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Introduction

The VAR model

Consider the vector autoregressive (VAR) model of order p, the VAR(p) model:
ye =Opye—1+ ... + ®Opye—p + &, e¢ ~ NID(0, H), t=p+1,...,T,
where CD[,-] is coefficient matrix, i = 1,...,p, and H is variance matrix.

For parameter estimation, forecasting, impulse response analysis, etc., we refer
to Hamilton (1994) and Lutkepohl (2005), amongst many others.

The VAR(p) model can be efficiently formulated as
Ve = ¢Yt_1;p+€t, = [¢[1]77¢[p]] 5 Yt—l:p = (ytlflv-“v.yl{fp),

We assume that the initial observation set {yi,...,y,} is fixed and given.
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Introduction

Motivation for time-varying parameters in VAR model

In macroeconometrics, vector-autoregressive (VAR) models are often extended
with time-varying parameters, we have

Yr = 4>tyt71:p+5t7 Er ~ NID(O, ,‘Il-)7 t:p+ 17...7 T.

Earlier literature:

Cogley/Sargent (2001 NBER): inflation-unemployment dynamics in
changing monetary policy regimes

Primiceri (2005 RES): role of monetary policy for macroeconomic
performance in the 1970s and 1980s

Canova/Ciccarelli (2004 JE, 2009 IER): Bayesian panel VAR models,
multi-country analyses;

Hubrich/Tetlow (2015 JME): amplification and feedback effects between
financial sector shocks and economy in crises vs. normal times

Prieto/Eickmeier/Marcellino (2016, JAE): role of financial shocks on
macroeconomic variables during crisis 2008/09
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Introduction

Estimation for TV-VAR models

The common approach to parameter estimation for VAR models
with time-varying coefficients is based on Bayesian methods

We develop an alternative methodology based on dynamic factors
for VAR coefficient matrices and score-driven dynamics for the
variance matrices:
o flexible modeling setup: it allows for wide variety of empirical
specifications;
e simple, transparent and fast implementation: least squares methods
and Kalman filter;
o relatively easy for estimation, impulse response, analysis and
forecasting.

Our approach is explored in more generality by Delle Monache et al.

(2016): adaptive state space models

4/32



Introduction

Outline

Introduction

e Econometric Model

Simulations

Empirical application: Macro-financial linkages in the U.S. economy

Conclusion

5/32



Econometric model

Time-varying autoregressive coefficient matrix

e TV-VAR model :
Ye = ¢t Yt—l:p + €, Er ~ NID(O, H[»)7

where we assume that sequence of variance matrices Hp11,..., HT is
known and fixed, for the moment.

e The time-varying VAR coefficient is a matrix function,
O, = D(f) = O + OLA + -+ O frs,
where the unobserved r x 1 vector f; has dynamic specification
fer1 = pfe + e, ne ~ N(0, Xp),

where @ is r x r diagonal matrix of coefficients and ¥, = I, — .
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Econometric model

Linear Gaussian state space form

We have y¢ = ®;Yi_1.p + ¢ and & = &(f;) = &€ + O , + -
Define y+ = y+ — ®°Y;_1., and consider the following equation equalities

o= [Slfat. O] Verp e
= [of, ,¢f] (f: © Inp) Yee1p + et
= < {15 ® [ ])Vec(ft@INp)JrEf

(Virp® [0l 0f]) Qi +er.

Zf = ( tlfl:p® [d){v"' 7¢f]) 07

to obtain the linear Gaussian state space form

We let

Vt = Zife + €1, frr1 = oft + e,

where the properties of the disturbances ¢; and 7; are discussed above

A Off .
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Econometric model

Kalman filter

Prediction error is defined as v = yr — E(yt|Fe—1;9):
® F,_i is set of all past information, including past observations;

® 1) is the parameter vector that collects all unknown coefficients in
o, &f, ., o, Hppq, ., HE 9

® when model is correct, the sequence {vp11,...,vr} is serially uncorrelated;

® variance matrix of the prediction error is Fy = Var(ve|Fi—1;1) = Var(vs; ).

For a given vector 1, the Kalman filter is given by

vi = Y+ — Ziat, Fi = ZiP:Z] + H;,
Ke = @PZIF?,
a1 =  par + Keve, Piy1i = @Pi(e — KeZi) + X4,

with a; = E(f¢|F¢—1;%) and variance matrix Py = Var(fy — a¢|Fr—1;¢), for
t=p+1,..., T. Loglikelihood function is

.
N 1 1 —
()= 3 4(w), ()=~ log2r — _log|Fe = JviF v
t=p+1
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Econometric model

Parameter estimation (1)

For model

Ye=Yirpter,  Ge=0(f) = O 4O A -+ B frr,  far = gt
parameter estimation concentrates on ¢, ¢ and ¢‘I.f, fori=1,...,r.

MLE is maximisation of £(¢) wrt 1, heavy task.

Our strategy :
Step 1: Use economic information (if available) to restrict entries of ®¢ and CDf.

