors

Our estimate indicates that as of 2017:Q4 there is still slack
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The non-stationary Dynamic Factor Model

Let xit ∼ I (1)

xit = χit + ξit

χit = d ′i(L)
1×q

f t
q×1

A(L)
q×q

f t
q×1

= ut
q×1

ft ∼ I (1) and ξit ∼ I (1) for some i

q − d “permanent shocks” and d “transitory shocks”

q − d common trends drive the dynamics of f t

f t has cointegration rank d
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Estimation: the “static” representation

Standard practice: estimate different representation

xt = D(L)
n×q

f t
q×1

+ ξt

A(L)
q×q

f t
q×1

= ut
q×1

xt = Λ
n×r

Ft
r×1

+ ξt

A(L)
r×r

Ft
r×1

= G
r×q

ut
q×1

static factors Ft = K(f ′t · · · f
′
t−s)

′ of dimension r = q(s + 1) > q;

loadings Λ = (D0 · · ·Ds)
′K−1 with Dk the coefficients of D(L);

A(L) is r × r , and G r × q
Stock & Watson, 2005; Bai & Ng, 2007; Forni, Giannone, Lippi & Reichlin, 2009; BLL, 2016b.

Same constraints on the co-movement of the data
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Estimation: quasi maximum likelihood

ML estimation via EM algorithm with Kalman smoother.
Doz, Giannone & Reichlin, 2011, 2012.

Initialization: BLL, 2016b & Koopman, 1997

Constraints:

1 λGDP = λGDI =⇒ χGDP,t = χGDI,t = GDOt

2 The non-stationary ξit are additional states:

ξit = ρiξit−1 + eit , eit ∼ N (0, σ2
i ), ρi =

{
1 if ξit ∼ I (1),
0 if ξit ∼ I (0).
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Model set-up

n = 103 US macroeconomic time series;

quarterly from 1960:Q1 to 2017:Q4, sample size T = 232

log of all variables in levels which are not p.p.

variables that are I (1) are not transformed,

variables that are I (2) are differenced once

inflation rates, unemployment rate, interest rates are in levels;

xt are de-trended data—when necessary

q = 3;

q − d = 1;

r = 6.

unit-root test on estimated idiosyncratic components;

idiosyncratic of most aggregated variables are assumed I (0)
GDP, GDI, UR, FFR, CPI inflation, PCE inflation.

Model Set-up 8/24
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Measures of aggregate output

GDP & GDI 
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Measures of aggregate output

Average GDP–GDI 
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Measures of aggregate output

Average GDP–GDI & Philly FED DFM of GDP–GDI 
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Our measure of GDO

GDO = part of GDP and GDI driven by ut

Estimation base on two assumptions:

1 GDP and GDI respond to ut in the same way
=⇒ χGDP

t = χGDI
t

2 the long run dynamics of GDP and GDI are entirely driven by ut

=⇒ ξGDP
t , ξGDI

t ∼ I (0)
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Gross domestic output
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Gross domestic output
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Gross domestic output
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Our estimate does not show residual seasonality

GDP BL
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Our estimate does not show residual seasonality

Average GDP–GDI BL
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Our estimate does not show residual seasonality

GDP Plus BL
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US economy grew faster than NA statistics
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Trend-Cycle decomposition common factors

Since Ft = K(f ′t · · · f
′
t−s)

′, then:

Ft has (q − d) unit roots
Ft is with a rank of cointegration c , d ≤ c ≤ (r − q + d)
Barigozzi, Lippi & Luciani, 2016ab

Therefore, Ft admits the factor representation:
Escribano & Peña, 1994; Gonzalo & Granger, 1995.

Ft = ΦTt + Γt

Tt is the vector of (q − d) common trends
Φ is r × (q − d) with full column rank and
Γt is stationary
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Φ is r × (q − d) with full column rank and
Γt is stationary
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Trend-Cycle decomposition via eigen-analysis

S =
1

T 2

T∑
t=1

F tF ′t

First q − d eigenvectors of S −→ Φ;
Peña & Poncela, 1997, 2006; Bai, 2004; Zhang, Yao & Robinson, 2016

T̂t = Φ̂′F̂t

Γ̂t = Φ̂⊥Φ̂
′
⊥F̂t = Φ̂⊥Ĝt

χ̂it = λ̂′iΦ̂T̂t + λ̂′iΦ̂⊥Ĝt ,
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Output gap: definition

Our measure

Output gap = cyclical component of GDO

χ̂GDO,t = λ̂′GDOΦ̂T̂t + λ̂′GDOΦ̂⊥Ĝt

Congressional Budget Office

Output fap = GDP - potential output

Solow growth model
Okun’s law
NAIRU
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Growth before the GFC was not sustainable
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Growth after the GFC is solid
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Labor market sends different signal
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Labor market sends different signal

Unemployment Gap
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Outline

Summary and conclusions
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Summary and conclusions

Aggregate output

⇒ Non-Stationary Dynamic Factor Model

Since 2015 growth was on average 0.4 p.p. higher than GDP

Higher growth has been concentrated in Q1

GDP Q1 weakness due to mismeasurement rather than seasonality

Output gap

⇒ Non-parametric Trend-Cycle

Growth before the GFC was heavily boosted by temporary factors

Growth after the financial crisis is due primarily to permanent factors

Our estimate indicates that as of 2017:Q4 there is still slack
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