Time-Varying Vector Autoregressive Models with Structural Dynamic Factors

Paolo Gorgi, Siem Jan Koopman, Julia Schaumburg

http://sjkoopman.net

Vrije Universiteit Amsterdam School of Business and Economics CREATES, Aarhus University

ECB Workshop on "Advances in short-term forecasting" 29 September 2017

The VAR model

Consider the vector autoregressive (VAR) model of order p, the VAR(p) model:

$$y_t = \Phi_{[1]} y_{t-1} + \ldots + \Phi_{[p]} y_{t-p} + \varepsilon_t, \qquad \varepsilon_t \sim NID(0, H), \qquad t = p + 1, \ldots, T,$$

where $\Phi_{[i]}$ is coefficient matrix, $i=1,\ldots,p$, and H is variance matrix.

For parameter estimation, forecasting, impulse response analysis, etc., we refer to Hamilton (1994) and Lutkepohl (2005), amongst many others.

The VAR(p) model can be efficiently formulated as

$$y_t = \Phi \, Y_{t-1:p} + \varepsilon_t, \qquad \Phi = \left[\Phi_{[1]}, \dots, \Phi_{[p]} \right], \qquad Y_{t-1:p} = \left(y_{t-1}', \dots, y_{t-p}' \right)'$$

We assume that the initial observation set $\{y_1, \ldots, y_p\}$ is fixed and given.

Motivation for time-varying parameters in VAR model

In macroeconometrics, vector-autoregressive (VAR) models are often extended with time-varying parameters, we have

$$y_t = \Phi_t Y_{t-1:p} + \varepsilon_t, \qquad \varepsilon_t \sim NID(0, H_t), \qquad t = p+1, \dots, T.$$

Farlier literature:

- Cogley/Sargent (2001 NBER): inflation-unemployment dynamics in changing monetary policy regimes
- Primiceri (2005 RES): role of monetary policy for macroeconomic performance in the 1970s and 1980s
- Canova/Ciccarelli (2004 JE, 2009 IER): Bayesian panel VAR models, multi-country analyses;
- Hubrich/Tetlow (2015 JME): amplification and feedback effects between financial sector shocks and economy in crises vs. normal times
- Prieto/Eickmeier/Marcellino (2016, JAE): role of financial shocks on macroeconomic variables during crisis 2008/09

Estimation for TV-VAR models

- The common approach to parameter estimation for VAR models with time-varying coefficients is based on Bayesian methods
- We develop an alternative methodology based on dynamic factors for VAR coefficient matrices and score-driven dynamics for the variance matrices:
 - flexible modeling setup: it allows for wide variety of empirical specifications;
 - simple, transparent and fast implementation: least squares methods and Kalman filter;
 - relatively easy for estimation, impulse response, analysis and forecasting.
- Our approach is explored in more generality by Delle Monache et al. (2016): adaptive state space models

Outline

- Introduction
- Econometric Model
- Simulations
- Empirical application: Macro-financial linkages in the U.S. economy
- Conclusion

Time-varying autoregressive coefficient matrix

TV-VAR model :

$$y_t = \Phi_t Y_{t-1:p} + \varepsilon_t, \qquad \varepsilon_t \sim NID(0, H_t),$$

where we assume that sequence of variance matrices H_{p+1}, \ldots, H_T is known and fixed, for the moment.

The time-varying VAR coefficient is a matrix function,

$$\Phi_t = \Phi(f_t) = \Phi^c + \Phi_1^f f_{1,t} + \cdots + \Phi_r^f f_{r,t},$$

where the unobserved $r \times 1$ vector f_t has dynamic specification

$$f_{t+1} = \varphi f_t + \eta_t, \qquad \eta_t \sim N(0, \Sigma_\eta),$$

where φ is $r \times r$ diagonal matrix of coefficients and $\Sigma_{\eta} = I_r - \varphi \varphi'$.

