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Abstract

In this paper, we develop econometric methods for estimating large Bayesian time-
varying parameter panel vector autoregressions (TVP-PVARs) and use these methods to
forecast inflation for euro area countries. Large TVP-PVARs contain huge numbers of
parameters which can lead to over-parameterization and computational concerns. To
overcome these concerns, we use hierarchical priors which reduce the dimension of the
parameter vector and allow for dynamic model averaging or selection over TVP-PVARs of
different dimension and different priors. We use forgetting factor methods which greatly
reduce the computational burden. Our empirical application shows substantial forecast
improvements over plausible alternatives.
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1. Introduction

As the economies of the world become increasingly linked through trade and financial
flows, the need for multi-country econometric models has increased. Panel Vector Autoroe-
gressions (PVARs) which jointly model many macroeconomic variables in many countries
are a popular way of fulfilling this need. In this paper, we develop econometric methods
for TVP-PVARs which can help overcome the concerns about over-parameterization that
arise in these models and do so in a computationally-feasible manner. The contributions
made lie in the econometric methods and in the application.

To explain the significance of the econometric contributions of our paper, we note
the combination of the growing interesting in high-dimensional multivariate time series
models such as VARs (see, among many others, Banbura, Giannone and Reichlin, 2010,
Carriero, Kapetanios and Marcellino, 2010, 2012, Koop, 2013 and Korobilis, 2013) with
the recognition that allowing for coefficient change can be empirically necessary has led
to a need for the development of econometric methods for large TVP-VARs. In the large
VAR literature, it has become standard to work with models involving dozens or even
a hundred or more dependent variables. This leads to over-parameterized models with
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huge parameter spaces. An unrestricted large TVP-VAR will additionally have parameters
which control the time-variation in VAR coefficients. Such huge parameter spaces raise
two issues: how to achieve parsimony and how to achieve efficient computation. Bayesian
methods are commonly used with these models and prior shrinkage of various sorts1 is
typically used to address the first of these. In the standard homoskedastic VAR, priors
can be used which lead to analytical posterior and predictive results and, thus, easy
computation. But, once one leaves the restrictive homoskedastic, constant coefficient
world, analytical results are not available and Markov Chain Monte Carlo (MCMC)
methods are required. With larger models, the computational demands of MCMC methods
can be prohibitive. This has led to various approximate methods being proposed. Our
earlier work with large TVP-VARs, Koop and Korobilis (2013), offers one example of
how the researcher can over-come the computational hurdle. In it, we use approximate
methods involving forgetting factors, shrinkage priors and model switching (i.e. switching
between more parsimonious models nested within the large TVP-VAR) which allow for
computationally feasible inference in large TVP-VARs.

One econometric contribution of our paper lies in extending Koop and Korobilis (2013)
to the panel context. TVP-PVARs, which involve a TVP-VAR for each of several countries,
can be very large indeed. For instance, an unrestricted PVAR with 4 lags involving 7
dependent variables for each of 19 countries will have 70,756 PVAR coefficients and 8,246
free parameters in the error covariance matrix to estimate. Adding time-variation in PVAR
coefficients and stochastic volatility in the errors increases this number substantially. A
TVP-PVAR is, in a sense, simply a large TVP-VAR. Hence, the reader may wonder why
the methods of Koop and Korobilis (2013), or some other method for estimating large
TVP-VARs, cannot simply be used for the large TVP-PVAR. However, in over-parameterized
models where the data information (i.e. the number of observations) is small relative
to the number of parameters to be estimated, the role of prior information increases in
importance. For the Bayesian, sensible prior elicitation is always an important issue,
but in high-dimensional cases such as the TVP-PVAR it becomes absolutely essential.
Simply using a standard VAR prior (e.g. the Minnesota prior) for the PVAR, ignoring the
panel nature of the PVAR, can potentially have negative consequences. Similarly, using
a standard TVP-VAR prior (e.g. assuming each coefficient evolves according to a random
walk) with a TVP-PVAR, can lead to an excessively parameter-rich model and misleading
inference. Accordingly, developing econometric methods for the TVP-PVAR is not simply
a matter of using existing TVP-VAR methods. In this paper, we build on an approach
suggested for PVARs in Canova and Ciccarelli (2009, 2013) to our TVP-PVAR. The result
is a computationally efficient approach, suitable for estimating very large TVP-PVARs that
explicitly takes the panel nature of the problem into account. In addition, we extend the
approach of Canova and Ciccarelli (2009) to allow for time-varying error covariances. We
rewrite the TVP-PVAR model in a form which allows us to shrink the (large) time-varying

1Priors used in this literature are often hierarchical or objective in the sense that key prior hyperparame-
ters are estimated from the data. With TVP models, coefficients are often assumed to evolve according to a
state equation. This state equation is a hierarchical prior.
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error covariance matrix using a hierarchical prior.
A second econometric contribution lies in the treatment of model uncertainty. There

are typically a large number of specification choices in the TVP-PVAR. Furthermore, the
optimal specification may be changing over time. To deal with model uncertainty in a
dynamic fashion, we adapt dynamic model averaging (DMA) and dynamic model selection
(DMS) methods initially developed for use with single equation TVP regression models
by Raftery, Karny and Ettler (2010), for the TVP-PVAR. We do this in relation to several
aspects of the specification, but the most important relate to the dimension of the TVP-
PVAR and hierarchical prior used to accommodate the panel nature of the problem. In
our application, there is uncertainty over the appropriate TVP-PVAR dimension. Instead
of just choosing a particular dimension, we consider a large set of TVP-PVARs where each
is defined by a different combination of the dependent variables. When doing DMA, this
allows us to attach more weight to the appropriate dimension in a dynamic fashion. So,
for instance, at some points in time forecasts from a particular TVP-PVAR can receive
most weight, then we can switch to a TVP-PVAR involving different dependent variables
and attach more weight to its forecasts. Another advantage of using DMS is that our
unrestricted TVP-PVAR is very large and potentially over-parameterized, but DMS can
achieve parsimony by choosing a lower dimensional model.

