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Background



Lots of Interesting Predictive Modeling
Issues and Ideas

– Economic surveys in Europe and U.S.

– Forecast combination, “ensemble averaging”

– Machine-learning methods
(Selection, shrinkage, regularization, ...)

– Big-data methods for small-data problems
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Forecast Combination

Ct = λf1t + (1− λ)f2t

λ∗ =
1− φρ

1 + φ− 2φρ

φ =
var(e1)

var(e2)

ρ = corr(e1,e2)

Optimal weights are not equal.
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Optimal Combining Weights are
Far From 0 and 1 (And Near 1/2)

λ∗ vs. φ for Various ρ Values.
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Gains From Combining Are Huge

var(eC )
var(e1)

for λ ∈ [0, 1]. We set φ = 1.20 and ρ = 0.45.
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Summary and More

– Large gains from combining

– Optimal combining weights are not equal

– But they’re likely not too far from equality

– Estimation issues make equal weights even more attractive

“Can anything beat the simple average?”
(Genre, Kenny, Meyler and Timmermann, 2013)

So we may want to shrink, if not force, weights toward equality...
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But We May Want to Trim Before Shrinking

“Trim and average” procedures
have been percolating for many years

(e.g., Stock and Watson, 1999)

But as noted by Granger and Jeon (2004):
“... more of a pragmatic folk-view

than anything based on a clear theory”

We will provide a formal framework and empirical evidence

(and our trimming is sophisticated...)
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So:

– First select some weights to 0

“Select to 0”

– Then shrink the survivors’ weights toward equality

“Shrink to 1/k ”
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Methods:
Penalized Estimation



Penalized Estimation

ŵ = argminw

T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

s.t .
K∑

i=1

|wi |q ≤ c

ŵ = argminw

 T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

+ λ

K∑
i=1

|wi |q


It’s all about q:

Concave penalty function non-differentiable at the origin,
encourages selection to 0 (e.g., q = 1/2)

Smooth convex penalty,
encourages shrinkage toward 0 (e.g., q = 2)

q = 1 is both concave and convex,
encourages both selection to 0 and shrinkage to 0
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LASSO

ŵ = argminw

 T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

+ λ

K∑
i=1

|wi |



(q = 1)

– Selects to 0, shrinks toward 0
No shrinkage (λ→ 0): Bates-Granger-Ramanathan

Full shrinkage (λ→∞): 0 weights

“Selects in the right direction, shrinks in the wrong direction”

– Can handle situations with K > T
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Generalized Penalized Estimation
and Egailtarian LASSO

Generalized penalized estimation:

ŵ = argminw

 T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

+ λ

K∑
i=1

|wi − w0
i |q


Egalitarian LASSO:

ŵ = argminw

 T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

+ λ

K∑
i=1

∣∣∣wi −
1
K

∣∣∣


(
q = 1,w0

i = 1
K ∀i

)
– Selects to 1/K , shrinks toward 1/K

No shrinkage (λ→ 0): Bates-Granger-Ramanathan
Full shrinkage (λ→∞): Equal weights

“Selects in the wrong direction, shrinks in the right direction”
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Partially-Egalitarian LASSO

ŵpLASSO = argminw

 T∑
t=1

(
yt −

∑
i

wi fit

)2

+ λ

K∑
i=1

∣∣∣wi

∣∣∣∣∣∣wi −
1

p(w)

∣∣∣
 ,

where p(w) is the number of non-zero elements of w .

– Selects to 0, shrinks toward 1/k
No shrinkage (λ→ 0): Bates-Granger-Ramanathan

Full shrinkage (λ→∞): Sophisticated trimmed average

“Selects in the right direction, shrinks in the right direction”

Problem: Challenging optimization

15 / 38



Two-Step Partially-Egalitarian LASSO

Step 1 (Select to 0): Using standard LASSO, select k forecasts from
among the full set of K forecasts.

ŵ1 = argminw

 T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

+ λ1

K∑
i=1

|wi |


Step 2 (Shrink/Select to 1/k ): Using egailtarian LASSO,
shrink/select the weights on the k survivors toward 1/k .