Linear Gaussian state space form

We have $y_t = \Phi_t Y_{t-1:p} + \varepsilon_t$ and $\Phi_t = \Phi(f_t) = \Phi^c + \Phi_1^f f_{1,t} + \cdots + \Phi_r^f f_{r,t}$. Define $\tilde{y}_t = y_t - \Phi^c Y_{t-1:p}$ and consider the following equation equalities

$$\begin{split} \tilde{y}_t &= \left[\Phi_1^f f_{t,1} + \ldots + \Phi_r^f f_{t,r} \right] Y_{t-1:p} + \varepsilon_t \\ &= \left[\Phi_1^f, \cdots, \Phi_r^f \right] \left(f_t \otimes \mathbf{I}_{Np} \right) Y_{t-1:p} + \varepsilon_t \\ &= \left(Y'_{t-1:p} \otimes \left[\Phi_1^f, \cdots, \Phi_r^f \right] \right) \operatorname{vec} \left(f_t \otimes \mathbf{I}_{Np} \right) + \varepsilon_t \\ &= \left(Y'_{t-1:p} \otimes \left[\Phi_1^f, \cdots, \Phi_r^f \right] \right) Q f_t + \varepsilon_t. \end{split}$$

We let

$$Z_t = \left(Y'_{t-1:p} \otimes \left[\Phi_1^f, \cdots, \Phi_r^f\right]\right) Q,$$

to obtain the linear Gaussian state space form

$$\tilde{y}_t = Z_t f_t + \varepsilon_t, \qquad f_{t+1} = \varphi f_t + \eta_t,$$

where the properties of the disturbances ε_t and η_t are discussed above.

Kalman filter

Prediction error is defined as $v_t = y_t - E(y_t | \mathcal{F}_{t-1}; \psi)$:

- \mathcal{F}_{t-1} is set of all past information, including past observations;
- ψ is the parameter vector that collects all unknown coefficients in Φ^c , Φ_1^f , ..., Φ_r^f , H_{p+1} , ..., H_T , φ ;
- when model is correct, the sequence $\{v_{p+1}, \dots, v_T\}$ is serially uncorrelated;
- variance matrix of the prediction error is $F_t = Var(v_t | \mathcal{F}_{t-1}; \psi) = Var(v_t; \psi)$.

For a given vector ψ , the Kalman filter is given by

with $a_t = E(f_t | \mathcal{F}_{t-1}; \psi)$ and variance matrix $P_t = Var(f_t - a_t | \mathcal{F}_{t-1}; \psi)$, for $t = p + 1, \ldots, T$. Loglikelihood function is

$$\ell(\psi) = \sum_{t=\rho+1}^T \ell_t(\psi), \qquad \ell_t(\psi) = -\frac{\textit{N}}{2} \log 2\pi - \frac{1}{2} \log |F_t| - \frac{1}{2} \textit{v}_t' \textit{F}_t^{-1} \textit{v}_t.$$

Parameter estimation (1)

For model

$$y_t = \Phi_t Y_{t-1:p} + \varepsilon_t,$$
 $\Phi_t = \Phi(f_t) = \Phi^c + \Phi_1^f f_{1,t} + \dots + \Phi_r^f f_{r,t},$ $f_{t+1} = \varphi f_t + \eta_t,$ parameter estimation concentrates on φ , Φ^c and Φ_i^f , for $i = 1, \dots, r$.

MLE is maximisation of $\ell(\psi)$ wrt ψ , heavy task.

Our strategy:

- **Step 1**: Use economic information (if available) to restrict entries of Φ^c and Φ^f_i .
- **Step 2**: Obtain estimates of Φ^c via least squares method on static VAR.
- **Step 3**: Only place coefficients of φ and Φ_i^f in ψ .
- **Step 4**: Estimate this ψ by MLE using the Kalman filter.

Least squares estimate of Φ from static VAR is consistent estimate of Φ^c . Notice that $E(f_t) = 0$.

MLE is for a small dimension of ψ .

Time-varying variance matrix

Each Kalman filter step at time t requires a value for H_t .

We use score-driven approach of Creal et al. (2013) to let variance matrix H_t change recursively over time.

We have $N^* \times 1$ vector $f_t^{\sigma} = \text{vech}(H_t)$ with $N^* = N(N+1)/2$ and dynamic specification

$$f_{t+1}^{\sigma} = \omega + B f_t^{\sigma} + A s_t,$$

where ω is constant vector, A and B are square coefficient matrices and s_t is innovation vector.

Distinguishing feature of score-driven model is definition of s_t as the scaled score vector of $\ell_t \equiv \ell_t(\psi)$ with respect to f_t^{σ} .

We have $s_t = S_t \nabla_t$ where S_t is scaling matrix and ∇_t is gradient vector.