With regards to the hierarchical prior, we use the one suggested in Canova and
Ciccarelli (2009) as well as a new one which shrinks parameters toward country-specific
VARs. Treating these two priors as defining two models, we can use DMA methods to
decide which prior leads to better forecasts and adjust weights associated with the two
priors appropriately in a dynamic fashion.

Our paper also seeks to contribute to the empirical literature on inflation forecasting
in the eurozone. There are many linkages and inter-relationships between the economies
of the eurozone countries. Modelling aggregate inflation for the eurozone as a whole will
miss many interesting country-specific patterns since monetary policy can have differing
impacts on different countries. These considerations justify why we want to forecast
individual country inflation rates, but not using conventional VAR methods one country at
a time. The panel VAR is an effective way of modelling the spillovers and inter-linkages
between countries that, no doubt, exist for the eurozone countries.

Euro area inflation has been an important component in many recent policy discus-
sions. Deflation has been a recent worry. For instance, in December 2014, 12 of the
18 countries that then comprised the eurozone2 were experiencing deflation and no
country registered an inflation rate above 1%. The impact of quantitative easing by the
ECB in this context is of great policy interest. Although there has been a tendency for
inflation rates in the various eurozone countries to converge to one another, there are still
substantive cross-country differences, in particular around the time of the eurozone crisis.
For instance, Delle Monache, Petrella and Venditti (2015) document the relative roles
of country-specific and common shocks to euro area country inflation rates. Although
commonalities predominate, country specific shocks play a large role. Furthermore, Delle

2Lithuania did not join the eurozone until January 2015.
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Monache, Petrella and Venditti (2015) document substantial time variation in parameters,
providing additional support for our model which allows for such variation.

The remainder of the paper is organized as follows. In Section 2, we describe our
econometric methods, beginning with the panel VAR before proceeding to the TVP-PVAR
and then our dynamic treatment of model uncertainty. Section 3 contains our empirical
study of euro area inflation. We find substantial evidence of forecasting benefits, in
particular from using DMA methods which average over different TVP-PVAR dimensions
and different hierarchical priors. Section 4 concludes.

2. Econometric Model: The TVP-PVAR

2.1. The Panel VAR
In an increasingly globalized world, where financial or macroeconomic events in one

country can spill over to another country, the need for models which accommodate such
interlinkages has grown. We use the general term PVAR for models where VARs for each
individual country are augmented with lagged dependent variables from other countries.
Several different specifications are commonly used, including the multi-country VARs of
Canova and Ciccarelli (2009) and the global VARs of, among others, Dees, Di Mauro,
Pesaran and Smith (2007) and Feldkircher and Huber (2015). We begin by discussing
some of the issues which occur with PVAR models before discussing TVP versions of them.

Suppose we have N countries (in our application, these are the 19 countries that
comprise the eurozone as of 2015) and G variables for each country (in our application,
these are inflation plus six additional variables which may be useful for predicting
inflation) which are observed for T time periods. Let Yt = (y′1t, y

′
2t, ..., y

′
Nt) for t = 1, ..., T

be the NG × 1 vector of dependent variables where y′it is the G × 1 vector of dependent
variables of country i, i = 1, ..., N . The i-th equation of the PVAR with p lags takes the
form

yit = A1
iYt−1 + ...+ ApiYt−p + uit, (1)

where Aji for j = 1, .., p are G×NG matrices PVAR coefficients for country i. Additionally,
uit is a G × 1 vector of disturbances, uncorrelated over time, where uit ∼ N (0,Σii). The
errors between countries may be correlated and we define E (uitujt) = Σij and Σ to be the
entire NG × NG error covariance matrix for ut = (u1t, .., uNt)

′. Let Aj =
(
Aj1, ..., A

j
N

)
for

j = 1, ..., p and α =
(
vec (A1)

′
, ..., vec (Apt )

′)′. Note that, for notational simplicity, we have
not added an intercept or other deterministic terms nor exogenous variables, but they can
be added with the obvious modifications to the formulae below. In our empirical work,
we include an intercept.

2.2. Methods of Ensuring Parsimony in the PVAR
The unrestricted PVAR given in (1) is likely over-parameterized, involving K =

p × (N ×G)2 unknown autoregressive parameters and N×G×(N×G+1)
2

error covariance
terms. Plausible choices for N,G and p can lead to very large parameter spaces. In our
application, the main variable of interest is the inflation rate. Forecasting inflation is
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hard, with many researchers finding univariate forecasting models hard to beat (see Faust
and Wright, 2013, for a survey of the inflation forecasting literature). Thus, it is likely
that many coefficients in an unrestricted PVAR will be zero. In fact, it is quite possible
that a more parsimonious panel model involving only the inflation rates (i.e. our PVAR
with G = 1 variable: the inflation rate) may forecast better than the less parsimonious
model with G = 7. Or perhaps a Phillips curve model involving only the inflation and
unemployment rates (and, thus, G = 2) will forecast well. The point to stress is that we
are uncertain about how many variables it is worth including in the PVAR.

