## Impact of the Liquidity Coverage Ratio on Security Prices

Lucas Fuhrer<sup>†</sup> Benjamin Müller<sup>‡</sup> Luzian Steiner<sup>\*</sup>

#### Frankfurt: 7 December 2015

<sup>†</sup> Swiss National Bank and University of Zürich. <sup>‡</sup> Swiss National Bank and University of Basel. <sup>\*</sup> Swiss National Bank. The views expressed in this presentation are those of the authors and do not necessarily represent those of the Swiss National Bank.

- A TE N - A TE N

#### Motivation

- Introduction of the Basel III Liquidity Coverage Ratio (LCR)
- LCR requires banks to hold sufficient High Quality Liquid Assets (HQLA) relative to the expected Net Cash Outflows (NCOF)
- We evaluate to what extent the classification of securities as HQLA and non-HQLA has an impact on security prices
- We define this price impact as "HQLA-premium"

4 E N 4 E N

#### What we do...

- Evaluate and describe the difference between HQLA and non-HQLA securities
- Develop a simple model to analyze the impact of the LCR on security prices (HQLA-premium)
- Quantify the HQLA-premium empirically for securities denominated in Swiss francs (CHF)

#### ...and what we find

- Theoretical considerations: HQLA-premium depends on...
  - ...how strict the LCR is and on the elasticity of the HQLA supply
  - ...monetary policy environment (supply of reserves and interest rates)
- Empirical analysis: we find weak evidence for the existence of a HQLA-premium (up to 3bp) for securities denominated in CHF
- Assessment: estimation of the lower bound HQLA-premium primarily due to the current monetary policy environment

## Agenda

#### Introduction

#### 2 Background

#### 3 Literature

Theoretical considerations

#### 5 Empirical analysis

- Regulatory change
- Descriptive statistics
- Measuring the HQLA-premium
- Discussion
- 6 Implications

#### Conclusion

#### Liquidity regulation under Basel III

- Basel III introduces internationally harmonized regulatory frameworks for banks' liquidity risks
- Two concepts:
  - Liquidity Coverage Ratio (LCR)
  - Net Stable Funding Ratio (NSFR)
- LCR requires banks to hold sufficient unencumbered HQLA relative to the expected NCOF for a 30 days stress scenario

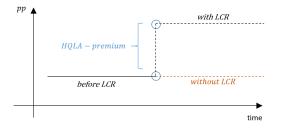
$$LCR = \frac{HQLA}{NCOF} \ge 1$$
 (1)

• Implementation: 4-year phase-in starting January 2015

A = A = A = A = A = A

## HQLA

- HQLA consist of Level 1 and Level 2 assets:
  - Level 1: central bank (CB) reserves and securities; government and supranational debt, which fulfill requirements regarding their credit quality (regulatory haircut: 0%)
  - Level 2: Level 1 category securities with lower credit qualities; covered bonds and corporate debt (regulatory haircut: 15%; 40% threshold)
- Non-HQLA: all other assets (regulatory haircut: 100%)
- LCR by currency: cover NCOF in CHF with HQLA in CHF


5 × 4 5 × 5 1 = 9 0 0

#### Literature

- Bech and Keister (2014) model the impact of the LCR in jurisdictions with scarcity of HQLA
- Stein (2013) discusses the determinants of the HQLA-premium
- Bonner (2012) and Bonner and Eijffinger (2012) study balance sheet adjustments triggered by the Dutch liquidity regulation
- Bindseil and Papadia (2006) estimate the so-called "Central Bank Eligibility Premium"
- Bartolini et al. (2010) show that the price differentiation by collateral type in the US repo market is state dependent

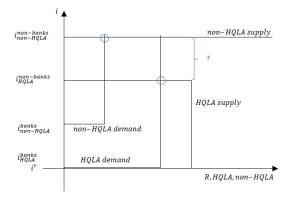
#### HQLA-premium

- Definition: change in the pricing of a security triggered by the different regulatory treatment under the LCR
- Measurement: change in the yield spread between Level 1 and Level 2 (non-HQLA) securities



## A simple model (I)

- Continuum of profit maximizing banks and non-banks
- Two types of securities: HQLA securities and non-HQLA securities
- Two periods
  - Period 1: Banks are funded with deposits (D
    ) and equity (E
    ) and they hold CB reserves (R). Non-banks hold HQLA and non-HQLA securities.
  - Period 2: Frictionless, perfectly competitive securities market opens...
- ...and banks can acquire HQLA or non-HQLA securites against reserves from non-banks


