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Abstract

Many environments in economics feature a cross-section of agents or units linked

by a network of bilateral ties. I develop a framework to study dynamics in these cases.

It consists of a vector autoregression in which innovations transmit cross-sectionally

via bilateral links and which can accommodate general patterns of how network effects

of higher order accumulate over time. In a first application, I take the supply chain

network of the US economy as given and document how it drives the dynamics of

sectoral prices. By estimating the time profile of network effects, the model allows

me to go beyond steady state comparisons and study transition dynamics induced by

granular shocks. As a result of different positions in the input-output network, sectors

differ in both the strength and the timing of their impact on aggregates. In a second

application, I discuss how to approximate cross-sectional processes by assuming that

dynamics are driven by a network and in turn estimating the latter. The proposed

framework offers a sparse, yet flexible and interpretable method for doing so, owing

to networks’ ability to summarize complex relations among units by relatively few

non-zero bilateral links. Modeling industrial production growth across 44 countries,

I obtain reductions in out-of-sample mean squared errors of up to 20% relative to a

principal components factor model.
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1 Introduction

Numerous economic environments feature a cross-section of agents or units connected by a

network of bilateral ties. For example, countries are connected via flows of trade and capital,

industries are linked through supply chains, and individuals in a society form a network by

virtue of being acquainted to one another. As demonstrated theoretically and documented

empirically,1 such bilateral links imply a comovement of variables measured at the cross-

sectional level; GDP across countries varies depending on demand and supply by trade

partners, firms adjust their prices in response to price increases by suppliers, individuals

receive information and form opinions by interacting with their social network.

What is less well understood, however, is how this comovement plays out over time. With

regard to the timing of network effects, the literature considers two restrictive cases. The

first assumes that innovations transmit via bilateral links contemporaneously, which leads

to a static framework and implies that connections of all order play out simultaneously (see

e.g. Acemoglu et al. (2012, 2016); Elliott et al. (2014)). For example, an individual talks to

all their friends, who in turn talk to all their respective friends, etc., so that at each point

in time everyone’s opinion incorporates those of all members of society and within the same

period fully adjusts to any new information gathered by even its most distant member. The

second case posits that network effects materialize exactly one link per period (see e.g. Long

and Plosser (1983), Golub and Jackson (2010)). This assumption is tenable in theoretical

contributions, but in empirical studies a period is defined by the frequency at which data is

sampled and it remains an empirical question how far a shock travels through the network

in one period. Only for studies limited to steady state comparisons, i.e. long-term effects of

permanent shocks, the exact timing of network effects is irrelevant. These long-term effects

turn out to be the same as the effects in the static framework of contemporaneous linkages.

Again, during the period of scientific observation, all spillover and spillback effects fully

materialize, to borrow the phrasing from international economics.

Yet, many interesting questions concern transition dynamics rather than steady state

comparisons. For example, given a shock experienced by contact-intensive sectors, such as

during the onset of the COVID-19 pandemic, firms in other sectors are not only interested

in how strong the overall, long-term effect on their marginal costs or output will be, but also

when they will first start to feel the impact and how the effect will unfold over time more

generally. This possibly includes a changing speed at which indirect, higher-order network

effects accumulate over time as well as overreactions and subsequent corrections, as often

observed in financial markets. Similar concerns plague various agents in countries all over

the world when an important wheat-exporting country is torn by war.

I build an econometric framework which enables me to answer such questions. It consists

of a Vector Autoregression (VAR) parameterized based on the assumption that innovations

1See references in the following paragraph and subsequent literature review.
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transmit cross-sectionally only via bilateral links. The model can accommodate general

patterns on how innovations travel through the network over time, i.e. which connection-

orders matter for transmission at which horizons.

The Network-VAR (NVAR) is applicable whenever one is interested in the dynamics of

a cross-section linked by bilateral ties, whether or not network data is available. Given a

network and a cross-sectional time series supposed to be driven by it, the framework can

be used to quantify how network effects of different order unfold over time and come to

shape cross-sectional dynamics. In absence of network data, the assumption of innovation

transmission via bilateral links yields a sparse, yet flexible and interpretable way of modeling

cross-sectional processes, even in high dimensions. I illustrate these two uses of the model

with two applications.