These considerations suggest that one way to achieve parsimony would be to investi-
gate PVARs of smaller dimension. This is what we do in this paper. We use a large model
space involving PVARs of different dimension and using DMA methods to average over
them. To be precise, the unrestricted PVAR has N×G equations. If we restrict attention to
the PVARs which include the GC core variables of interest (in our case, these are inflation,
unemployment and industrial production) for every country, but every other variable may
or may not be included, then there are N × 2G−GC possible restricted PVARs of interest.
In theory, we could average over all these restricted PVARs in a DMA exercise to select the
best one in a dynamic fashion. That is, we can potentially give more weight to a PVAR of a
particular dimension at one point in time, but attach more weight to a different dimension
at other points in time.3 In practice, searching over every possible restricted PVAR is too
computationally demanding in our application. Nevertheless, we do consider a range a
PVARs of different dimensions. In particular, the empirical results in our most general
model do DMA for G = 3, 4, .., 7.4 In this subsection, we are discussing constant coefficient
PVARs, but the same issues hold with TVP-PVARs and will be addressed in the same way
in this paper.

Another approach to dimension reduction in PVARs is described in Canova and
Ciccarelli (2009, 2013) who use a hierarchical prior so as to work with restricted versions
of (1), a practice which we follow in this paper. In particular, we can assume a factor
structure for the PVAR coefficients and write:

α = Ξ1θ1 + Ξ2θ2 + ..+ Ξqθq + e

= Ξθ + e

where Ξ = (Ξ1, ..,Ξq) are known matrices and θ =
(
θ′1, .., θ

′
q

)′ is an R×1 vector of unknown
parameters with R < K and e is uncorrelated with ut and distributed as N (0,Σ⊗ V )
where V = σ2I.

Suppose, for instance, that the elements of α are made up of a common factor, a factor
specific to each country and a factor specific to each variable. This is the factor structure
used in Canova and Ciccarelli (2009). Then q = 3 and Ξ1 will be a K × 1 vector of ones,

3Koop (2014), in a VAR application, refers to this is dynamic dimension selection.
4Allowing for different countries to have differentGs is also theoretically possible, but this becomes much

more computationally demanding.
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θ1 a scalar. Ξ2 will be a K × N matrix containing zeros and ones defined so as to pick
out coefficients for each country and θ2 is an N × 1 vector. Ξ3 will be a K × G matrix
containing zeros and ones defined so as to pick out coefficients for each variable and θ3 is
an G× 1 vector. For instance, if N = G = 2 and p = 1 then

Ξ2 =


ι1 0
ι1 0
0 ι2
0 ι2

 and Ξ3 =


ι3 0
0 ι4
ι3 0
0 ι4


where ι1 = (1, 1, 0, 0)′ , ι2 = (0, 0, 1, 1)′ , ι3 = (1, 0, 1, 0)′ and ι4 = (0, 1, 0, 1)′. Thus, the K
dimensional α is dependent on a much lower dimensional vector of parameters, since θ
is of dimension R = 1 + N + G with e being left to model any residual variation in the
parameters.

Such a strategy can be used to greatly reduce the dimensionality of α and help achieve
parsimony. However, such a method may come at a cost if the factor structure is not
chosen correctly. The latter could lead either to over-parameterization concerns or to
mis-specification concerns. In the previous example, where the coefficients are assumed
to depend on a common factor, a country specific factor and a variable specific factor, it
could be, e.g., that no common factor exists (θ1 = 0) and a specification which ignored
this restriction would over-parameterized. On the other hand, our example of a factor
structure might be too restrictive and mis-specification might result. The K distinct
elements of α may be so heterogeneous that a factor structure with only N + G + 1
parameters may not be adequate.

These considerations suggest that the model space could be augmented using different
choices of Ξ. In theory, DMA could be done over a huge range of possible structures for
Ξ. In practice, computational concerns lead us in this paper to consider two structures.
The first is identical to that used in Canova and Ciccarelli (2009). The second we call the
country-specific VAR factor structure. To explain what we mean by this, let p = 1 and
consider the NG2 coefficients in the VAR for country i. G2 of these coefficients are on
lags of country i variables, with the remaining (N − 1)G2 being on lags of other countries’
variables. We define Ξ such that its accompanying θ loads only on the G2 coefficients that
are on lags of country i variables. Thus, if e = 0, the coefficients on other country variables
are zero and the PVAR breaks down into N individual VARs, one for each country (apart
from any inter-linkages which occur through Σ). The impacts of other countries’ variables
on country i are only allowed for through the presence of e. Intuitively, this structure for
Ξ captures the idea that working with VARs one country at a time comes close to being
adequate (i.e. most of the coefficients on lagged country j variables in the country i VAR
will be zero), but there are occasional inter-linkages which can be captured through e.
When we move to the TVP-PVAR in the next section, this definition of Ξ will imply the
same intuition, except in terms of individual-country TVP-VARs.
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2.3. Moving from the PVAR to the TVP-PVAR
There are many ways that the coefficients in the PVAR can be made to be time varying.

In this paper, we use a specification suggested in Canova and Ciccarelli (2009) which uses
the factor structure described in the preceding subsection. The basic idea is allow for
random walk behavior of θ instead of the high-dimensional α, resulting in a state space
model which can be estimated using standard state space methods.