Step 2: Obtain estimates of € via least squares method on static VAR.
Step 3: Only place coefficients of ¢ and d)f in .
Step 4: Estimate this ¢ by MLE using the Kalman filter.

Least squares estimate of ® from static VAR is consistent estimate of ®€.
Notice that E(f;) = 0.
MLE is for a small dimension of .
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Econometric model

Time-varying variance matrix

Each Kalman filter step at time t requires a value for H;.

We use score-driven approach of Creal et al. (2013) to let variance matrix H; change
recursively over time.

We have N* x 1 vector fZ = vech(H;) with N* = N(N + 1)/2 and dynamic
specification
Fo=w+ BfS + As,

where w is constant vector, A and B are square coefficient matrices and s; is
innovation vector.

Distinguishing feature of score-driven model is definition of s; as the scaled score
vector of £ = £;(1¢) with respect to 7.

We have s; = S V+ where S; is scaling matrix and V; is gradient vector.
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Econometric model

Score-driven model for time-varying variance matrix

The transpose of the gradient vector is given by

8(: Bﬁt 8V€C( Ft) 841* 8vec( Ht)

Vi = = . — .
Y7 af7’ T dvec(F:) Bvech(H:)  dvec(F:) vech(H)'’

last equality holds since F; = ZtPtZt’ + H; and Z; does not depend on H; and P is
function of Hpy1,..., Hi—1, but not H;.
Avec(Ht)

8@( 1 N / —1 —1

e S — (vec(F, Flert), 2 _p,,
Ovec(Ft) 2 [vee(ve ve)" — (vee(F:))'] ( e OF ) dvech(H;)! N

where Dy is the N2 x N* duplication matrix, see Magnus and Neudecker (2007).

It follows that

1
V=D (Frt @ At (vee(ve v) = vee(F1).
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Econometric model

Score-driven model for time-varying variance matrix

The inverse of the information matrix is taken as scaling matrix S; for gradient vector.
Information matrix:
I: = E[V:V}|Fii]

1
= ZD’IV (F;l ® F;l) Var [vec(vt v{) — vec(F¢)| Fr—1] (F;l ® F;1>

1 _ _
= Dk (Ft 1®F; 1) (In2 + Cn)Du
_ 1 ’ —1 —1
= 3Dy (Ft ® F; ) Du,
since Var[vec(vt v{) — vec(F¢)|Fe—1] = (Ip2 + Cn) (Ft ® Ft) and
(In2 + Cnv)Dn = 2 Dy, where Cy is the N2 x N2 commutation matrix.
The inverse of the information matrix:

I, ' = 2D} (F: ® Fe)Dy ',

where DE = (Dy, DN)_lD,'V is the elimination matrix for symmetric matrices.
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Econometric model

Score-driven model for time-varying variance matrix

We set the scaling as S; = Z; 1. The scaled score s; = Z; !V becomes

st = D;(Fﬁ ® Ft)D,J\?DN(F;l ® F;l)[vec(vt v;) — vec(F)]

= DE [vec(ve v{) — vec(Ft)]
= vech(v¢ v{) — vech(F:).

For the score-driven update of the variance factors in f,7, we obtain

%1 =w+ A [vech(ve v{) — vech(F:)] + B f7,

fort=p+1,...,T.

The score updating function can easily be incorporated in the Kalman filter:

vi =t — Ziat, Ft
Kt

ary1 =  par + Kive, Pty
Ut

f%, = w+ Avech(U)+ Bf?, Hi1

Z:P:Z] + H:,
SDPtZ{F;ly

oPi(p — KiZt)' + Xy,
Vt VL{ — Ft,

unvech(fZ ;).
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Econometric model

Direct updating for time-varying variance matrix

We have vec(H;) = Dy vech(H:) = Dy ;¢ and we obtain
vec(He11) = Dy w + Dy A Dy [vec(ve v{) — vec(Ft)] + Dy B Djvec(Hy),
fort=p+1,...,T.
When we specify Dy ADE = A*® A* and Dy B DE = B* ® B*, we have
Hep1 = Q4 A* (ve v{ — Ft) A*' + B* H:B*/,
with vech(Q) = w.
In case A= a-Iy+ and B = b - Iy+, the updating reduces simply to
Hep1=Q+4a (vevi — Ft) + b He.

This time-varying variance matrix updating equation can even more conveniently be
incorporated within the Kalman filter:

vi = Jt— Ziae, Fr = ZiP:Z{ + H,
Ki = @P:ZIF,
a1 = par+ Kew, Pey1i = @Pi(p — KeZi)' + Xy,
Hioi = Q4 A*(vev] — Fr)A*' + B* HB*'.
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Econometric model

Parameter estimation (2)

For model y; = ®:Y;_1.p + ¢ with

et ~ NID(0, H;) g = vech(H:), 1 =w+Bff + Ast,
additional parameter estimation concentrates on w, A and B.
MLE is maximisation of £(¢) wrt 1, remains light task.

Our strategy :
Step 4: Notice that under stationarity, E(f7) = (I — B) 1w.

Step 5: Hence least squares estimate of H in static VAR is consistent estimate of
unvech[(/ — B)~1uw].