ŵ2 = argminw

 T∑
t=1

(
yt −

k∑
i=1

wi fit

)2

+ λ2

k∑
i=1

∣∣∣wi −
1
k

∣∣∣
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Feasibility

– To make the partially-egalitarian LASSO feasible,
we need a way to select the penalty parameters λ1 and λ2

– This is a real issue. We will return to it.
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Combining Survey Forecasts



Basic Framework – ECB-SPF

I Euro-area real GDP growth

I Quarterly 1-year-ahead survey of professional forecasts

I 25 forecasters in the pool continuously (K = 25)

I 20-quarter rolling estimation window (T = 20)

I Errors based on realizations from summer 2014 vintage

I Forecast evaluation period 2000Q4-2014Q1 (54 obs.)
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RMSE’s of 25 Forecasters – ECB-SPF
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Relative RMSE’s for pLASSO Combinations
ECB-SPF Euro-Zone Real Growth
(Infeasible – Based on Ex-Post Optimal λ’s)

Avg # RMSE/Med DM RMSE/Avg DM

2-Step (Step 2 Average) 3.31 0.91 0.92 (0.18) 0.92 1.15 (0.13)
2-Step (Step 2 eLASSO) 3.31 0.91 0.92 (0.18) 0.92 1.15 (0.13)

Best Individual 1 0.91 0.65 (0.26) 0.92 0.71 (0.24)
Median Individual 1 1.00 N/A 1.00 -0.17 (0.57)
Worst Individual 1 1.14 -1.10 (0.86) 1.15 -1.05 (0.85)

Simple Average 25 1.00 0.17 (0.43) 1.00 N/A
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Individual Forecasters Selected (ECB-SPF)

– Selected sets are small
– Serial correlation in selected individuals
– Best individual not always included in the selected set
– Worst individual sometimes included in the selected set

22 / 38



Broad Lessons So Far

Substantial (Ex Post) Gains From Partially-Egalitarian LASSO

Selection:

I Selection penalty should be harsh so selected set is small
(k ≈ 3)

I Selected set evolves gradually over time

Shrinkage:

I Selected forecasts should be shrunken toward a simple average
I Shrinkage penalty should be harsh,

so that forecasts are simply averaged
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Making Partially-Egalitarian LASSO Feasible

I Optimal LASSO penalties λ1 and λ2 are unknown ex ante and
must be estimated in real time

I Standard “leave-one-out” cross validation performs poorly
(No surprise: small samples, serially-correlated data, ...)

I But the structure of our earlier infeasible solution holds the key...
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Direct Averaging Approaches

I “Average-Best N”
– Average the recently best-performing N forecasters
– Computationally simple. But there is an issue of how to define
“recently best-performing”. We want sophisticated trimming.

I “Best N-Average”

– Examine all 25CN N-averages.
Use the recently best-performing.
– Computationally more burdensome, but still simple.
No issue of how to define “recently best-performing”.
Sophisticated trimming automatically embedded.

I Simple extensions:
– Average-best ≤ Nmax

– Best ≤ Nmax -average
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Best N-Average Combinations
ECB-SPF Euro-Zone Real Growth

Avg # RMSE/Med DM RMSE/Avg DM

N = 1 1 0.95 0.49 (0.31) 0.95 0.56 (0.29)
N = 2 2 0.93 0.68 (0.25) 0.94 0.81 (0.21)
N = 3 3 0.93 0.77 (0.22) 0.93 0.91 (0.18)
N = 4 4 0.93 0.80 (0.21) 0.94 0.97 (0.17)
N = 5 5 0.94 0.88 (0.19) 0.94 1.11 (0.14)
N = 6 6 0.94 0.90 (0.19) 0.95 1.20 (0.12)

Best Individual 1 0.91 0.65 (0.26) 0.92 0.71 (0.24)
Median Individual 1 1.00 N/A 1.00 -0.17 (0.57)
Worst Individual 1 1.14 -1.10 (0.86) 1.15 -1.05 (0.85)