A = A = A = A = A = A

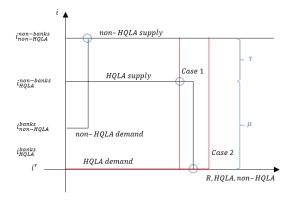
## A simple model (II)

- HQLA (non-HQLA) securities are risk-free (risky)
- ullet Non-banks and banks take into account credit and liquidity risks au
- Non-banks' reservation prices:  $i_{non-HQLA}^{non-banks} > i_{HQLA}^{non-banks}$
- Banks' reservation prices:  $i_{non-HQLA}^{banks} > i_{HQLA}^{banks}$
- CB steers the risk-free rate and pays *i<sub>r</sub>* on reserves
- Banks prefer to hold securities instead of reserves if  $i_{HQLA} > i_r$
- Banks maximise risk-adjusted profits subject to
  - ► Balance sheet constraint:  $HQLA + non-HQLA + R = \overline{D} + \overline{E}$

• LCR constraint: 
$$\frac{HQLA+R}{\theta \bar{D}} \ge 1$$

## Equilibrium without LCR

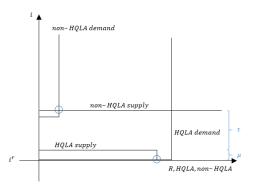



Characterisation of equilibrium:

$$\Rightarrow i_{non-HQLA^*} - i_{HQLA^*} = au \ \Rightarrow HQLA^* + non-HQLA^* = ar{D} + ar{E} \ ; \ R^* = 0$$

EL OQA

A B K A B K


### Equilibrium with LCR



Characterisation of equilibrium (case 2):  $\Rightarrow i_{non-HOLA^*} - i_{HOLA^*} = \tau + \mu$  $\Rightarrow$  HQLA<sup>\*</sup> + non-HQLA<sup>\*</sup> + R<sup>\*</sup> =  $\overline{D} + \overline{E}$  ; R<sup>\*</sup> > 0

EL OQA

### Equilibrium with LCR and floor system



Characterisation of equilibrium:

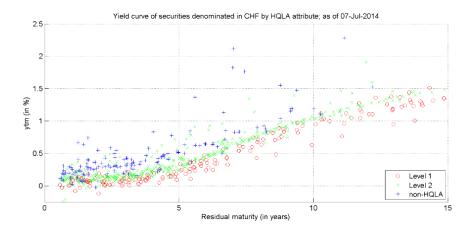
 $\Rightarrow i_{non-HQLA^*} - i_{HQLA^*} = \tau + \mu, \text{ where } \mu \text{ is close to zero}$  $\Rightarrow HQLA^* + non-HQLA^* + R^* = \bar{D} + \bar{E} \text{ ; } R^* > 0$ 

#### Hypotheses for empirical analysis

- **Hypothesis 1:** Without LCR, the pricing of HQLA securities and non-HQLA securities differs due to credit and liquidity risk considerations.
- **Hypothesis 2:** If the LCR is a binding constraint and the supply of HQLA securities is not fully elastic, an HQLA-premium is added to the existing yield differentiation between HQLA and non-HQLA. The size of the HQLA-premium depends on how strict the LCR is, whether there is a shortage of HQLA and the degree to which banks can reduce their NCOF.
- Hypothesis 3: If the yield on HQLA securities and the interest rate the CB pays on reserves are identical and there are sufficient reserves, the HQLA-premium is zero as banks are indifferent between holding reserves or HQLA securities in order to fulfill the LCR.

## Former liquidity regulation in Switzerland

- Cover short-term liabilities with "liquid assets"
- Definition of liquid assets less strict than definition of HQLA
  - SNB-eligible securities were deemed to be liquid assets
  - No regulatory haircut
- With the announcement of the LCR, formerly liquid assets were classified as either Level 1, Level 2 and non-HQLA (on SNB-website)
- Regulatory value of formerly liquid assets changed as follows


$$\label{eq:Regulatory value} \mathsf{Regulatory value} = \begin{cases} \mathsf{Level 1} & \mathsf{unchanged} \\ \mathsf{Level 2} & \mathsf{regulatory downgrade} \\ \mathsf{non-HQLA} & \mathsf{regulatory exclusion} \end{cases}$$

#### Dataset

- CHF- and EUR-denominated SNB-eligible securities (i.e. liquid assets under the former liquidity regulation)
- Observation period 6 January 2014 until 17 December 2014
- Only securities with maturity date  $\geq$  1 February 2015 and no new issuances (fixed dataset)
- Only fixed coupon securities; i.e. exclusion of floating rate securities
- In total 1,628 securities