In the first application, I take the supply chain network of the US economy as given and

study how it shapes the monthly dynamics of Producer Price Indices (PPI) across sectors.

I show that the proposed NVAR indeed approximates the process of sectoral prices in an

input-output economy with time lags between the production of goods and their subsequent

usage as intermediaries in producing other goods. The particular specification suggested

by theory leads to the same long-term effects of permanent sectoral price shocks as those

reported in the literature on network-induced amplification of granular shocks. By taking

an explicit stance on the timing of network effects rather than assuming contemporaneous

interactions, the framework can decompose these overall, long-term effects over time and

speak to transition dynamics. With network data given, inference on the time profile of net-

work interactions boils down to a pooled-OLS-like regression with covariates that summarize

lagged observations using network connections of different order. The appropriate lag and

order lengths are inferred from data based on model selection criteria. I show that the set

of connection-orders in the VAR-specification is fundamentally related to the frequency of

network interactions relative to the frequency of observation.

The results suggest that sectors differ not only in the strength of their impact on aggregate

prices, but also in its timing, with no clear relationship between the two. How quickly a shock

in a sector affects aggregate PPI is determined by the sector’s importance as an immediate

– as opposed to further upstream – supplier to relevant sectors in the economy. Owing to

their position at the top of supply chains, the response to price increases in energy-related

sectors is estimated as particularly slow (persistent).

In the second application, rather than taking the network as given, I use the NVAR to

model industrial production growth across 44 countries by assuming and in turn estimating

an underlying network as relevant for dynamics. This provides a novel perspective on global

business cycles as it assumes that the dynamic comovement in economic activity across

countries is the result of bilateral connections. The model yields a sparse, yet flexible way

of approximating cross-sectional time series even in high dimensions. Sparsity is obtained

because dynamics are driven by bilateral links and because units can be connected even
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in absence of a direct link between them. As a result, the dynamic comovement of the

whole, potentially high-dimensional cross-section can be modeled with relatively few non-zero

bilateral links. This is reminiscent of the assumption that longer-term dynamics are driven

by a set of shorter-term dynamics, which is upheld by the general class of VARMA(p, q)

models. Flexibility is owed to the fact that the network – as relevant for dynamics – is

estimated and that, given a network, the model can accommodate general patterns of how

network effects of different order accrue over time. Estimation is conducted by Least Squares

with a Lasso penalty on network links. It involves iterating on the conditional estimator for

the timing of network effects given the network – as in the first application – and vice versa.

My theoretical analysis reveals that the NVAR is expected to better capture cross-

sectional dynamics than a factor model whenever they are composed of many micro links

rather than driven by a few influential units. And indeed, in my application, the NVAR

leads to reductions in out-of-sample mean squared errors of up to 20% relative to a principal

components factor model, in particular for horizons up to six months. Furthermore, the

model returns an estimate for the network as relevant for industrial production dynamics

which is roughly in line with expectations and features the US as the most influential coun-

try. By explicitly modeling the dependence for any pair of countries, it estimates the whole

set of spillover and spillback effects. Differences in these across country pairs are attributed

to differences in network-connectedness of different order.

Related Literature At a fundamental level, my work relates to the series of papers by

Diebold and Yilmaz (2009, 2014). They map variance decompositions of VARs into weighted,

directed and time-varying networks with the goal of understanding dynamic connectedness.2

In contrast, I map networks into VARs. In particular, I use a network to model the con-

ditional mean function, restricting innovations to transmit via bilateral links. This leads

to rich patterns of multi-step causality, making the analysis closely related to Dufour and

Renault (1998).