Score-driven model for time-varying variance matrix

The transpose of the gradient vector is given by

$$\nabla_t' = \frac{\partial \ell_t}{\partial f_t^{\sigma\prime}} = \frac{\partial \ell_t}{\partial \mathrm{vec}(F_t)'} \cdot \frac{\partial \mathrm{vec}(F_t)}{\partial \mathrm{vech}(H_t)'} = \frac{\partial \ell_t}{\partial \mathrm{vec}(F_t)'} \cdot \frac{\partial \mathrm{vec}(H_t)}{\partial \mathrm{vech}(H_t)'},$$

last equality holds since $F_t = Z_t P_t Z_t' + H_t$ and Z_t does not depend on H_t and P_t is function of H_{p+1}, \ldots, H_{t-1} , but not H_t .

$$\frac{\partial \ell_t}{\partial \mathrm{vec}(F_t)'} = \frac{1}{2} \left[\mathrm{vec}(v_t \, v_t')' - (\mathrm{vec}(F_t))' \right] \left(F_t^{-1} \otimes F_t^{-1} \right), \qquad \frac{\partial \mathrm{vec}(H_t)}{\partial \mathrm{vech}(H_t)'} = D_N,$$

where D_N is the $N^2 \times N^*$ duplication matrix, see Magnus and Neudecker (2007).

It follows that

$$\nabla_t = \frac{1}{2} D_N' \left(F_t^{-1} \otimes F_t^{-1} \right) \left(\operatorname{vec}(v_t \, v_t') - \operatorname{vec}(F_t) \right).$$

Score-driven model for time-varying variance matrix

The inverse of the information matrix is taken as scaling matrix S_t for gradient vector.

Information matrix:

$$\begin{split} \mathcal{I}_t &= & E[\nabla_t \, \nabla_t' | \mathcal{F}_{t-1}] \\ &= & \frac{1}{4} D_N' \left(\mathcal{F}_t^{-1} \otimes \mathcal{F}_t^{-1} \right) \textit{Var} \left[\operatorname{vec}(v_t \, v_t') - \operatorname{vec}(\mathcal{F}_t) | \mathcal{F}_{t-1} \right] \left(\mathcal{F}_t^{-1} \otimes \mathcal{F}_t^{-1} \right) \\ &= & \frac{1}{4} D_N' \left(\mathcal{F}_t^{-1} \otimes \mathcal{F}_t^{-1} \right) (I_{N^2} + C_N) D_N \\ &= & \frac{1}{2} D_N' \left(\mathcal{F}_t^{-1} \otimes \mathcal{F}_t^{-1} \right) D_N, \end{split}$$

since $Var[\operatorname{vec}(v_t\,v_t') - \operatorname{vec}(F_t)|\mathcal{F}_{t-1}] = (\operatorname{I}_{N^2} + C_N)\,(F_t\otimes F_t)$ and $(\operatorname{I}_{N^2} + C_N)D_N = 2\,D_N$, where C_N is the $N^2\times N^2$ commutation matrix.

The inverse of the information matrix:

$$\mathcal{I}_t^{-1} = 2D_n^+(F_t \otimes F_t)D_N^{+\prime},$$

where $D_N^+ = (D_N' D_N)^{-1} D_N'$ is the elimination matrix for symmetric matrices.

Score-driven model for time-varying variance matrix

We set the scaling as $S_t = \mathcal{I}_t^{-1}$. The scaled score $s_t = \mathcal{I}_t^{-1} \nabla_t$ becomes

$$s_t = D_N^+(F_t \otimes F_t)D_N^+D_N(F_t^{-1} \otimes F_t^{-1})[\operatorname{vec}(v_t v_t') - \operatorname{vec}(F_t)]$$

$$= D_N^+\left[\operatorname{vec}(v_t v_t') - \operatorname{vec}(F_t)\right]$$

$$= \operatorname{vech}(v_t v_t') - \operatorname{vech}(F_t).$$

For the score-driven update of the variance factors in f_t^{σ} , we obtain

$$f_{t+1}^{\sigma} = \omega + A \left[\operatorname{vech}(v_t \, v_t') - \operatorname{vech}(F_t) \right] + B \, f_t^{\sigma},$$

for
$$t = p + 1, ..., T$$
.