Step 6: Only place coefficients of A and B in 1.

Step 7: Estimate slightly extended 3 by MLE using the Kalman filter with f,7 or
direct H; updating.

MLE is for a small dimension of .
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Econometric model
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Simulation

Simulation setup

Zero-mean VAR(1) model with time-varying coefficient matrix and scalar
factor f;:

Ye = ®tyr 1+ e, ee ~ N(0, H:), t=1,...,T,
with
P =0+ f,  fa=efitn,  ne~ N1
Time-varying H; : step function or sine function:

the sine function: f¥ =14 0.95cos(27t/150),
the step function: fF=15—1I(t>T/2).

N =5,7;, T = 250,500

Parameter values:
Y. =TIy, ®; =05, ¢, = 0.1, ®f =02, ¢/, = —0.1, ¢ = 0.6,

fori,j=1,...,Nand i #j.
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Simulation

True and filtered coefficient factor Series 1
T T T T T
100 200 300 00 500
Series 2 Series 3
T T T T T v T T T T T
100 200 300 00 500 100 200 300 400 500
Series 4 Series 5
T T T T T T T T T T
100 200 300 400 500 100 200 300 400 500
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Simulation

True and filtered coefficient factor Series 1
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Simulation

Simulations: Mean Squared Errors

variance pattern “sine”

N=5 N=7
T=250 T=500 T=250 T=500
® 0.01177  9e-04  0.00991 0.00048
of 0.41609 0.15935 0.33568 0.18428

fe

0.06768 0.06491

0.06332 0.06485

variance pattern “step”

N=5 N=7
T=250 T=500 T=250 T=500
© 0.01122 0.00076 0.00828 0.00063
oll 0.24277 0.06938 0.20426 0.07465

0.07205 0.06799

0.06396 0.06871
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Simulation

Simulations with sine function for variance

Filtered f_t for T=500, N=7, sine variance
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Simulation

Simulations with step function for variance
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Application

Application: Macro-financial linkages

o Six-dimensional VAR with two lags, data from
Prieto/Eickmeier/Marcellino (2016, JAE).

e Macroeconomic variables: Nominal GDP growth, inflation (GDP
deflator).

e Financial variables: real house price inflation, corporate bond spread
(Baa-Aaa), real stock price inflation, federal funds rate.

e Data transformations such that all time series are /(0).
e Sample: 1958Q1 - 2012Q2.
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Application

Transformed data set
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Application

Empirical specification

VAR(2) model with two factors:

Yt S1ryi1+ Porye 2 +er e~ N(O, He)
O = O + O ifia + Pofia, j=1,2
where we assume that
o &7 and 5 are full matrices,
° CD{J and ¢§,1 are diagonal matrices and

° ¢{72 and ¢§,2 have zero entries except for the four coefficients that
measure the impact of the financial variables on GDP growth.

Consequently, f;;1 captures the changing persistence in the six variables and f; »
indicates how financial-macro spillovers vary over time.
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Application

Model specifications

one lag two lags
() 5 (3) (@) (5) (©) ) ®)
H v v
H; v v v v v v
f1 v v v v
fe,2 v v
o3 v v v v v v v v
36 40 47 52 72 76 89 98
LoglLik | -1496.2  -1437.2 -1429.5 -1414.5 | -1437.5 -1393.7 -1356.3 -1348.5
AlCc 3079.2 2973.1 2979.7 2966.6 3092.1 3022.9 3016.8 3057.5
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Application

Some estimation results

wp 06964 -0.3618 ®f,, -11224 &}, -0.0830
(1.0357) (0.2342) (1.2251)
wp -0.0163 -0.0467 &f,, -05944 ®f,, -0.1355
(1.1812) (0.3513) (1.5007)
A 03255 -0.7284 @f, 05313 &, 0.2935
(2.2364) (0.4356) -~ (1.3403)
B 009171 24032 &f,, 00149 &}, 0.1391
(1.2238) (0.5280) (0.9997)
¢1 03554  -0.5952 &f . 0.0319
(0.2646) (0.4720)
¢> 009197 24380 [ 0.9570
(0.0970) (0.2649)
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Application

Filtered factors f; 1 and f;

Filtered f_1
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variance gdp growth

Application

Time-varying variances

variance gdp deflator

variance real house prices

T T T T T T T T T T T T T T T
0 50 w10 20 50 00 10 200 0 50 00 150 200
variance bond spread variance real stock prices variance fed funds rate
T T T T T T T T T T T T T T T
3 50 w0 150 20 o 50 00 10 200 0 B 00 150 200
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Conclusion

Conclusion

New frequentist estimation method for VAR models with time-varying
coefficient matrices.

Simple, fast and transparent implementation, but highly flexible for
empirical specifications.

Simulations: Good performance in filtering dynamic factors and
estimation of constant parameters.

Empirics: Evidence for time-variation in financial-macro spillover
coefficients.

Future steps:

e Impulse response functions.

e Forecasting

e Derivation of stability conditions, consistency and asymptotic theory.
e Extension of empirical analysis to include formal significant tests.
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Thank you.
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