This paper adds to the growing literature on networks in econometrics.3 In particular,

there is a large literature on spatial autoregressive models (SAR). It is mostly concerned

with identifying network effects (and effects of other covariates) in a static framework of

contemporaneous dependencies (Manski, 1993; Lee, 2007; Bramoullé et al., 2009). Usually,

the network is taken as given, but more recent contributions aim at inferring it from ob-

servables (e.g. Ahrens and Bhattacharjee (2015); Qu et al. (2021); de Paula et al. (2020)).4

In contrast, my framework features lagged network effects. The main difference to other

2Another way to represent dynamics by graphs is offered in Barigozzi and Brownlees (2018).
3See Bramoullé et al. (2016) and Graham (2020) for general references on networks in economics and

econometrics.
4Outside of SARs, the latter goal is also pursued by Fan et al. (2009); Brownlees et al. (2018); Alidaee

et al. (2020), among others. A related literature is concerned with detecting communities and influential
units, e.g. Barigozzi et al. (2014); Brownlees and Mesters (2021). Note that in time series models, uncovering
contemporaneous dependencies amounts to shock identification (see e.g. Hipp (2020); Dalhaus et al. (2021)).
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studies in this category (Knight et al., 2016; Zhu et al., 2017; Yang and Lee, 2019) is that

I cast them in an explicit time series model and that my interest lies in studying dynamic,

contagion-like innovation transmission through the network. To do so, I generalize the time

profile of network effects and in turn conduct inference on it. Furthermore, I do not require

network data, but show how to estimate the network as relevant for dynamics. These points

also distinguish my work from other studies which model cross-sectional time series by re-

lying on networks. The most prominent is the Global VAR (GVAR) originally proposed

in Pesaran et al. (2004). It builds a multi-variable model for the global economy by com-

bining country-level VARs, each of which is estimated by taking as given variables of other

countries, averaged using network data such as trade and capital flows.5 A complementary

approach is taken by Barigozzi et al. (2022), who build a framework to forecast a single

cross-sectional variable based on factors extracted from multiple observed connection-types.

Bykhovskaya (2021) is interested in the temporal evolution of the network itself.

With the first application of the NVAR, I contribute to the wide macroeconomic literature

on macro implications of micro shocks and the related literature on multi-sector business

cycles under input-output linkages (Horvath, 2000; Foerster et al., 2011; Bouakez et al., 2014).

The former shows in particular that disturbances to aggregate Total Factor Productivity

(TFP) can be microfounded by idiosyncratic, firm-level shocks in case firms differ in size

(Gabaix, 2011) or in their positions in the production network (Acemoglu et al., 2012).6

Many studies are also interested in the implications of networks at the level of the unit

or cross-section as a whole (see e.g. Giroud and Mueller (2019); Giovanni et al. (2018)).

In either case, the result that networks amplify idiosyncratic shocks is usually obtained by

assuming contemporaneous network interactions. This framework is silent on how networks

drive aggregate (and cross-sectional) dynamics.7 I provide an econometric framework to

conduct inference on how networks drive dynamics. In addition, I apply the framework to

document empirically how supply chain linkages affect sectoral producer-price dynamics.

With the second application of the NVAR, this paper addresses the vast literature on

dimensionality-reduction techniques for modeling high-dimensional processes. The proposed

model combines insights from two commonly used approaches. Compared to reduced rank

regression and factor models (Velu et al., 1986; Stock and Watson, 2002), it offers a par-

ticular way of finding the linear combination that effectively summarizes the information

in the lagged values of the process, namely by bilateral links among cross-sectional units.

5Though my analysis is limited to a single variable per cross-sectional unit, an extension of the NVAR to
multiple variables is conceptually straightforward. However, in this case precise estimation of the network(s)
requires restrictions. See e.g. Mehl et al. (2022), who estimate cross-country-variable-links by interacting a
low-dimensional parameter vector with bilateral trade statistics, as suggested my macroeconomic theory.

6Intuitively, micro shocks do not wash out as the number of firms increases because large firms or firms
with a central position in the supply chain network remain influential.