A ∃ ► A ∃ ► ∃ | = \0 Q Q

#### Yield curves for different HQLA attributes



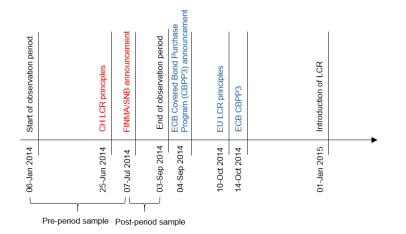
# Development of securities denominated in CHF (const. maturity yield)



Frankfurt: 7 December 2015 19 / 28

## Difference-in-Difference (DiD) methodology (I)

- Compare yield changes of CHF-denominated securities (treated group) with EUR-denominated securities (non-treated group)
- Use the fact that LCR was announced three months later in EU
- Following Degryse et al. (2009) and Cerqueiro et al. (2015)
  - Divide sample into two periods (pre- and post-sample)
  - Calculate average yield for each security in pre- and post-sample
  - Calculate yield change for each security between pre- and post-sample
- Regress yield changes on HQLA attributes, dummy variables for the treated and non-treated groups as well as interaction terms (HQLA attributes of the treated group) while controlling for the yield curves


▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

## DiD methodology (II)

- Treatment and control group...
  - include fairly homogeneous securities (fulfill SNB-eligibility criteria)
  - behave similar without treatment (parallel trend assumption; see e.g. placebo regression results)
- HQLA classification was publicly available
- Announcement of LCR details "exogenous" (FINMA/SNB)
- $\Rightarrow$  Quasi-natural experiment (peer comparison: very nice and clean set-up)

5 × 4 5 × 5 1 = 9 0 0

#### Timeline and key events



고나님

#### DiD regression results

|                         | (1)             | (2)              | (3)        | (4)          | (5)          | (6)             | (7)        | (8)         |
|-------------------------|-----------------|------------------|------------|--------------|--------------|-----------------|------------|-------------|
|                         | Baseline        | Placebo          | CH-issuer  | 3 days       | 1 day        | LiqV            | Volume 250 | nonHQLA Oct |
| L2_CHF                  | 0.0270***       | 0.000255         | 0.0391***  | 0.00595***   | 0.00856***   | 0.0262***       | 0.0299***  |             |
|                         | (2.80)          | (0.06)           | (3.54)     | (3.33)       | (5.96)       | (2.70)          | (3.14)     |             |
| CHF non-HQLA            | 0.0176          | 0.00601          | 0.0170     | 0.00119      | 0.00428      | 0.0173          | 0.0265     | 0.0449**    |
|                         | (0.98)          | (0.73)           | (0.88)     | (0.34)       | (1.26)       | (0.95)          | (1.41)     | (2.32)      |
| L2                      | -0.0419***      | -0.00674***      | -0.0419*** | -0.00216***  | -0.00752***  | -0.0423***      | -0.0419*** |             |
|                         | (-6.70)         | (-3.13)          | (-6.69)    | (-3.12)      | (-11.88)     | (-6.68)         | (-6.70)    |             |
| non-HQLA                | -0.0348**       | 0.00331          | -0.0348**  | -0.000731    | -0.00775***  | -0.0353**       | -0.0348**  | -0.0585***  |
|                         | (-2.25)         | (0.69)           | (-2.24)    | (-0.49)      | (-4.11)      | (-2.25)         | (-2.24)    | (-3.40)     |
| CHF                     | 0.145***        | 0.0293***        | 0.153***   | 0.00156      | 0.00112      | $0.154^{***}$   | 0.155***   | 0.219***    |
|                         | (9.97)          | (4.32)           | (7.68)     | (0.65)       | (0.52)       | (10.47)         | (9.18)     | (10.09)     |
| Maturity CHF            | -0.0548***      | $-0.0155^{***}$  | -0.0550*** | 0.00103***   | 0.00112***   | $-0.0546^{***}$ | -0.0587*** | -0.0604***  |
|                         | (-18.63)        | (-11.39)         | (-15.52)   | (2.66)       | (2.74)       | (-18.36)        | (-13.33)   | (-12.79)    |
| Maturity EUR            | -0.0581***      | -0.0122***       | -0.0581*** | -0.00227***  | -0.00266***  | -0.0563***      | -0.0581*** | -0.0561***  |
|                         | (-19.05)        | (-14.06)         | (-19.02)   | (-12.32)     | (-14.59)     | (-18.31)        | (-19.03)   | (-11.45)    |
| Maturity_sq. CHF        | $0.00175^{***}$ | $0.000574^{***}$ | 0.00166*** | -0.0000267*  | -0.0000340** | $0.00177^{***}$ | 0.00178*** | 0.00187***  |
|                         | (11.69)         | (9.01)           | (10.10)    | (-1.96)      | (-2.32)      | (11.72)         | (7.23)     | (7.96)      |
| Maturity_sq. EUR        | 0.00126***      | 0.000309***      | 0.00126*** | 0.0000558*** | 0.0000610*** | $0.00124^{***}$ | 0.00126*** | 0.00127***  |
|                         | (9.28)          | (8.17)           | (9.26)     | (7.74)       | (8.34)       | (9.04)          | (9.27)     | (6.13)      |
| Constant                | -0.110***       | -0.0634***       | -0.110***  | -0.0116***   | -0.00980***  | -0.121***       | -0.110***  | -0.179***   |
|                         | (-11.71)        | (-20.18)         | (-11.69)   | (-15.22)     | (-13.92)     | (-12.70)        | (-11.70)   | (-11.28)    |
| Observations            | 1628            | 1628             | 1160       | 1628         | 1628         | 1628            | 1293       | 810         |
| Adjusted R <sup>2</sup> | 0.784           | 0.387            | 0.780      | 0.250        | 0.328        | 0.774           | 0.807      | 0.769       |

