Forward Guidance without Common Knowledge

George-Marios Angeletos¹ Chen Lian²

 $^1 {\rm MIT}$ and NBER

²MIT

September 10, 2017

Outline

1 Introduction

2 Environment

3 GE Attenuation and Horizon Effects

4 Forward Guidance Puzzle

5 Conclusion

Motivation

- Standard macro analysis assumes REE and complete info
- By imposing perfect coordination, we might "overstate"
 - responsiveness of forward-looking expectations
 - potency of GE effects
 - ability of PM to influence economic outcomes
- This "bias" in our predictions increases with horizon of GE effects

- we should doubt predictions that rest on long GE loops
- forward guidance is an example

Forward Guidance Puzzle

- Context: A NK Economy at the ZLB
- Policy Question: forward guidance & (backloading) fiscal stimuli

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Answer: mainly driven by GE effects from inflation and income
 - GE quantitatively large
 - ► GE explodes with horizon
 - PE effects decreases with horizon

Main Findings

- Key step: recast IS and NKPC as Dynamic Beauty Contests
- ullet Key insight: removing Common Knowledge \Longrightarrow
 - anchors expectations of y and π
 - attenuates GE feedback loops (both within and across two blocks)

- attenuation larger the longer these loops
- Implications:
 - lessen forward guidance puzzle
 - offer rationale for front-loading fiscal stimuli

Related Literature

Part I: Higher-order uncertainty in macroeconomics

- Morris and Shin (1998, 2000, 2002), Woodford (2003), Angeletos and Pavan (2007), Angeletos and La'O (2009), Nimark (2011), etc
 - Angeletos and Lian (2016): chapter in Handbook of Macroeconomics

Part II: Forward guidance

- Different micro foundations:
 - McKay et al.(2016a,b), Del Negro et al. (2015)
- Deviate from rational expectations:
 - Schmidt & Woodford (2015), Farhi & Werning (2016), Gabaix (2016)

- We maintain micro-foundations & rational expectations
- Complementary: Wiederholt (2015)

Companion Paper:

• Dampening General Equilibrium (Angeletos and Lian, 2017)

Outline

Introduction

2 Environment

3 GE Attenuation and Horizon Effects

4 Forward Guidance Puzzle

5 Conclusion

Context

- Continuum of consumers/firms
- Consumer maximizes utility

$$\mathscr{U}_0 = \sum_{t=0}^{+\infty} \beta^t \left(\log c_{i,t} - \frac{1}{1+\varepsilon} n_{i,t}^{1+\varepsilon} \right),$$

s.t. budget constraint

$$c_{i,t} + s_{i,t} = a_{i,t} + w_{i,t}n_{i,t} + e_{i,t},$$

 $a_{i,t} = R_{t-1}s_{i,t-1}/\pi_t.$

- Incomplete markets in the sense of no risk-sharing
 - but no liquidity constraints & work with log-linearized system
 - aggregates dynamics replicate textbook NK under CK

• Final goods produced by a competitive sector

$$y_t = \left(\int_0^1 \left(y_t^j\right)^{\frac{\varsigma-1}{\varsigma}} dj\right)^{\frac{\varsigma}{\varsigma-1}}$$

• Each variety *j* produced by a monopolistic firm

$$y_t^j = l_t^j$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Nominal rigidity: Calvo
 - fraction 1θ changes price each period

Information and Equilibrium Concept

- "Fundamentals"
 - interest rate path (focus), discount rate, government spending
- Complete info: (Common Knowledge of fundamentals)
 - all (current) agents share the same information
 - allows uncertainty about future
 - but rules out all higher-order uncertainty
 - * uncertainty about other (current) agents' beliefs and actions
- Incomplete info: (Remove CK of fundamentals)
 - ► Noisy private signals ⇒*higher-order* uncertainty
- This paper: maintain REE and remove CK of future fundamentals

- compare with CK outcome
- always maintain perfect knowledge of *current* fundamentals

Euler/IS WITH Common Knowledge

$y_t = -E_t[r_{t+1}] + E_t[y_{t+1}]$

- Key implication: y = f (expected path of r)
 - this implication is robust to borrowing constraints
 - even though the aggregate Euler equation itself is different