We begin by putting t subscripts on all the PVAR coefficients in (1) and, thus, αt =(
vec (A1

t )
′
, ..., vec (Apt )

′)′ is the K × 1 vector collecting all PVAR parameters at time t. We
write the TVP-PVAR in matrix form as:

Yt = X ′tαt + ut, (2)

where Xt = I ⊗
(
Y ′t−1, ..., Y

′
t−p
)′, and ut ∼ N (0,Σt). An unrestricted TVP-VAR would

typically assume αt to evolve as a random walk (see, e.g., Doan, Litterman and Sims, 1984,
Cogley and Sargent, 2005, or Primiceri, 2005). However, in the multi-country TVP-PVAR
case this may lead to an extremely over-parameterized model and burdensome (or even
infeasible) computation. The over-parameterization concerns can be clearly seen. Even in
the constant coefficient case, the number of PVAR parameters, p×(N ×G)2, could run into
the thousands or more. Allowing them to be time-varying greatly increases their number.
With regards to computation, TVP-VARs are typically estimated using MCMC methods.
Even with small TVP-VARs, MCMC running time for a single model is measured in minutes
or hours on a modern PC. Repeatedly running such an algorithm on an expanding
window of data, as is typically done in a recursive forecasting exercise, multiplies this
burden by hundreds in many applications. And repeating this whole process for hundreds
or thousands or more models multiplies it many times more. These statements hold
for small TVP-VARs, but are proportionally worse for large TVP-VARs. As discussed in
Koop or Korobilis (2013), estimating TVP-VARs using MCMC methods can easily become
computationally infeasible unless the number of models and their dimension are both
small.

In order to achieve parsimony, we use the same methods for reducing the dimension
of the TVP-VAR using DMA methods described in the preceding section. As a further
step towards reducing over-parameterization problems, we follow Canova and Ciccarelli
(2009) and extend the factorization of the PVAR coefficients described in the preceding
subsection to the time-varying case using the following hierarchical prior:

αt = Ξθt + et (3)
θt = θt−1 + wt, (4)

where θt is an R × 1 vector of unknown parameters, Ξ is defined as in the preceding
subsection and wt ∼ N (0,Wt) where Wt is an R×R covariance matrix.

The hierarchical representation of the panel VAR using equations (2), (3) and (4)
resembles the hierarchical time-varying parameter SUR specified in Chib and Greenberg
(1995). Canova and Ciccarelli (2009) use this representation to reduce the dimensionality
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of the K × 1 coefficient vector αt by assuming it to be driven by θt which is of
significantly lower dimensions, that is, R ≪ K. Extending Canova and Ciccarelli (2009)’s
homoskedastic specification we let et ∼ N (0,Σt ⊗ V ) where V = σ2I.

An equivalent way of writing the TVP-PVAR given by (2), (3) and (4) is:

Yt = X̃ ′tθt + vt, (5)
θt = θt−1 + wt, (6)

where X̃t = XtΞ and vt = X ′tet + ut with vt ∼ N (0, (I + σ2X ′tXt)× Σt). Therefore, in
this form the TVP-PVAR is written as a linear Gaussian state-space model consisting of the
measurement equation in (5) and the state equation (6).

For known values of Σt, Wt and σ2, standard methods for state space models based on
the Kalman filter can be used to obtain the predictive density and posterior distribution for
θt. Thus, we will not repeat the relevant formulae here (see, e.g., Durbin and Koopman,
2001). A typical Bayesian analysis would involve using MCMC methods to draw Σt, Wt

and σ2 and then, conditional on these draws, use such state space methods. However, in
our case, the computational burden of MCMC methods will be prohibitive. Accordingly, we
use: i) forgetting factor methods to provide an estimate of Wt, ii) Exponentially Weighted
Moving Average (EWMA) methods to estimate Σt and, iii) use a grid of values for σ2 and
interpret each value as defining a particular model and, thus, include them in our model
space over which we do DMA. The following paragraphs elaborate on these points.

Dynamic model averaging methods were pioneered in Raftery, Karny and Ettler (2010)
and, within each model included in the model space, forgetting factor methods were used
for forecasting. The benefit of this was to provide an estimate of Wt, thus avoiding the
need for use of MCMC methods. We refer the reader to Raftery, Karny and Ettler (2010) or
to Koop and Korobilis (2013) for a motivation and discussion of the properties of forgetting
factor methods. The main idea is to estimate Wt as

Ŵt =

(
1

λ
− 1

)
var (θt|Dt−1) ,

where Dt−1 denotes data available through period t− 1, 0 < λ ≤ 1 is the forgetting factor
and var (θt|Dt−1) is a quantity readily available from the Kalman filter iteration at time
t − 1. Typically, λ is set to a number slightly below one. The forgetting factor approach
allows estimation of systems with large number of variables in seconds, and, hence, is
computationally attractive for recursive point and density forecasting or any other state
space modelling exercise that can become infeasible using MCMC methods.