t statistics in parentheses \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

#### Robustness checks

|                  | (1)           | (2)              | (3)        | (4)             | (5)          | (6)        | (7)        | (8)         |
|------------------|---------------|------------------|------------|-----------------|--------------|------------|------------|-------------|
|                  | Baseline      | Placebo          | CH-issuer  | 3 days          | 1 day        | LiqV       | Volume 250 | nonHQLA Oct |
| L2_CHF           | 0.0270***     | 0.000255         | 0.0391***  | $0.00595^{***}$ | 0.00856***   | 0.0262***  | 0.0299***  |             |
|                  | (2.80)        | (0.06)           | (3.54)     | (3.33)          | (5.96)       | (2.70)     | (3.14)     |             |
| CHF non-HQLA     | 0.0176        | 0.00601          | 0.0170     | 0.00119         | 0.00428      | 0.0173     | 0.0265     | 0.0449**    |
|                  | (0.98)        | (0.73)           | (0.88)     | (0.34)          | (1.26)       | (0.95)     | (1.41)     | (2.32)      |
| L2               | -0.0419***    | -0.00674***      | -0.0419*** | -0.00216***     | -0.00752***  | -0.0423*** | -0.0419*** |             |
|                  | (-6.70)       | (-3.13)          | (-6.69)    | (-3.12)         | (-11.88)     | (-6.68)    | (-6.70)    |             |
| non-HQLA         | -0.0348**     | 0.00331          | -0.0348**  | -0.000731       | -0.00775***  | -0.0353**  | -0.0348**  | -0.0585***  |
|                  | (-2.25)       | (0.69)           | (-2.24)    | (-0.49)         | (-4.11)      | (-2.25)    | (-2.24)    | (-3.40)     |
| CHF              | $0.145^{***}$ | 0.0293***        | 0.153***   | 0.00156         | 0.00112      | 0.154***   | 0.155***   | 0.219***    |
|                  | (9.97)        | (4.32)           | (7.68)     | (0.65)          | (0.52)       | (10.47)    | (9.18)     | (10.09)     |
| Maturity CHF     | -0.0548***    | -0.0155***       | -0.0550*** | 0.00103***      | 0.00112***   | -0.0546*** | -0.0587*** | -0.0604***  |
|                  | (-18.63)      | (-11.39)         | (-15.52)   | (2.66)          | (2.74)       | (-18.36)   | (-13.33)   | (-12.79)    |
| Maturity EUR     | -0.0581***    | -0.0122***       | -0.0581*** | -0.00227***     | -0.00266***  | -0.0563*** | -0.0581*** | -0.0561***  |
|                  | (-19.05)      | (-14.06)         | (-19.02)   | (-12.32)        | (-14.59)     | (-18.31)   | (-19.03)   | (-11.45)    |
| Maturity_sq. CHF | 0.00175***    | $0.000574^{***}$ | 0.00166*** | -0.0000267*     | -0.0000340** | 0.00177*** | 0.00178*** | 0.00187***  |
|                  | (11.69)       | (9.01)           | (10.10)    | (-1.96)         | (-2.32)      | (11.72)    | (7.23)     | (7.96)      |
| Maturity_sq. EUR | 0.00126***    | 0.000309***      | 0.00126*** | 0.0000558***    | 0.0000610*** | 0.00124*** | 0.00126*** | 0.00127***  |
|                  | (9.28)        | (8.17)           | (9.26)     | (7.74)          | (8.34)       | (9.04)     | (9.27)     | (6.13)      |
| Constant         | -0.110***     | -0.0634***       | -0.110***  | -0.0116***      | -0.00980***  | -0.121***  | -0.110***  | -0.179***   |
|                  | (-11.71)      | (-20.18)         | (-11.69)   | (-15.22)        | (-13.92)     | (-12.70)   | (-11.70)   | (-11.28)    |
| Observations     | 1628          | 1628             | 1160       | 1628            | 1628         | 1628       | 1293       | 810         |
| Adjusted $R^2$   | 0.784         | 0.387            | 0.780      | 0.250           | 0.328        | 0.774      | 0.807      | 0.769       |