Euler/IS WITHOUT Common Knowledge

$$\mathbf{y}_{t} = -\left\{\sum_{k=1}^{+\infty}\beta^{k-1}\bar{E}_{t}[\mathbf{r}_{t+k}]\right\} + (1-\beta)\left\{\sum_{k=1}^{+\infty}\beta^{k-1}\bar{E}_{t}[\mathbf{y}_{t+k}]\right\}$$

Dynamic beauty contest among consumers

- follows from PIH and y = c
- modern version of Keynesian income multiplier
- Key implication: $y \neq f(expected path of r)$
 - instead, response of y to news about path of r hinges on HOB

- Why no recursive?
 - Law of iterated expectation **do not hold** for $\bar{E}_t[\cdots]$

NKPC WITH/WITHOUT Common Knowledge

 $\pi_t = mc_t + \beta E_t \left[\pi_{t+1} \right]$

VS

$$\pi_{t} = mc_{t} + \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f} [mc_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f} [\pi_{t+k}] \right\}$$

- Dynamic beauty contest among the firms
 - follows from optimal price setting
- Key implication: $\pi \neq f(expected path of mc)$
 - ▶ instead, response of π to news about path of *mc* hinges on HOB

Three GE Mechanisms

- Income multiplier: $\bar{E}_t[y_{t+k}] \Rightarrow y_t$
- Pricing complementarity: $\bar{E}_t^f[\pi_{t+k}] \Rightarrow \pi_t$
- Inflationary spiral: interaction the two groups

$$E_t^{\dagger} [y_{t+k}] \Rightarrow E_t^{\dagger} [mc_{t+k}] \Rightarrow \pi_t$$

- Standard practice: impose CK = maximize all GE effects
- Our paper: relax CK = GE become HOB = attenuate all GE effects

Outline

Introduction

2 Environment

3 GE Attenuation and Horizon Effects

4 Forward Guidance Puzzle

5 Conclusion

Dynamic Beauty Contest

- So far: represent the NK model in terms of dynamic beauty contests
 - hint to the role of HOB
- What's next: theory of dynamic beauty contests
 - lack of CK = anchored expectations = GE attenuation
 - attenuation increases with horizon (as if extra discounting)

Dynamic Beauty Contest

• Consider models in which the following Euler-like condition holds:

$$\mathbf{a}_{t} = \mathbf{\theta}_{t} + \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\mathbf{\theta}_{t+k}] \right\} + \alpha \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\mathbf{a}_{t+k}] \right\}$$

• $\theta_t = \text{aggregate fundamental at } t$

- a_t = aggregate outcome at t
- $\alpha > 0$ parameterizes GE feedback loop

Example

- Consumption beauty contest: $\theta_t = -r_t$, $a_t = y_t$
- Inflation beauty contest: $a_t = \pi_t$ and $\theta_t = mc_t$
- Asset pricing: $a_t = p_t$ and $\theta_t = dividend$

Question of Interest

- Question: How a_0 responds news about θ_T
- To facilitate transition with the rest of paper
 - consider the NK setting with rigid price $(\pi_t = 0)$

$$y_{t} = -R_{t} - \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[R_{t+k}] \right\} + (1-\beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[y_{t+k}] \right\}$$

- Question: How does y_0 responds to news about R_T ?
- Formally:
 - ▶ hold R_t (& belief about it) constant for all $t \neq T$
 - treat R_T as a random variable $(\sim N(0, \sigma_R^2))$
 - specify information structure about R_T
 - study how y_0 covaries with $\overline{E}_0[R_T]$

• All results hold for the general dynamic beauty contests as above

The Role of HOB

• By iterating, we can express y_0 as a linear function of

- 1st-order beliefs: $\overline{E}_0[R_T]$
- ▶ 2nd-order beliefs: $\bar{E}_0 \left[\bar{E}_\tau [R_T] \right] \forall \tau : 0 < \tau < T$
- ▶ 3rd-order beliefs: $\bar{E}_0 \left[\bar{E}_{\tau} \left[\bar{E}_{\tau'} [R_T] \right] \right] \quad \forall \tau, \tau' : 0 < \tau < \tau' < T$
- ▶ and so on, up to beliefs of order *T*