In contrast to Canova and Ciccarelli (2009), we allow for the TVP-PVAR error
covariance matrix to be time-varying and use EWMA filtering methods to estimate it as:

Σ̂t = κΣ̂t−1 + (1− κ) ũtũ
′
t,

where ũtũ′t = (I + σ2X ′tXt)
−1
[(
Yt − X̃ ′tE (θt|Dt−1)

)(
Yt − X̃ ′tE (θt|Dt−1)

)′]
, E (θt|Dt−1) is

produced by the Kalman filter and 0 < κ ≤ 1. κ is referred to as a decay factor. We define
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the κ = 1 case to be Σ̂t =
∑t
τ=1 ũτ ũ

′
τ

t
. In order to initialize Σ̂t, we set Σ̂0 = 0.1× I which is

a relatively diffuse choice.
The forgetting factor λ and decay factor κ control the amount of time variation in

the system. Lower (higher) values of λ, κ imply faster (slower) changes over time in
the values of θt and Σt, respectively. When λ = κ = 1 then both θt and Σt become
time invariant and we have the constant parameter homoskedastic PVAR. In the most
general model used in our empirical work, we let λ ∈ {0.99, 1} and κ = {0.94, 0.96, 1},
interpret each grid point as defining a model and use DMS to select the optimal value.
Thus, the data can select either the constant coefficient PVAR or homoskedastic PVAR
at any point in time, or can select a greater degree of variation in coefficients or
error covariance matrix. We adopt a similar strategy for σ2, using a grid of σ2 ∈
{0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9}.

The Kalman filter provides us with a one-step ahead predictive density. Since we
wish to forecast at horizon h > 1 and calculate predictive likelihoods, we use predictive
simulation. To do this, we draw YT+1 from its Gaussian predictive density with mean and
variance given by the Kalman filter (these are assumed to be constant and fixed during
predictive simulation), then simulate YT+2 from its Gaussian predictive density conditional
on the drawn YT+1, etc. up to h.

2.4. A Hierarchical Prior for the Error Covariance Matrix
As we have seen, the error covariance matrix of the TVP-PVAR can also be huge, leading

to a desire for shrinkage on it as well. In this subsection, we extend the hierarchical prior
of Canova and Ciccarelli (2009) to allow for such shrinkage. We decompose the error
covariance matrix as Σt = B−1t Ht

(
HtB

−1
t

)′ where Bt is a lower triangular matrix with
ones on the diagonal, Ht is a diagonal matrix and write the VAR as

Yt = X ′tαt +B−1t Htεt =⇒
BtYt = X ′tγt +Htεt.

where γt = Btαt and εt ∼ N (0, I). We can write the model in the following form (see also
the Appendix of Primiceri, 2005) as:

Yt = X ′tγt + Z ′tβt +Htεt,

where Zt is the matrix

Zt =


0 . . . . . . 0
−Y1t 0 . . . 0

0 [−Y1t,−Y2t]
. . . ...

... . . . . . . 0
0 . . . 0

[
−Y1t, ...,−Y(NG−1)t

]

 .

With this specification we have an equivalent model where the error covariance matrix
shows up as contemporaneous regressors in the RHS of the TVP-PVAR. We can extend our
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previous approach and introduce a hierarchical prior on both γt (which are now the VAR
coefficients in this formulation) and βt of the form:

δt ≡
[
γt
βt

]
=

[
Ξγ 0
0 Ξβ

]
θt + ut ≡ Ξθt + ut, (7)

θt = θt−1 + vt.

where now ut ∼ N (0, Ht ⊗ (σ2I)), which has a diagonal covariance matrix since both Ht

and σ2I are diagonal matrices. Under the additional assumption that Ξ is block diagonal
and γt and βt load on separate factors (rows of θt), then we have prior independence
between the two sets of coefficients.5 The econometric methods described in the preceding
subsection can be used directly, with a slight simplification due to the diagonality of Ht.

The two choices for Ξγ are those described at the end of Section 2.2. For Ξβ we also use
these two choices with the trivial adaptation required by the structure for Zt. In our DMA
exercise, we allow for Ξγ and Ξβ to be different. Using 1 subscripts to denote the form
suggested in Canova and Ciccarelli (2009) and 2 subscripts to denote the country-specific
VAR factor structure, we define four models which have: i) Ξγ

1 and Ξβ
1 , ii) Ξγ

1 and Ξβ
2 , iii)

Ξγ
2 and Ξβ

1 and iv) Ξγ
2 and Ξβ

2 .

2.5. Dynamic Treatment of Model Uncertainty
The previous subsections discussed the estimation of single TVP-PVARs and defined our

model space. Our most general approach contains models which differ in the dimension of
the TVP-PVAR (5 choices are used, see subsection 2.2), choice of factor structure for Ξ (4
choices are used, see subsection 2.4), choice of forgetting factor, λ (two choices are used,
see subsection 2.3), choice of decay factor, κ (three choices are used, see subsection 2.3)
and choice of σ2 (20 choices are used, see subsection 2.3). Overall, this approach involves
2400 models. We wish to average over them or select between them in a dynamic fashion.
This subsection describes our methods for doing so.

Let M (i) for i = 1, ..., J be the set of models under consideration. In our application, J
is very large and we use DMA and DMS methods so as to navigate this vast model space
in a dynamic fashion. When forecasting time t inflation rates using data available at time
t − 1, these methods (see Raftery, Karny and Ettler, 2010) involve calculation of a model
probability, p

(
M (i)|Dt−1

)
, for each model. DMS forecasts using the single model with

the highest value for p
(
M (i)|Dt−1

)
. DMA uses forecasts averaged over all models with

model i receiving weight p
(
M (i)|Dt−1

)
in the average. We use forgetting factor methods

to estimate p
(
M (i)|Dt−1

)
.