Simple Average 25 1.00 0.17 (0.43) 1.00 N/A
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Best ≤ Nmax -Average Combinations
ECB-SPF Euro-Zone Real Growth

Avg # RMSE/Med DM RMSE/Avg DM

Nmax = 1 1.00 0.95 0.49 (0.31) 0.95 0.56 (0.29)
Nmax = 2 1.52 0.93 0.67 (0.25) 0.94 0.79 (0.22)
Nmax = 3 1.87 0.93 0.71 (0.24) 0.94 0.84 (0.20)
Nmax = 4 2.00 0.93 0.70 (0.24) 0.94 0.83 (0.21)
Nmax = 5 2.00 0.93 0.70 (0.24) 0.94 0.83 (0.21)
Nmax = 6 2.00 0.93 0.70 (0.24) 0.94 0.83 (0.21)

Best Individual 1 0.91 0.65 (0.26) 0.92 0.71 (0.24)
Median Individual 1 1.00 N/A 1.00 -0.17 (0.57)
Worst Individual 1 1.14 -1.10 (0.86) 1.15 -1.05 (0.85)

Simple Average 25 1.00 0.17 (0.43) 1.00 N/A
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More

I Different window widths

I Variable window widths
Wt ∈ {W1,W2, ...,Wm}
e.g., Wt ∈ {4,8,12,16,20,24,28,32,36}

I g-group clustering: Ct = w1 f̄1 + w2 f̄2 + ...+ wg f̄g
e.g., two groups: Ct = .75f̄1 + .25f̄2

I Other regions (U.S.)

I DENSITY FORECASTS ...
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Log Probability Score for a Single Density Forecast

LPSi = −
T∑

t=1

log pit (yt )

where:

pit is the time-t forecast
yt is the time-t realization

T is the number of periods

– (Negative of) predictive (log) likelihood

– Minimizing LPS analogous to minimizing SSE for a point forecast
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Log Probability Score For a Mixture Density Forecast

LPS(w) = −
T∑

t=1

log pt (yt )

where:

pt =
∑K

i=1 wipit is the time-t mixture forecast
wi is the mixture weight on density forecaster i

K is the number of individual forecasters
yt is the time-t realization

T is the number of periods

Amisano and Geweke (2017, REStat)
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A Problem with LPS...
SPF density forecasts can look like this:

p(y ∈ Ij ) =



0 y ∈ (−∞,0]

0 y ∈ (0,0.5]

0 y ∈ (0.5,1.0]

0 y ∈ (1.0,1.5]

0.3 y ∈ (1.5,2.0]

0.5 y ∈ (2.0,2.5]

0.2 y ∈ (2.5,3.0]

0 y ∈ (3.0,3.5]

0 y ∈ (3.5,4.0]

0 y ∈ (4.0,∞]

Consider a realization y = 1.2.

Then LPS =∞.
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Ranked Probability Score
For a Single Density Forecast

RPSi =
T∑

t=1

 J∑
j=1

{
Pijt − 1(yt ≤ bj )

}2


where:

Pijt =
∑j

h=1 pit (Ih) is the cdf of density forecast pit
defined on intervals Ij = [aj ,bj ], j = 1, ..., J

Czado, Gneiting and Held (2009, Biometrics)
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Ranked Probability Score
For a Mixture Density Forecast

RPS(w) =
T∑

t=1

 J∑
j=1

{
Pjt − 1(yt ≤ bj )

}2


where:

Pjt =
∑j

h=1 pt (Ih) is the cdf of density forecast pt
defined on intervals Ij = [aj ,bj ], j = 1, ..., J

pt =
∑K

i=1 wipit is the time-t mixture forecast
wi is the mixture weight on density forecast i

K is the number of individual forecasts
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Partially-Egalitarian LASSO for Density Forecasts

Recall partially-egalitarian LASSO for combining point forecasts:

ŵpLASSO = argminw

(
SSE(w) + PenaltypLASSO(w)