• With CK, HOB collapse to FOB, and the "usual" predictions apply

• Without CK, we need to understand

- ▶ how much HOB co-move with $\overline{E}_0[R_T]$
- how much HOB matter in y₀

The Role of HOB

• By iterating, we can express y_0 as a linear function of

- 1st-order beliefs: $\overline{E}_0[R_T]$
- ▶ 2nd-order beliefs: $\bar{E}_0 \left[\bar{E}_\tau [R_T] \right] \forall \tau : 0 < \tau < T$
- ▶ 3rd-order beliefs: $\bar{E}_0 \left[\bar{E}_{\tau} \left[\bar{E}_{\tau'} [R_T] \right] \right] \quad \forall \tau, \tau' : 0 < \tau < \tau' < T$
- and so on, up to beliefs of order T
- With CK, HOB collapse to FOB, and the "usual" predictions apply

- Without CK, we need to understand
 - how much HOB co-move with $\overline{E}_0[R_T]$
 - how much HOB matter in y₀

Leading Example

- Info structure:
 - Gaussian private signal about R_T at 0: $x_i = R_T + \varepsilon_i$,
 - no other info au < T. R_T becomes known at T
- Implication 1: beliefs constant over time

$$ar{E}_{ au}[.] = ar{E}_0[.] \ orall au : 0 < au < T$$

• Implication 2: a simple exponential structure for HOB

 $\bar{E}_0^h[R_T] = \lambda^{h-1} \bar{E}_0[R_T]$

where $\lambda \in (0,1]$ is decreasing in the amount of noise

- Key observation (robust to richer info structures):
 - HOB are anchored relative to FOB
 - $\blacktriangleright\,$ CK obtained as $\lambda \rightarrow 1$ and "maximizes" the responsiveness of HOB
- Anchoring HOB as modeling device of limited depth of reasoning

$$y_0 = \phi(T)\bar{E}_0[R_T]$$
 vs $y_0 = \phi^*(T)E_0[R_T]$

• Our approach is robust to how much $\overline{E}_0[R_T]$ itself moves

Attenuation at any horizon

- ▶ $\beta^{T-1} < \phi < \phi^*$ (ϕ bounded between PE effect and CK counterpart)
- lower λ CK $\Rightarrow \phi$ closer to PE effect
- "CK maximizes GE effect"

Attenuation effect increases with horizon

- ratio ϕ/ϕ^* decreases in T
- Ionger horizons = iterating on Euler equation = iterating on beliefs

- ★ but HOB are more anchored than LOB
- $\star\,$ the more we iterate, the more potent this anchoring
- it is as if the agents discount the future more heavily

3 Attenuation effect grows without limit as $T \rightarrow \infty$

$$y_0 = \phi(T)\bar{E}_0[R_T]$$
 vs $y_0 = \phi^*(T)E_0[R_T]$

• Our approach is robust to how much $\overline{E}_0[R_T]$ itself moves

Attenuation at any horizon

- $\beta^{T-1} < \phi < \phi^*$ (ϕ bounded between PE effect and CK counterpart)
- lower λ CK $\Rightarrow \phi$ closer to PE effect
- "CK maximizes GE effect"

Attenuation effect increases with horizon

- ratio ϕ/ϕ^* decreases in T
- Ionger horizons = iterating on Euler equation = iterating on beliefs

- ★ but HOB are more anchored than LOB
- $\star\,$ the more we iterate, the more potent this anchoring
- it is as if the agents discount the future more heavily

3 Attenuation effect grows without limit as $T ightarrow \infty$

$$y_0 = \phi(T)\bar{E}_0[R_T]$$
 vs $y_0 = \phi^*(T)E_0[R_T]$

• Our approach is robust to how much $\overline{E}_0[R_T]$ itself moves

- Attenuation at any horizon
 - $\beta^{T-1} < \phi < \phi^*$ (ϕ bounded between PE effect and CK counterpart)
 - lower λ CK $\Rightarrow \phi$ closer to PE effect
 - "CK maximizes GE effect"

Attenuation effect increases with horizon

- ratio ϕ/ϕ^* decreases in T
- Ionger horizons = iterating on Euler equation = iterating on beliefs

- ★ but HOB are more anchored than LOB
- $\star\,$ the more we iterate, the more potent this anchoring
- it is as if the agents discount the future more heavily