 $t \mbox{ statistics in parentheses} \\ \mbox{*} \ p < 0.10, \ \ \ \ p < 0.05, \ \ \ \ p < 0.01$ 

#### Discussion of results

- Some evidence for a HQLA-premium of up to 3bp
- Empirical findings are consistent with hypotheses 2 and 3
  - Is the LCR binding?
  - Role of ALA-options applied in Switzerland
  - Low interest rate environment
  - Large excess reserves due to FX interventions (creation of HQLA)
- Methodological issues
  - Exogeneity of policy announcement (underestimation)
  - Short post-period sample (underestimation)

Policy implications of a non-zero HQLA-premium (I)

• Implementation of monetary policy

- LCR might introduce a new premium and reinforces the yield differentiation between HQLA and non-HQLA securities
- Larger CB balance if insufficient HQLA securities
- Can affect the choice of exit strategies

 $\Rightarrow$  "Implementing monetary policy may be significantly more difficult" Bech and Keister (2014)

- Primary bond markets
  - The LCR affects issuance conditions
  - The LCR favors government debt compared to private debt (incentives to produce such securities)

A ∃ ► A ∃ ► ∃ | = \0 Q Q

Policy implications of a non-zero HQLA-premium (II)

#### Collateral frameworks

- Banks prefer CB funding against non-HQLA (assumption: CB-haircuts remain constant)
- Might cause systemic arbitrage (see Fecht et al. (2015))
- CB might need to adjust haircut policy or collateral eligibility
- Financial stability
  - The literature as well as our findings suggests that banks have adjusted their security portfolios towards HQLA
  - More exposed to price changes (concentration risk and fire-sales)

A ∃ ► A ∃ ► ∃ | = \0 Q Q

#### Conclusion

- We evaluate the impact of the LCR on security prices
- Key findings from theoretical analysis suggest that the price impact depends on whether the LCR is binding, on how strict the LCR is and on the monetary policy environment
- Empirical analysis: some evidence for an HQLA-premium of up to 3bp for securities denominated in CHF
- Our analysis contributes to the broader understanding of the LCR

#### Literature

- Bartolini, L., Hilton, S., Sundaresan, S., and Tonetti, C. (2010). Collateral values by asset class: Evidence from primary securities dealers. *Review of Financial Studies*, 24(1):248–278.
- Bech, M. and Keister, T. (2014). On the economics of committed liquidity facilities. *BIS Working Paper*, 439.
- Bindseil, U. and Papadia, F. (2006). Credit risk mitigation in central bank operations and its effects on financial markets: the case of the eurosystem. *ECB Occasional Paper*, No 49.
- Bonner, C. (2012). Liquidity regulation, funding costs and corporate lending. *De Nederlandsche Bank Working Paper*, 361.
- Bonner, C. and Eijffinger, S. C. (2012). The impact of the lcr on the interbank money market. *CEPR Discussion Paper*, 9142.
- Cerqueiro, G., Ongena, S., and Roszbach, K. (2015). Collateralization, bank loan rates and monitoring. *Journal of Finance*, Forthcoming.
- Degryse, H., Kim, M., and Ongena, S. (2009). *Microeconometrics of banking: methods, applications, and results.* Oxford University Press.
- Fecht, F., Nyborg, K., Rocholl, J., and Woschitz, J. (2015). Collateral, central bank repos, and systemic arbitrage. *Swiss Finance Institute Research Paper*, forthcoming.
- Stein, J. C. (2013). Liquidity regulation and central banking. In Speech at the" Finding the Right Balance" 2013 Credit Markets Symposium sponsored by the Federal Reserve Bank of Richmond, Charlotte, North Carolina.