5The assumption that the errors in the various state-space equations that characterize different blocks of
time-varying parameters are uncorrelated with each other is typically made in the TVP-VAR literature. Here
we want the independence assumption for the additional reason that the state-space model for βt has Yt
showing up both on the LHS and the RHS (through Zt) of (7). However, as Primiceri (2005) shows on page
845, given the lower triangularity of Bt, if we allow var (βt) to be diagonal (or block diagonal), then the
state space model for βt is conditionally linear and the Kalman filter can be applied.
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The forgetting factor literature (e.g. Kulhavý and Kraus, 1996 and Raftery, Karny and
Ettler, 2010) provides derivations and additional motivation for how sensible estimates
for p

(
M (i)|Dt−1

)
can be produced in a fast, recursive manner, in the spirit of the Kalman

filtering approach. Here we outline the basic steps, following the exponential forgetting
factor approach of Kulhavý and Kraus (1996). Let ω(i)

t|t−1 = p
(
M (i)|Dt−1

)
be the probability

associated with model i for forecasting Yt using data available through time t − 1. The
general version of the algorithm combines a prediction step

ω
(i)
t|t−1 =

(
ω
(i)
t−1|t−1

)µ
∑J

i=1

[(
ω
(i)
t−1|t−1

)µ] , (8)

with an updating step
ω
(i)
t|t ∝ ω

(i)
t|t−1p

(
Yt|M (i),Dt−1

)
, (9)

with a normalizing constant to ensure the ω
(i)
t|t sum to one. p

(
Yt|M (i),Dt−1

)
is the

predictive density produced by the Kalman filter, evaluated at the realized value for Yt.
The recursions begin with an initial condition for the weights, which we set at ω(i)

0|0 = 1
J

(i.e. all models have equal prior probability).
The quantity 0 < µ ≤ 1 is a forgetting factor used to discount exponentially more

distant observations in a similar fashion to λ. Since p
(
Yt|M (i),Dt−1

)
is a measure of

forecast performance, it can be seen that this approach attaches more weight to models
which have forecast well in the recent past. To see this clearly, note that (8) can be written
as

ω
(i)
t|t−1 ∝

t−1∏
i=1

[
p
(
Yt|M (i),Dt−1

)]µi
.

With monthly data and µ = 0.99, this equation implies that forecast performance one year
ago receives about 90% as much weight as forecast performance last period, two years
ago receives about 80% as much weight, etc. This is the value used by Raftery, Karny and
Ettler (2010) and in our empirical work.

We alter this algorithm in a minor way to take account for the fact that some of our
models differ in Yt (see subsection 2.2). To surmount this problem, p

(
Yt|M (i),Dt−1

)
is

replaced by p
(
Y C
t |M (i),Dt−1

)
where Y C

t is the set of variables which are common to all
models. In our application, these are the three variables which are included in our smallest
TVP-PVAR. These are inflation, the unemployment rate and industrial production.

It is possible to do either DMA or DMS over any or all of the modelling choices
described at the beginning of this subsection. In our empirical work, we do DMS over λ, κ
and σ2 (i.e. decay and forgetting factors and parameters) and DMA over VAR dimension
and choices for Ξγ and Ξβ (i.e. these might be thought of as more conventional model
specification choices). We refer to the approach which does the things as TVP-PVAR-DMA.
We follow Canova and Ciccarelli (2009) and set p = 1 for all our specifications involving
TVP-PVARs.
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3. Forecasting Euro Area Inflation

3.1. Data
We use G = 7 macroeconomic series for N = 19 Eurozone countries for the period

1999M1-2014M12. All variables are transformed so as to be rates (e.g. inflation rate,
unemployment rate, etc.), as shown in the last column of the following table, where ∆ ln
denotes first log differences (growth rates), and lev denotes that the variable remains in
levels and is not transformed. All variables are seasonally adjusted. Thus, the largest
models we work with have 133 dependent variables. We also consider smaller models
with G = 3 (inflation, unemployment and industrial production), G = 4 (adding REER
to the G = 3 choices), G = 5 (adding SURVEY1 to G = 4) and G = 6 (adding SURVEY2
to G = 5). The 19 countries are: Austria (AT), Belgium (BE), Cyprus (CY), Estonia (EE),
Finland (FI), France (FR), Germany (DE), Greece (GR), Ireland (IE), Italy (IT), Latvia (LV),
Lithuania (LT), Luxembourg (LU), Malta (MT), Netherlands (NL), Portugal (PT), Slovakia
(SK), Slovenia (SI) and Spain (ES).

Variables Explanation Source Tr
HICP Indices of Consumer Prices Eurostat ∆ ln
IP Industrial production index IMF IFS ∆ ln
UN Harmonised unemployment rates (%) Eurostat lev
REER Real Effective Exchange Rate Eurostat ∆ ln
SURVEY1 Financial situation over the next 12 months Eurostat lev
SURVEY2 General economic situation over the next 12 months Eurostat lev
SURVEY3 Price trends over the next 12 months Eurostat lev

Figure 1 plots the inflation rates for the 19 countries. This figure is included only to give
the reader a rough impression of the patterns in country-specific inflation rates (labelling
individual countries would make the figure even more difficult to read). The main point
we wish to note is that there are clearly some general co-movements between the series,
but that individual country movements are also very important. For example, the line
where the quarter-on-quarter inflation rate reaches almost 6% in 1999 is for Slovakia. It
is much more erratic, particularly early in the sample, than other countries. Similarly, at
the very end of the sample while all countries are struggling with deflation, two countries
in particular have much lower inflation rates. These are Greece and Cyprus.

