Coordinating Monetary and Financial Regulatory Policies

Alejandro Van der Ghote

European Central Bank

May 2018

3rd Annual ECB Macroprudential Policy and Research Conference

The views expressed on this discussion are my own and do not necessarily reflect those of the European Central Bank

05/18

1 / 11

Study coordination between monetary and macro-prudential policies $\underline{\sf Emphasis} \to {\sf coordination}$ throughout the economic cycle

< ∃ >

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

3 ×

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian framework + Balance-sheets fluctuations

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

- Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.
- Coor. MoPo \rightarrow deviate from natural rate of return MacroPru \rightarrow soften relative to traditional mandate

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

• How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

• Main results

- Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.
- Coor. MoPo \rightarrow deviate from natural rate of return MacroPru \rightarrow soften relative to traditional mandate
 - SW <u>Coordinated</u> \succ <u>Traditional</u> by 0.07% annual consumption equivalent

05/18

2 / 11

 \bullet Model economy \rightarrow 2 building blocks

< ロ > < 同 > < 三 > < 三

- $\bullet \ \text{Model economy} \to \mathbf{2} \ \text{building blocks}$
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently \rightarrow Calvo (1983)

- $\bullet \ \text{Model economy} \to \mathbf{2} \ \text{building blocks}$
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently \rightarrow Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - \rightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)

- $\bullet \ \text{Model economy} \to \mathbf{2} \ \text{building blocks}$
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently \rightarrow Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - \rightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
 - Model economy \rightarrow competitive equilibrium

- $\bullet \ \text{Model economy} \to \mathbf{2} \ \text{building blocks}$
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently \rightarrow Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - → Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
 - Model economy \rightarrow competitive equilibrium
 - o Identify sources of inefficiency. Define mandates for policy

- $\bullet \ \text{Model economy} \to \mathbf{2} \ \text{building blocks}$
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently \rightarrow Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - \rightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
 - Model economy \rightarrow competitive equilibrium
 - o Identify sources of inefficiency. Define mandates for policy
 - $\bullet\,$ Policy exercise $\rightarrow\,$ contrast btw traditional and coordinated mandates

05/18

3 / 11

• Firms produce intermediate goods out of labor and capital services

$$y_{j,t} = A_t I^lpha_{j,t} k^{1-lpha}_{j,t} ~~ ext{with} ~j \in [0,1]$$

05/18

4 / 11

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

Firms produce intermediate goods out of <u>labor</u> and capital services

$$y_{j,t} = A_t I_{j,t}^{lpha} k_{j,t}^{1-lpha}$$
 with $j \in [0,1]$

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

• CES aggregator transforms intermediate goods into final cons. good

$$y_t = \left[\int_0^1 y_{j,t}^{rac{arepsilon-1}{arepsilon}} dj
ight]^{rac{arepsilon}{arepsilon-1}} \quad ext{with } arepsilon > 1$$

Firms produce intermediate goods out of <u>labor</u> and capital services

$$y_{j,t} = A_t I^{lpha}_{j,t} k^{1-lpha}_{j,t}$$
 with $j \in [0,1]$

- $A_t
 ightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$
- CES aggregator transforms intermediate goods into final cons. good

$$y_t = \left[\int_0^1 y_{j,t}^{rac{arepsilon-1}{arepsilon}} dj
ight]^{rac{arepsilon}{arepsilon-1}} \quad ext{with } arepsilon > 1$$

• Firms reset nominal price $p_{j,t}$ sluggishly according to Calvo (1983) \Rightarrow agg. price level $p_t = \left[\int_0^1 p_{j,t}^{1-\varepsilon} dj\right]^{\frac{1}{1-\varepsilon}}$ evolves locally deterministically, $dp_t/p_t = \pi_t dt + 0 dZ_t$

• Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to ...

$$\mathsf{BC} \qquad \qquad q_t \bar{k}_{f,t} = b_t + n_{f,t}$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to ...

BC
$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$
FC1 $q_t \bar{k}_{f,t} \le \lambda V_t \implies q_t \bar{k}_{f,t} \le \lambda v_t n_{f,t}$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

BC $q_t \bar{k}_{f,t} = b_t + n_{f,t}$ FC1 $q_t \bar{k}_{f,t} \le \lambda V_t \implies q_t \bar{k}_{f,t} \le \lambda v_t n_{f,t}$ FC2 $q_t \bar{k}_{f,t} \le \Phi_t n_{f,t}$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

$$\begin{array}{ll} \mathsf{BC} & q_t \bar{k}_{f,t} = b_t + n_{f,t} \\ \mathsf{FC1} & q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t} \\ \mathsf{FC2} & q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t} \\ \mathsf{LoM} & dn_{f,t} = \left[\mathbf{a}_f r_{k,t} dt + dq_t \right] \bar{k}_{f,t} - \left(i_t - \pi_t \right) b_t dt \\ \end{array}$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{\bar{k}_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} rac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

$$\mathsf{BC} \qquad \qquad q_t \bar{k}_{f,t} = b_t + n_{f,t}$$

FC1
$$q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t}$$

$$\mathsf{FC2} \qquad q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t}$$

LoM $dn_{f,t} = [a_f r_{k,t} dt + dq_t] \bar{k}_{f,t} - (i_t - \pi_t) b_t dt$

• Households \rightarrow consume c_t , supply labor l_t , and invest in $-b_t$, $\bar{k}_{h,t}$

• Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with...

