Discussion: "Illusions of Sparsity by Giorgio Primiceri"

Pablo Guerron-Quintana

Boston College

June, 2018

Executive Summary

Motivation: Is regular coke (dense model) better than diet coke (sparse model)?

Figure: Sparse vs Dense

Pablo Guerron-Quintana

Discussion

Executive Summary

Motivation: Should we use dense or sparse models?

Giorgio and coauthors look for answers to this key question.

To this end,

- Propose a flexible Bayesian model encompassing competing alternatives.
- Use macro, finance, and micro data.

Main message: Sparsity should not be taken for granted.

Only in one application (out of 6) sparsity emerges from data under uninformative priors.

Into the woods I

• Consider regression:

$$y_t = u'_t \phi + x'_t \beta + \epsilon_t,$$

where parameter of interest is vector β .

• Impose prior:

$$eta = \left\{ egin{array}{cc} \mathcal{N}(0,\sigma^2\gamma^2) & \mbox{ with prob. } q \\ \\ 0 & \mbox{ with prob. } 1-q \end{array}
ight.$$

• *q* determines whether you are in a Ridge world or a Lasso world.

- If in Ridge world, γ controls degree of shrinkage.
- Operationally, $q \sim Beta(a, b)$ and $R^2(\gamma^2, q) \sim Beta(A, B)$.

Into the woods I

Eyeball econometrics points to these modes for sparsity and shrinkage:

	q	γ
Macro I	$0.2 \sim 0.3$	0.135
Macro II	$0.9 \sim 1.0$	0.174
Financ I	$0.5 \sim 1.0$	0.174
Financ II	0.6	0.007
Micro I	0.0	$0.37 \sim 1.0$
Micro II	$0.5\sim 0.6$	0.37

Take away:

- Only Micro I (decline in crime rates) clearly shows sparsity.
- Other applications prefer mixtures $q \in (0, 1]$
- But with significant shrinkage $\gamma >> 0$

Into the woods II

Consider simple regression:¹

$$Y = \mu + v$$
, $v \sim N(0, \sigma^2)$

- Lasso's shrinkage function: $d^{\ell}(y) = \max(|y| \frac{\lambda^{\ell}}{2}, 0)$ sign(y)
- Ridge's shrinkage function: $d^{r}(y) = \frac{y}{1+\lambda^{r}}$

¹inspired by Chernozhurov et al. Annals of Statistics, 2015

Into the woods II

Consider simple regression:¹

$$Y = \mu + v, \quad v \sim N(0, \sigma^2)$$

- Lasso's shrinkage function: $d^{\ell}(y) = \max(|y| \frac{\lambda^{\ell}}{2}, 0) sign(y)$
- Ridge's shrinkage function: $d^{r}(y) = \frac{y}{1+\lambda^{r}}$
- A poor man's shrinkage function for Giorgio's paper is

$$d^{gp}(Y) = q \times d^{r}(y) + (1-q) \times d^{\ell}(y)$$

 $\circ~$ Or in terms of ℓ_1 and ℓ_2 penalizations, Giorgio's proposal is

 $|\mu|^{\rm gp} = q \times |\mu| + (1-q) \times \gamma^2 \times |\mu|^2$

¹inspired by Chernozhurov et al. Annals of Statistics, 2015

Into the woods III

Figure: Lasso and Ridge Shrinkage Functions

Into the woods IV

Figure: Lasso, Ridge, GP Shrinkage Functions

Into the woods IV

Figure: Lasso, Ridge, GP Shrinkage Functions

Into the woods IV

Figure: Lasso, Ridge, GP Shrinkage Functions

Into the woods $\ensuremath{\mathsf{IV}}$

Figure: Lasso, Ridge, GP, and Lava Shrinkage Functions

Insights/Comments I

- Let's take U.S. macro forecasting and U.S. firms stock returns applications.
- Samples cover
 - \rightarrow Macro : 1960 : 2 2014 : 12
 - \rightarrow Finance: 1963 : 7 2015 : 6
- Sample covers a lot of Great episodes!
 - 1. Great Moderation,
 - 2. Great Recession (aka Financial crisis),
 - 3. Secular Stagnation (post-crisis era).

Insights/Comments II

- Why is this a concerned?
 - 1. changes in volatility,
 - 2. emergence of new factor post financial crisis,
 - 3. zero lower bound,
 - 4. a recent break in growth rates (?)
 - 5. more generally, some evidence that economic complexity has increased since the 1970s.
- It will be informative to discuss whether sparsity has changed (and if so, why).

Insights/Comments III

Figure: Heat map probability of inclusion of each predictor Macro I application

• There are between 5 and 8 "dominant" regressors.

Insights/Comments III

Figure: Heat map probability of inclusion of each predictor Macro I application

Insights/Comments IV

- There are between 5 and 8 "dominant" regressors.
- How well do these regressors forecast industrial production?
- Valuable to know if in hurry to get quick prediction.

Insights/Comments IV

- There are between 5 and 8 "dominant" regressors.
- How well do these regressors forecast industrial production?
- Valuable to know if in hurry to get quick prediction.
- Related, part of Lasso literature is about efficient algorithms.
- How computationally expensive is the proposed approach?
- Treatment of industrial production data
 - ♦ Timing of release: IP March 23 while NIPA March 29.
 - Revised versus real time data.