3.2. Estimation Using TVP-PVAR-DMA
Before comparing the forecasting performance of TVP-PVAR-DMA to some popular

alternatives, it is useful to see which specification choices are receiving the most weight in
our model averaging exercise.

Figure 1 sheds light on which choices for Ξ are supported by the data. It plots the
probability DMA attaches to each of the four possible combinations of the form for Ξ

12
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Figure 1: Figure 1: Inflation rates (quarter-on-quarter) for 19 eurozone countries

suggested by Canova and Ciccarelli (2009) and our country-specific VAR factor structure.
The most important finding is that these probabilities are changing substantially over time.
Any methodology that uses a single Ξ choice to hold over the entire time period risks mis-
specification and poor forecast performance. For much of the time, the model which
uses the Canova and Ciccarelli (2009) choice for Ξ, but the country-specific VAR factor
structure for the parameters controlling the error covariances receives strong support. It is
also interesting that before the financial and eurozone crises, the combination {Ξγ

2 ,Ξ
β
2} has

high probability in some periods. This is the structure which says all factors are country-
specific and dynamic interdependencies between countries are weak. However, after the
crises hit, the combination {Ξγ

1 ,Ξ
β
1} becomes important, suggesting that co-movements

between countries have increased.

Figure 2 presents evidence on VAR dimension. Until 2009 there is strong support for
small models: the TVP-PVAR using only three variables for each country is selected with
probability near one in virtually every time period. However, after 2009 a great deal
of dimension switching occurs. In less stable times, it seems that additional sources of
information included in these higher dimensional models can be useful when forecasting.

Figure 3 relates to σ2 and plots the optimal value selected by DMS at each point in time
for the four different combinations of Ξγ,Ξβ. Here again we can see a great deal of time
variation in the optimal choice for this parameter. There is also a fair degree of sensitivity
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Figure 2: Figure 2: Probability DMA attaches to different choices for Ξ

to the structure of Ξ. When we use Canova and Ciccarelli (2009)’s choice of Ξ, then
the optimal value of σ2 is much lower than when using using the country-specific factor
structure. This pattern is somewhat consistent with Canova and Ciccarelli (2009) who in
their empirical work set σ2 = 0. However, when we use country-specific restrictions, σ2

tends to be different from zero. It is clearly worth estimating this parameter from the data
in this case.

In this subsection, we have presented evidence that TVP-VAR-DMA captures important
patterns in the data in a manner that a single model could not. But, ultimately, the test of
our approach lies in forecasting and it is to this we now turn.

3.3. Forecasting using TVP-PVAR-DMA
3.3.1. Models for Comparison

We compare our TVP-PVAR-DMA approach to several potential competitors: i)
individual country TVP-PVARs (19-TVP-VAR), ii) a large TVP-VAR (LTVP-VAR) using the
methods of Koop and Korobilis (2013), iii) a dynamic factor model (DFM), iv) the single
TVP-PVAR without DMA (TVP-PVAR) and v) the single TVP-PVAR extended to place a
factor structure on the error covariances as in (7) which we refer to as TVP-PVAR-X. We
describe in this subsection how we forecast with these models. To aid in comparability,
we use the same forgetting factor and EWMA approaches to estimating time variation in
coefficients and error covariance matrices in all models and set λ = 0.99 and κ = 0.96 in all
cases. Some of the approaches use a Minnesota prior for the initial states of time-varying
parameters (see Koop and Korobilis, 2013). In such cases, we use a single shrinkage
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Figure 3: Figure 3: Probability DMA attaches to different choices for G

parameter as in, e.g., Banbura, Giannone and Reichlin (2010). We use a grid of eight
different values for this shrinkage parameter: [1e− 10, 1e− 5, 0.001, 0.01, 0.05, 0.1, 1, 5] and
select the optimal one at each point in time as in Giannone, Lenza and Primiceri (2015).

For the 19-TVP-VARs, we forecast with 19 separate 3-variable TVP-VARs: one for each
country. For the initial states for the time-varying VAR coefficients, we use a Minnesota
prior. For these smaller models we use a maximum of four lags, given that the shrinkage
Minnesota prior will take care any overparametrization concerns.

The LTVP-VAR is estimated as in Koop and Korobilis (2013) using a single 57
variable TVP-VAR, that is, the three core variables (inflation, unemployment and industrial
production) for the 19 countries. We use a Minnesota prior for the initial states. Due to
the dimension of this model we use a maximum of one lag.

The DFM is given by

Yt = F ′tΛ + εt,

Ft = F
′

t−1Φ1t + ...+ F
′

t−4Φ4t + ut.

The factors in the first equation, Ft, are extracted using principal components methods.
The second equation is needed for multi-step ahead forecasting. That is, if we let
subscripts t + h|t denote forecasts of t + h variables using data available at time t, then
Yt+h|h = F ′t+h|hΛ. Yt contains the same 57 variables as in the LTVP-VAR. The time-variation
in Φt = (Φ1t,Φ2t,Φ3t,Φ4t) is estimated using the forgetting factor approach described at
the beginning of this subsection and its initial state has a Minnesota prior.