)

Now, for combining density forecasts:

ŵpLASSOLPS = argminw

(
LPS(w) + PenaltypLASSO(w)

)
ŵpLASSORPS = argminw

(
RPS(w) + PenaltypLASSO(w)

)
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Partially-Egalitarian LASSO for Density Forecasts

Recall partially-egalitarian LASSO for combining point forecasts:

ŵpLASSO = argminw

 T∑
t=1

(
yt −

K∑
i=1

wi fit

)2

+ λ

K∑
i=1

∣∣∣wi

∣∣∣∣∣∣wi −
1

p(w)

∣∣∣


Now, for combining density forecasts:

ŵpLASSOLPS = argminw

(
−

T∑
t=1

log pt (yt ) + λ

K∑
i=1

∣∣∣wi

∣∣∣∣∣∣wi −
1

p(w)

∣∣∣)

ŵpLASSORPS = argminw

 T∑
t=1

 J∑
j=1

{
Pjt − 1(yt ≤ bj)

}2

 + λ
K∑

i=1

∣∣∣wi

∣∣∣∣∣∣wi −
1

p(w)

∣∣∣


35 / 38



Framework: ECB-SPF

I Quarterly 1-year-ahead density forecasts for Euro-area real GDP
growth

I 17 forecasters in the pool continuously
(as opposed to 25 in DS point prediction application)

I 20-quarter rolling estimation window

I Realizations based on the 2017/11/18 vintage

I Sample period
I Survey dates: 1999Q1 – 2017Q1 (73 obs.)
I Target dates: 1999Q3 – 2017Q3 (73 obs.)
I For example, in the 1991Q1 survey forecasters were asked to

generate predictions (point, density) for real GDP growth between
1998Q4–1999Q3. This is because by the time 1999Q1 survey was
conducted, real GDP data were available up to 1998Q4.

36 / 38



Best N-Mixture
ECB-SPF Euro-Zone Real Growth

Avg # RPS/Med DM RPS/Avg DM

N = 1 1 0.92 -0.94(0.17) 1.02 0.28(0.61)
N = 2 2 0.86 -1.8(0.04) 0.95 -0.9(0.18)
N = 3 3 0.87 -1.93(0.03) 0.96 -0.92(0.18)
N = 4 4 0.86 -2.17(0.02) 0.96 -1.02(0.15)
N = 5 5 0.87 -2.21(0.01) 0.96 -1.18(0.12)
N = 6 6 0.87 -2.22(0.01) 0.96 -1.41(0.08)

Best Individual 1 0.87 -1.55(0.06) 0.97 -0.84(0.20)
Median Individual 1 1.00 NA 1.11 1.71(0.96)
Worst Individual 1 1.27 2.64(0.99) 1.41 3.30(0.99)

Equal-Weight Mixture (Avg) 17 0.90 -1.71(0.04) 1.00 NA
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Best ≤ Nmax -Mixture
ECB-SPF Euro-Zone Real Growth

Avg # RPS/Med DM RPS/Avg DM

Nmax = 1 1.00 0.92 -0.94(0.17) 1.02 0.28(0.61)
Nmax = 2 1.56 0.76 -2.60(0.01) 0.85 -2.12(0.02)
Nmax = 3 2.03 0.73 -2.94(0.01) 0.81 -2.67(0.01)
Nmax = 4 2.49 0.71 -3.19(0.01) 0.79 -2.96(0.01)
Nmax = 5 2.85 0.69 -3.39(0.01) 0.77 -3.37(0.01)
Nmax = 6 3.04 0.68 -3.54(0.01) 0.76 -3.58(0.01)

Best Individual 1 0.87 -1.55(0.06) 0.97 -0.84(0.20)
Median Individual 1 1.00 NA 1.11 1.71(0.96)
Worst Individual 1 1.27 2.64(0.99) 1.41 3.30(0.99)

Equal-Weight Mixture (Avg) 17 0.90 -1.71(0.04) 1.00 NA
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