3 Attenuation effect grows without limit as $T \rightarrow \infty$

$$y_0 = \phi(T)\bar{E}_0[R_T]$$
 vs $y_0 = \phi^*(T)E_0[R_T]$

• Our approach is robust to how much $\overline{E}_0[R_T]$ itself moves

- Attenuation at any horizon
 - $\beta^{T-1} < \phi < \phi^*$ (ϕ bounded between PE effect and CK counterpart)
 - lower λ CK $\Rightarrow \phi$ closer to PE effect
 - "CK maximizes GE effect"

Attenuation effect increases with horizon

- ratio ϕ/ϕ^* decreases in T
- Ionger horizons = iterating on Euler equation = iterating on beliefs

- ★ but HOB are more anchored than LOB
- \star the more we iterate, the more potent this anchoring
- it is as if the agents discount the future more heavily

③ Attenuation effect grows without limit as $T \rightarrow \infty$

Robustness, Implications, and What's Next

- Results robust to richer information structures
 - exogenous and/or endogenous learning
- As if discounting of future endogenous variables
- Next: translating them to the full NK model:
 - IS: attenuate response of c to news about future real r
 - NKPC: attenuate response of π to news about future mc

- Deal with caveats:
 - \star endogeneity of r and mc
 - ★ GE feedback loop between IS and NKPC

Outline

1 Introduction

2 Environment

3 GE Attenuation and Horizon Effects

4 Forward Guidance Puzzle

5 Conclusion

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ④Q@

ZLB and Forward Guidance

- Let T index length of liquidity trap and horizon of FG
 - $t \leq T 1$: ZLB binds and $R_t = 0$
 - $t \ge T + \Delta$: "natural level" and $y_t = \pi_t = 0$
 - let $\Delta = 1$ for simplicity
- Forward guidance: policy announcement at t = 0 of R_T
 - modeled as $z = R_T + noise$
 - noise captures central banks commitment issues and etc.
- We remove common knowledge of z
 - leading example: noisy private signals about z
- Remark
 - credibility has to do with how much $\overline{E}_0[R_T]$ varies with R_T
 - we focus on how y_0 varies with $\overline{E}_0[R_T]$

The Power of Forward Guidance

• Degree of CK indexed by $\lambda \in (0,1]$

$$\overline{\mathbb{E}}^{h}[R_{T}] = \lambda^{h-1}\overline{\mathbb{E}}^{1}[R_{T}]$$

- consumers vs firms: λ_c vs λ_f
- CK benchmark nested with $\lambda_c = \lambda_f = 1$
- Question: How does y_0 vary with $\overline{E}_0[R_T]$
- Answer: There exists a function ϕ such that

$$y_0 = -\phi \left(\lambda_c, \lambda_f; T, \kappa\right) \cdot \bar{E}_0[R_T]$$

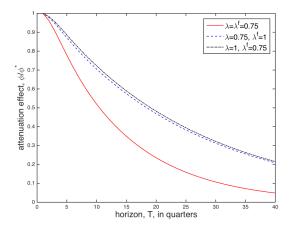
- ▶ standard: ϕ^* increases with T and explodes as $T \to \infty$
- here: φ vs φ*

• Attenuation for any horizon: $\phi/\phi^* < 1$

- three GE effects at work:
 - inside IS: income-spending feedback
 - Inside NKPC: inflation-inflation feedback
 - 3 across two blocs: inflation-spending feedback
- ▶ all three attenuated; but quantitative bite for (2) and (3)

• Attenuation effect increases with horizon

- ϕ/ϕ^* decreases in T
- $\phi/\phi^*
 ightarrow$ 0 as $\mathcal{T}
 ightarrow \infty$, even if $\lambda pprox 1$
- for λ_c small enough, $\phi
 ightarrow 0$ in absolute, not only relative to ϕ^*


• Attenuation for any horizon: $\phi/\phi^* < 1$

- three GE effects at work:
 - inside IS: income-spending feedback
 - Inside NKPC: inflation-inflation feedback
 - 3 across two blocs: inflation-spending feedback
- ▶ all three attenuated; but quantitative bite for (2) and (3)

• Attenuation effect increases with horizon

- ϕ/ϕ^* decreases in T
- $\phi/\phi^*
 ightarrow$ 0 as $T
 ightarrow \infty$, even if $\lambda pprox 1$
- for λ_c small enough, $\phi
 ightarrow 0$ in absolute, not only relative to ϕ^*

A Numerical Illustration (based on McKay et al.)