7Under contemporaneous interactions, network effects of all order play out simultaneously. In other
words, network effects themselves are static; networks can only amplify existing dynamics – obtained thanks
to agents’ intertemporal optimization problems in a structural model or due to persistence in shocks – but
not drive dynamics themselves. See Section 2.3 for further discussion.
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Compared to variable selection methods such as Lasso (Tibshirani, 1996),8 it places exclu-

sion restrictions on network-links, which in turn summarize the information in predictors,

rather than on predictors themselves. This leads to additional sparsity as the same links are

used to summarize information at all lags, although different connection-orders may matter

at different lags.9 I derive an equivalence result to factor models, whereby the number of

factors is given by the number of non-redundant columns in the network adjacency matrix.

Correspondingly, NVAR is expected to better capture cross-sectional dynamics whenever

these are driven by many seemingly negligible micro-links rather than a few influential units,

i.e. when the network adjacency matrix is estimated to be close-to-full rank, yet sparse,

in line with the discussion in Boivin and Ng (2006). Sparse factors are rationalized in my

framework as locally important units.10 However, note that the NVAR does not rely on

factor extraction but uses lagged observations, more in line with reduced rank regression.11

The remainder of this paper is structured as follows. Section 2 presents the proposed

econometric framework and discusses its properties. In Section 3, I apply it to study how

input-output connections shape the dynamics of sectoral prices in the US economy, taking

the network as given. In Section 4, I discuss how to model cross-sectional time series by

estimating a sparse network that underlies dynamics, which in turn is put into practice for

modeling cross-country industrial production dynamics. Section 5 concludes.

2 Dynamics Derived From Bilateral Links

In this section I present the proposed framework. First I provide some background on bilat-

eral network connections in Section 2.1. Section 2.2 then constructs the general NVAR by

building on simple examples of lagged innovation transmission via bilateral links. Section

2.3 discusses the relation to contemporaneous network interactions. Finally, in Section 2.4

I explicitly examine the relation between the frequencies of network interaction and obser-

vation. Estimation is discussed in Sections 3.3 and 4.3 for the respective cases with and

without network data.

2.1 Bilateral Connections in Networks

A network is represented by an n × n adjacency matrix A with elements aij. I consider a

directed and weighted network, which means that aij ∈ [0, 1] shows the strength of the link

from cross-sectional unit i to unit j. If aij = 0, I will say unit i is not connected to unit

8See Hsu et al. (2008) and Camehl (2022) for applications of Lasso in the context of VARs.
9Most other approaches bridging sparse and factor models are interested in capturing the cross-sectional

correlation in the errors left after factor extraction. See e.g. Fan et al. (2021).
10For analyses of sparse factors, see Onatski (2012) and Freyaldenhoven (2022).
11As a result of this as well as the absence of contemporaneous interactions, the NVAR does not face any

notable identification challenges.
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j. The set of bilateral links {aij}i,j=1:n give rise to a plethora of higher-order connections

among units, referred to as walks.12

Definition 1 (Walk). A walk from i to j is the product of a sequence of links aik,ik+1
between

units i1, i2, ..., iK such that aik,ik+1
6= 0 ∀ k, i1 = i, iK = j. For example,

ai,i2,...,iK−1,j ≡ ai,i2

[
K−2∏
k=2

aik,ik+1

]
aiK−1,j ,

is a walk from unit i to unit j of length K.

In short, a walk is the product of bilateral links aij that lead from unit i to unit j over

some intermediary units, all of which are sequentially connected. Just as element (i, j) in

the matrix A, aij ≡ (A)ij, shows the walk from i to j of length one (direct link), simple

matrix algebra reveals that (AK)ij contains the sum of walks from i to j of length K.13 I

will refer to this quantity as the Kth-order connection from i to j. A walk from a unit i to

itself is called a cycle.14

Consider the following example:

A =

0 0 .8

.7 0 .6

0 .8 0

 , A2 =

 0 .64 0

0 .48 .56

.56 0 .48

 , A3 =

.448 0 .384

.336 .448 .288

0 .384 .448

 .

Even though unit 3 is not directly connected to unit 1 (a31 = 0), there exists a second-order

connection via unit 2 (a32a21 6= 0). For example, in a production network, unit 1 could be a

supplier to unit 2, who in turn is a supplier to unit 3.