The final two approaches are special cases of our TVP-PVAR-DMA. Neither does DMA
over Ξ nor over VAR dimension. Both use Canova and Ciccarelli (2009)’s choice for Ξ
and G = 7. The first of these approaches, which we label TVP-PVAR in the tables, uses
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Figure 4: Figure 4: Optimal values for σ2 selected by DMS for different choices for Ξ

the methods of Section 2.3 which do not impose any factor structure on error covariances.
The second, which we label TVP-PVAR-X, uses the methods of Section 2.4 and does impose
the factor structure on the error covariances.

3.3.2. Forecasting Results
Table 1 presents Mean Squared Forecast Errors (MSFEs) evaluated over the period

2006M1-2014M12 for the various approaches relative to univariate random walk (RW)
forecasts for various forecast horizons for the 19 countries in the eurozone. Using
MSFEs as a metric, every one of our approaches beats random walk forecasts for almost
every country and forecast horizon. The approach with the best forecast performance is
highlighted in bold. With 19 countries and 4 forecast horizons, we have 76 forecasts to
compare.

It can be seen that different approaches tend to forecast best in different cases. But
overall, our TVP-PVAR-DMA approach is forecasting best. It has the lowest MSFE in 29 of
the 76 cases. And even in cases where its MSFE is not the lowest, its MSFEs are never more
than a few percent higher than the best. The method that is perhaps the second best in
our application is 19-TVP-VARs and involves just using individual country VARs. This often
forecasts well, but occasionally forecasts very poorly (see, e.g., results for Ireland). We are
finding TVP-PVAR-DMA to be a robust approach which often forecasts best but, if not, it
never goes too far wrong. It is worth noting that TVP-PVAR-DMA forecasts particularly
well at longer (h = 12) horizons.

Factor methods, as embodied with our DFM approach, also tend to forecast well, but
are typically beaten by TVP-PVAR-DMA. However, the LTVP-VAR, which ignores the panel
structure of the data and simply throws all the variables together into one large TVP-VAR,
does not forecast well. This reinforces one of the original motivations for this paper: that
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taking the panel structure of the data into account when designing a hierarchical prior can
be important.

Our TVP-PVAR approaches which do not use DMA methods also tend to forecast
well (especially TVP-PVAR-X which imposes a factor structure on the error covariance
matrix). However, they are almost uniformly beaten by the TVP-PVAR-DMA approach
which averages over different choices for Ξ and different VAR dimensions.

Table 2 presents averages (over time) of the log predictive likelihoods.6 Unlike MSFEs,
which are based on point forecasts, predictive likelihoods evaluate the entire predictive
distribution. But, in our case, predictive likelihoods and MSFEs are telling roughly
the same story. Probably this is due to the fact that all of our approaches use EWMA
methods to estimate a time-varying error covariance matrix. Allowing for time-varying
volatility is usually important in getting a reasonable estimate of the predictive variance.
Homoskedastic models can often provide good point forecasts (and, thus, good MSFEs),
but often fail to provide good predictive likelihoods. Nevertheless it is worth noting
that, when using predictive likelihoods, the DFM is occasionally forecasting quite poorly
(see, e.g., results for Latvia and Greece). But, overall, TVP-PVAR-DMA is still producing
forecasts which are often the best and, when not, are not too far from being best. And this
finding is occurring despite the fact that working with G = 7 variables for all countries
is probably excessive. But, a key benefit of TVP-PVAR-DMA is that it is finding out this
fact in a data-based fashion and deciding to put more weight on forecasts from more
parsimonious models.

Tables 1 and 2 present evidence on average forecast performance over the entire
forecast evaluation period and showed that our TVP-PVAR-DMA tends to forecast well.
Figure 5 presents evidence on when it does so. It presents cumulative sums of log
predictive likelihoods where the sums are taken both over time and across countries for
different forecast horizons. These measure the overall forecast performance across all
countries. Note first that the line corresponding to the TVP-PVAR-DMA almost always lies
above the lines for all of the other approaches. This reinforces the story of Tables 1 and 2
that it is the best overall forecast method for this data set. However, these benefits mostly
occur after 2009. Thus, we have a story where, before the eurozone crisis, any sensible
forecasting method can work well. But after 2009, the benefits of our approach become
clear. DMA and DMS methods, which allow for model switching, work well in unstable
times.

6We present averages to give the reader an idea of the difference in log predictive likelihoods for a
typical observation. Cumulative sums can be obtained by multiplying by the number of observations in the
forecast evaluation period (i.e. 504 − h). Log Bayes factors comparing two approaches are approximately
the difference in the cumulative sums of their log predictive likelihods.
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Figure 5: Figure 5: Cumulative sums of log predictive likelihoods (sums taken over time and across
countries)

4. Conclusions

In this paper, we have developed Bayesian methods for estimating large TVP-PVARs
and shown them to forecast well in an application involving euro area inflation rates.
This development involved the design of plausible hierarchical priors for working with
multi-country data which ensure parsimony without mis-specification and the design of
computationally feasible forecasting methods using these priors. The latter we achieve
using approximate forgetting factor and EWMA methods. For the former, we consider
some alternative approaches, but our main innovation comes in the use of DMA methods.
In an application such as ours, where there is uncertainty over what the appropriate
structure of the hierarchical prior should be and what the appropriate VAR dimension
should be, we have shown the benefits of use of DMA methods. These allow us to begin
with a parameter rich model with a range of prior choices and automatically attach more
weight to the best-forecasting, often more parsimonious, choices. Our forecasting exercise
shows the benefits of our approach.
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