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with...

$$\zeta_t \equiv a_t^{1-lpha}/\omega_t$$
, $a_t ar{k} \equiv a_h ar{k}_{h,t} + a_f ar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{j,t} dj$

- Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds $\iff \min \{\lambda v_t, \Phi_t\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with...

$$\zeta_t \equiv a_t^{1-lpha} / \omega_t$$
, $a_t \bar{k} \equiv a_h \bar{k}_{h,t} + a_f \bar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{j,t} dj$

SW Utility flows are:

$$(1-\alpha)\ln a_t + \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} + \ln A_t + (1-\alpha)\ln \bar{k}$$

• Separate objectives and no cooperation \rightarrow Nash equilibrium (NE)

• Separate objectives and no cooperation \rightarrow Nash equilibrium (NE) MaPru $\max_{\Phi_t} \left\{ \frac{E_0}{\int_0^\infty e^{-\rho t} (1-\alpha) \ln a_t dt, \text{ subject to CE \& } i_t \right\}$ • Separate objectives and no cooperation \rightarrow Nash equilibrium (NE) MaPru $\max_{\Phi_t} \left\{ E_0 \int_0^\infty e^{-\rho t} (1-\alpha) \ln a_t dt$, subject to CE & $i_t \right\}$ MoPo $\max_{i_t} \left\{ E_0 \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right] dt$, subj. to CE & $\Phi_t \right\}$ • Separate objectives and no cooperation \rightarrow Nash equilibrium (NE) MaPru $\max_{\Phi_t} \left\{ E_0 \int_0^\infty e^{-\rho t} (1-\alpha) \ln a_t dt$, subject to CE & $i_t \right\}$ MoPo $\max_{i_t} \left\{ E_0 \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right] dt$, subj. to CE & $\Phi_t \right\}$! Policy has commitment. Policy rules are designed at t = 0 • Separate objectives and no cooperation \rightarrow Nash equilibrium (NE) MaPru $\max_{\Phi_t} \left\{ E_0 \int_0^\infty e^{-\rho t} (1-\alpha) \ln a_t dt$, subject to CE & $i_t \right\}$ MoPo $\max_{i_t} \left\{ E_0 \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} \right] dt$, subj. to CE & $\Phi_t \right\}$! Policy has commitment. Policy rules are designed at t = 0

NE $i_t \rightarrow$ mimic natural rate of return $\implies \pi_t = 0$, $\omega_t = 1$, $l_t = l_*$

• Separate objectives and no cooperation \rightarrow Nash equilibrium (NE) MaPru $\max_{\Phi_t} \left\{ E_0 \int_0^\infty e^{-\rho t} (1-\alpha) \ln a_t dt$, subject to CE & $i_t \right\}$ MoPo $\max_{i_t} \left\{ E_0 \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right] dt$, subj. to CE & $\Phi_t \right\}$! Policy has commitment. Policy rules are designed at t = 0NE $i_t \rightarrow$ mimic natural rate of return $\implies \pi_t = 0$, $\omega_t = 1$, $l_t = l_*$ $\Phi_t \rightarrow$ replicate constrained efficient policy of flex. price econ. \implies

Macro-prudential Policy in Flexible Price Economy

• Benefits

- $\circ \downarrow$ distributive externality [Fig. 1] \uparrow binding-constraint externality [Fig. 2]
- \downarrow co-movement btw a_t and intermediary wealth share
- shift invariant distribution rightward [both Figs., RHS]

Policy Exercise (cont.) Coordinated Mandate

$$\max_{i_t,\Phi_t} \left\{ E_0 \int_0^\infty e^{-\rho t} \left[(1-\alpha) \ln a_t + \ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} \right], \text{ s.t. CE} \right\}$$

イロト イヨト イヨト イヨト

Policy Exercise (cont.) Coordinated Mandate

05/18 9 / 11

Image: A math and A math and

Policy Exercise (cont.) Coordinated Mandate

Contrast between Traditional and Coordinated Mandates Quantitative Analysis

• Baseline calibration

Parameter Values

a _h	λ	γ	μ_A	σ_A	α	ε	θ	ρ	ψ	χ
70%	2.5	10%	1.5%	3.5%	65%	2	In 2 ^{6/5}	2%	3	2.8

Contrast between Traditional and Coordinated Mandates Quantitative Analysis

Baseline calibration

Parameter Values

a _h	λ	γ	μ_A	σ_A	α	ε	θ	ρ	ψ	χ
70%	2.5	10%	1.5%	3.5%	65%	2	In 2 ^{6/5}	2%	3	2.8

• Social welfare gains in annual consumption equivalent

Coordinated Mandate over Traditional Mandate

		Present Discounted Value of				
	$\ln \frac{1}{\omega}$	ln / $^{lpha} - \chi rac{l^{1+\psi}}{1+\psi}$	$\ln a^{1-lpha}$	Ut. Flows		
Baseline calibration	-0.04%	-0.00%	+0.11%	+0.07%		
but with $a_h = 60\%$	-0.05%	-0.01%	+0.15%	+0.09%		
but with $ heta=\ln 2^{4/5}$	-0.06%	-0.01%	+0.20%	+0.13%		
but with $\varepsilon = 4$	-0.05%	-0.00%	+0.07%	+0.02%		

Traditional Mandate

 $MoPo \rightarrow mimic natural rate of return$ MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.

Coordinated Mandate

 $\begin{array}{l} {\sf MoPo} \ \rightarrow \ {\sf deviate} \ {\sf from} \ {\sf natural} \ {\sf rate} \ {\sf of} \ {\sf return} \\ {\sf MacroPru} \ \rightarrow \ {\sf soften} \ {\sf relative} \ {\sf to} \ {\sf traditional} \ {\sf mandate} \end{array}$

Social Welfare Gains

<u>Coordinated</u> \succ <u>Traditional</u> by 0.07% annual consumption equivalent