2.2 Lagged Innovation Transmission via Bilateral Links

Underlying the proposed NVAR is the core assumption that innovations uit to a process yit
transmit cross-sectionally only via bilateral links. By transmission I mean the response of

a unit to a disturbance at another unit in partial equilibrium, not taking into account the

responses of other units. It is assumed to flow only in one direction through the network.

Specifically, the direct link from i to j, aij, is a vehicle for transmission from j to i. The

innovations are allowed to follow an arbitrary process with a mean of zero. In particular, they

may be cross-sectionally correlated. For expositional simplicity, I focus on a cross-sectional

time series yt with mean zero.

12Whenever convenient to simplify notation, I write a : b for the set of integers {a, a+ 1, ..., b}, a ≤ b.
13In the case of an unweighted network, aij ∈ {0, 1} and so any walk ai,i2,...,iK−1,j ∈ {0, 1}, which means

that (AK)ij contains the number of walks from i to j.
14Usually, a cycle is defined to be a path from i to i, a path being a walk where each intermediary unit is

distinct. The differentiation between walks and paths is not relevant for this paper.
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If transmission from one unit to another takes one period, and only one period, to

materialize, the dynamics of yt can be represented as follows:

yt = αAyt−1 + ut , α ∈ R . (1)

This is a VAR(1) with the VAR-matrix given by the network adjacency matrix A, multiplied

by some scalar α which represents the strength of innovation transmission through A. In

this case, the one period-ahead expected value of the series for unit i is proportional to a

weighted sum of one period-lagged values of the series of all units j to which i is directly

linked, with weights given by the strength of direct links aij:

Et−1[yit] = α
n∑
j=1

aijyj,t−1 .
15

This process is used by Golub and Jackson (2010) in their study of societal opinion formation

through friendship ties. Also, Long and Plosser (1983) derive it for sectoral output in a

production economy with a one period delay in converting inputs into output. In this

context, a sector is expected to produce more (less) than it does on average tomorrow if and

only if (a weighted average of) its direct supplier-sectors produced more (less) than they do

on average today.

Under this process, the dynamics of yt, as summarized by Granger causality at different

horizons h = 1, 2, ..., are shaped by hth order connections encoded in A:

GCh
ij ≡

∂yi,t+h
∂yjt

∣∣Ft =
∂yi,t+h
∂ujt

∣∣Ft = (αhAh)ij .

As a result, given all other variables yk , k 6= j, yj is useful in forecasting yi at horizon h if

and only if there is an hth order connection from i to j. The strength of this relationship

is determined by the strength of this connection, i.e. by the number and strength of all

walks from i to j of length h. Note that GCh
ij is also referred to as the Generalized Impulse

Response Function (GIRF). It is generalized because it is not concerned with identification,

but the derivative is taken with respect to (potentially correlated) reduced form errors in ut.

Figure 1 provides an example and depicts the Granger causality pattern for the process in

Equation 1 and the network introduced in Section 2.1. In each panel (i, j), the blue line shows

(Ah)i,j, the network connection from i to j of different order h. The red line represents the

decaying series αh for α = 0.9. The purple line shows their product, the GIRF. By definition

of the latter, the contemporaneous responses to all but a series’ own innovation are zero.

From horizon h = 1 onwards, the GIRF for every pair (i, j) is proportional to the network

connections from i to j of relevant order.

15Et−1[·] = E[·|Ft−1], where Ft−1 = {yt−1−j}∞j=0 is the information set at t− 1.
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Figure 1: Example Generalized Impulse Responses: NVAR(1, 1)

Notes: Panel (i, j) shows (Ah)ij in blue, αh in red and GChij = (αhAh)ij in purple.