The score updating function can easily be incorporated in the Kalman filter:

Direct updating for time-varying variance matrix

We have $\operatorname{vec}(H_t) = D_N \operatorname{vech}(H_t) = D_N f_t^{\sigma}$ and we obtain

$$\operatorname{vec}(H_{t+1}) = D_N \,\omega + D_N \,A \,D_N^+[\operatorname{vec}(v_t \,v_t') - \operatorname{vec}(F_t)] + D_N \,B \,D_N^+ \operatorname{vec}(H_t),$$

for t = p + 1, ..., T.

When we specify $D_N A D_N^+ = A^* \otimes A^*$ and $D_N B D_N^+ = B^* \otimes B^*$, we have

$$H_{t+1} = \Omega + A^* (v_t v_t' - F_t) A^{*'} + B^* H_t B^{*'},$$

with $\operatorname{vech}(\Omega) = \omega$.

In case $A = a \cdot I_{N^*}$ and $B = b \cdot I_{N^*}$, the updating reduces simply to

$$H_{t+1} = \Omega + a \left(v_t \, v_t' - F_t \right) + b \, H_t.$$

This time-varying variance matrix updating equation can even more conveniently be incorporated within the Kalman filter:

Parameter estimation (2)

For model $y_t = \Phi_t Y_{t-1:p} + \varepsilon_t$ with

$$\varepsilon_t \sim NID(0, H_t)$$
 $f_t^{\sigma} = \text{vech}(H_t),$ $f_{t+1}^{\sigma} = \omega + B f_t^{\sigma} + A s_t,$

additional parameter estimation concentrates on ω , A and B.

MLE is maximisation of $\ell(\psi)$ wrt ψ , remains light task.

Our strategy :

Step 4: Notice that under stationarity, $E(f_t^{\sigma}) = (I - B)^{-1}\omega$.

Step 5: Hence least squares estimate of H in static VAR is consistent estimate of unvech[$(I-B)^{-1}\omega$].

Step 6: Only place coefficients of A and B in ψ .

Step 7: Estimate slightly extended ψ by MLE using the Kalman filter with f_t^{σ} or direct H_t updating.

MLE is for a small dimension of ψ .

Outline

- Introduction
- Econometric Model
- Simulations
- Empirical application: Macro-financial linkages in the U.S. economy
- Conclusion

Simulation setup

 Zero-mean VAR(1) model with time-varying coefficient matrix and scalar factor f_t:

$$y_t = \Phi_t y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, H_t), \qquad t = 1, \dots, T,$$

with

$$\Phi_t = \Phi^c + \Phi^f f_t, \qquad f_{t+1} = \varphi f_t + \eta_t, \qquad \eta_t \sim \mathcal{N}(0, 1 - \varphi^2).$$

• Time-varying H_t : step function or sine function:

the sine function:
$$f_t^{\sigma} = 1 + 0.95 \cos(2\pi t/150)$$
, the step function: $f_t^{\sigma} = 1.5 - I(t > T/2)$.

- N = 5,7; T = 250,500
- Parameter values:

$$\Sigma_{\varepsilon} = I_N, \; \Phi^c_{ii} = 0.5, \; \Phi^c_{i,j} = -0.1, \; \Phi^f_{ii} = 0.2, \; \Phi^f_{i,j} = -0.1, \; \varphi = 0.6,$$
 for $i,j=1,\ldots,N$ and $i\neq j$.

Simulations: Mean Squared Errors

variance pattern "sine"				
	N=5		N=7	
	T=250	T=500	T=250	T=500
φ	0.01177	9e-04	0.00991	0.00048
Φ^f	0.41609	0.15935	0.33568	0.18428
f_t	0.06768	0.06491	0.06332	0.06485
variance pattern "step"				
	N=5		N=7	
	T=250	T=500	T=250	T=500
$\overline{\varphi}$	0.01122	0.00076	0.00828	0.00063
1 f	0.04077	0.06938	0.20426	0.07465
Φ^t	0.24277	0.00938	0.20420	0.07403
f_t	0.24277	0.06799	0.20420	0.06871

Simulations with sine function for variance

Simulations with step function for variance

Outline

- 1. Introduction
- 2. Econometric Model
- 3. Simulations
- 4. Empirical application: Macro-financial linkages in the U.S. economy
- 5. Conclusion

Application: Macro-financial linkages

- Six-dimensional VAR with two lags, data from Prieto/Eickmeier/Marcellino (2016, JAE).
- Macroeconomic variables: Nominal GDP growth, inflation (GDP deflator).
- Financial variables: real house price inflation, corporate bond spread (Baa-Aaa), real stock price inflation, federal funds rate.
- Data transformations such that all time series are I(0).
- Sample: 1958Q1 2012Q2.