• Modest info friction: $\lambda_c = \lambda^f = 0.75$

25% prob that others have failed to hear announcement

• On top of any mechanical effect that first order informational friction

< 何

∃▶ 三三 のへへ

Fiscal Stimuli

- Standard NK under ZLB prediction:
 - fiscal stimuli work because they trigger inflation
 - better to back-load so as to "pile up" inflation effects
- Our twist:
 - such piling up = iterating HOB
 - not as potent when CK assumption is dropped
 - rationale to front-load so as to minimize coordination friction

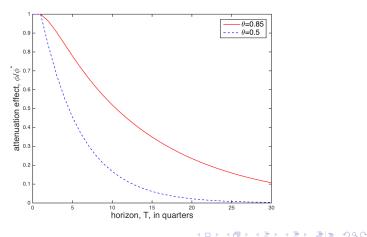
◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Discounted Euler Equation and NKPC

- $E_t[x]$: RE conditional on all info. at period t
- Discounted Euler Equation and NKPC for t < T 1

$$y_t = \Lambda E_t[y_{t+1}] + \lambda E_t[\pi_{t+1}]$$

$$\pi_t = \beta M E_t[\pi_{t+1}] + \kappa m_t y_t + \kappa \mu_t$$


where $\Lambda, M, m_t \in (0, 1)$.

- "As if" result maps heterogenous-agent, incomplete-info model
 - ▶ to a fictitious representative-agent, complete-info model
- Individual Euler Equation holds
 - discounting expectations of future endogenous aggregates
 - different from McKay et al. (2016), Werning (2015) & Gabaix (2016)

discount

Paradox of Flexibility

- Standard model: effect of FG increases with price flexibility
 - but is due to GE effect: "inflationary/deflationary" spiral
- Without CK: GE dampened
 - dampening increases with price flexibility

Empirical Support

- Andrade et. al (2016): Survey of Professional Forecasters
- After Fed's date-based forward guidance
 - ▶ a drop in the mean forecasts of nominal interest rates
 - an increase in disagreement of future macro conditions
 inflation and output
 - mean forecasts of future macro conditions barely move

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Outline

1 Introduction

2 Environment

3 GE Attenuation and Horizon Effects

4 Forward Guidance Puzzle

Companion Paper

- "Dampening GE: from Micro to Macro" (Angeletos and Lian, 2017)
- REE alone \Rightarrow restrict GE in an interval
 - Standard practice (REE+ CK) -> upper bound of the interval
- Lack of CK = GE dampened
- Non-REE variants often, but not always, attenuate GE
 - level-k, Tatonnment, Cobweb, Sparsity, ε -equilibrium
 - Lack of CK = a structured way to relax REE
- Connection to empirical work a la Mian-Sufi
 - reduce GE = reduce gap between micro and macro elasticities

Conclusion

- Forward-looking expectations crucial in modern macro
- By assuming CK with REE, hardwire a certain kind of perfection in

- how economic agents to coordinate their expectations
- maximize policy makers abilities to steer economy
- Remove CK helps accommodate a realistic friction
 - alleviate forward guidance puzzle
- Insights and the techniques may find additional applications
 - fiscal multipliers
 - demand driven business cycles

Outline

Shocks

- Shocks to markups
 - μ_t^j at the firm level
 - μ_t at the aggregate level
- Shocks to wages
 - $w_t^j = w_t u_t^j$ at the firm level
 - $w_{it} = w_t \xi_{it}$ at the household level
- Monetary policy to be specified
- Modeling role of shocks: limit aggregation of information

main

Understanding Discounted Euler Equation

• Individual Euler equation always holds

$$c_{i,t} = E_{i,t} [c_{i,t+1}] + R_t - E_{i,t} [\pi_{t+1}]$$

• With complete information $E_{i,t}[c_{i,t+1}] = E_t[c_{i,t+1}]$ thus

$$\int E_{i,t} [c_{i,t+1}] di = E_t [c_{t+1}]$$

• Together with market clearing gives the dynamic IS equation

$$y_t = E_t [y_{t+1}] + R_t - E_t [\pi_{t+1}]$$

• Without CK, frictions in predict future income and inflation

$$\int_0^1 E_{i,t}[c_{i,t+1}] \, di = \Lambda E_t[c_{t+1}]$$

"discounted Euler Equation" main