Transformed data set

Empirical specification

VAR(2) model with two factors:

$$y_{t} = \Phi_{1t}y_{t-1} + \Phi_{2t}y_{t-2} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, H_{t})$$

$$\Phi_{jt} = \Phi_{j}^{c} + \Phi_{j,1}^{f}f_{t,1} + \Phi_{j,2}^{f}f_{t,2}, \quad j = 1, 2$$

where we assume that

- Φ_1^c and Φ_2^c are full matrices,
- $\Phi_{1,1}^f$ and $\Phi_{2,1}^f$ are diagonal matrices and
- Φ^f_{1,2} and Φ^f_{2,2} have zero entries except for the four coefficients that measure the impact of the financial variables on GDP growth.

Consequently, $f_{t,1}$ captures the changing persistence in the six variables and $f_{t,2}$ indicates how financial-macro spillovers vary over time.

Model specifications

	one lag				two lags			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Н	✓	,		,	✓	,		,
H_t		✓	✓	✓		✓	✓	✓
$f_{t,1}$			✓	✓			✓	\checkmark
$f_{t,2} \\ \Phi^c$				\checkmark				\checkmark
Φ^c	✓	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark
$\#\psi$	36	40	47	52	72	76	89	98
LogLik	-1496.2	-1437.2	-1429.5	-1414.5	-1437.5	-1393.7	-1356.3	-1348.5
AICc	3079.2	2973.1	2979.7	2966.6	3092.1	3022.9	3016.8	3057.5

Some estimation results

ω_1	0.6964	-0.3618	$\Phi_{1,11}^f$	-1.1224	$\Phi^f_{2,13}$	-0.0830
-		(1.0357)	1,11	(0.2342)	2,13	(1.2251)
ω_2	-0.0163	-0.0467	$\Phi^f_{1,22}$	-0.5944	$\Phi^f_{2.14}$	-0.1355
		(1.1812)	-,	(0.3513)	,	(1.5007)
Α	0.3255	-0.7284	$\Phi^f_{1,33}$	0.5313	$\Phi^f_{2,15}$	0.2935
		(2.2364)	,	(0.4356)		(1.3403)
В	0.9171	2.4032	$\Phi^f_{1,44}$	0.0149	$\Phi^f_{2,16}$	0.1391
		(1.2238)	,	(0.5280)	,	(0.9997)
φ_1	0.3554	-0.5952	$\Phi^f_{1.55}$	0.0319		
		(0.2646)	,	(0.4720)		
$arphi_2$	0.9197	2.4380	$\Phi^f_{1.66}$	0.9570		
		(0.0970)		(0.2649)		

Filtered factors $f_{t,1}$ and $f_{t,2}$

Time-varying variances

Conclusion

- New frequentist estimation method for VAR models with time-varying coefficient matrices.
- Simple, fast and transparent implementation, but highly flexible for empirical specifications.
- Simulations: Good performance in filtering dynamic factors and estimation of constant parameters.
- Empirics: Evidence for time-variation in financial-macro spillover coefficients.
- Future steps:
 - Impulse response functions.
 - Forecasting
 - Derivation of stability conditions, consistency and asymptotic theory.
 - Extension of empirical analysis to include formal significant tests.

Thank you.

- Creal, D. D., Koopman, S. J., and Lucas, A. (2013). Generalized autoregressive score models with applications. *Journal of Applied Econometrics*, 28:777–795.
- Delle Monache, D., Petrella, I., and Venditti, F. (2016). Adaptive state space models with applications to the business cycle and financial stress. *Working Paper*.
- Hamilton, J. (1994). *Time Series Analysis*. Princeton University Press, Princeton.
- Lutkepohl, H. (2005). *New Introduction to Multiple Time Series Analysis*. Springer-Verlag, Berlin.
- Magnus, J. and Neudecker, H. (2007). *Matrix Differential Calculus with Applications in Statistics and Econometrics 3rd edition*. Wiley Series in Probability and Statistics.