Two points are worth highlighting. First, while unit 2 is directly linked to unit 1 and

therefore experiences the latter’s innovation with a lag of one period, unit 3 only has an

indirect, second-order connection to unit 1 and is therefore impacted by its innovation only

after two periods. In the production network example, firm 3 experiences disturbances to

its supplier 2 earlier than disturbances to the supplier of its supplier, firm 1. Second, even

though in this particular example the diagonal elements in A are all zero and therefore the

individual processes do not allow for persistence through own lags, units can experience

second round effects to own innovations due to spillback effects. For example, unit 3 is

linked to 2, which itself is linked to unit 3. Therefore, after an initial adjustment to its own

disturbance, firm 3 will experience further rounds of adjustments because its initial response

led to a response of its supplier, firm 2. For larger networks, such second-round responses –

to one own’s as well as other units’ innovations – can surpass the initial response.16

This analysis relates to the discussion in Dufour and Renault (1998), who point out

that Granger causality can take the form of chains. Specifically, even though a series X

does not Granger-cause a series Y at horizon 1, under the presence of a third series Z, X

might Granger-cause Y at higher horizons as the causality could run from X to Z to Y .

They examine conditions under which noncausality at a given horizon implies noncausality

at higher horizons. The present discussion illustrates that in case innovations transmit only

16If a unit i has weak lower-order connections to some unit j but strong higher-order connections, then

we can have αh(Ah)ij > αh+1(Ah+1)ij but αh(Ah)ij < αh̃(Ah̃)ij for some h and h̃ > h+ 1.
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via bilateral links, these generally non-trivial conditions boil down to the existence or non-

existence of network connections of relevant order between the concerned units (variables).

The assumption that transmission takes exactly one period of observation to materialize

appears rather restrictive, for two reasons. First, it rules out less-than-complete transmission

at a single lag. As a result, given a price increase by a supplier j, a firm i fully adjusts its

own price after one period. A further price adjustment in the next period is possible only to

the extent that j is also a supplier to other suppliers of i, i.e. only if there is a second-order

connection from i to j. Second, the above process cannot accommodate the case where

innovations travel through the network at a different speed than the frequency in which

the process is cast; firm i cannot be impacted by price increases of suppliers situated two

positions upstream of i (suppliers of suppliers) earlier than with a lag of two periods, nor can

the (initial) response occur later than with a lag of two periods. In the following I present

two qualitative ways to extend the simple process above, which in turn lead to the general

NVAR model.

If innovation transmission takes two periods to materialize fully, the process of yt can be

written as

yt = α1Ayt−1 + α2Ayt−2 + ut , α1, α2 ∈ R . (2)

This is a VAR(2) where both VAR-matrices are given by the adjacency matrix A, multiplied

by scalars α1 and α2, respectively. If α1, α2 are both positive, their sum takes the role of

α in the example before and shows the overall strength of transmission, while their relative

size determines how the latter is split over the two lags. They are allowed to be negative.

For example, α1 > 0, α2 < 0 signifies an initial overreaction and subsequent correction of

unit i’s series after an innovation at one of the units to which it is connected.

Assuming α1, α2 6= 0, we obtain the result that yj Granger-causes yi at horizon h if and

only if there exists a connection from i to j of at least one order k ∈ {k, k + 1, ..., h}, where

k = ceil(h/2) and ceil(x) rounds x ∈ Q up to the next integer.17 Compared to the process in

Equation 1, the lagged innovation transmission allows connections of order lower than h to

matter at any given horizon h > 1. For example, firm i can still be reacting to a disturbance

at its supplier sector j even after two periods, regardless of their higher-order connections.

Furthermore, by setting α1 = 0, this specification can accommodate a network interaction

frequency which is lower than that at which data is observed. In that case, rather than

traveling one link a period, as in the process in Equation 1, an innovation travels one link

every two observational periods. In the example, firm i would be affected by a disturbance

to its supplier sector j only after two periods.

Innovation transmission through the network might also take place at a frequency higher

than that of observation. For example, if two rounds of transmission materialize within

17See proof in Appendix A.1.
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one period of observation, second-order connections matter for dynamics already one period

ahead. This is captured by the following process:

yt = (α11A+ α12A
2)yt−1 + ut , α11, α12 ∈ R . (3)

Analogously to before, α11 and α12 indicate the relative strength of first- and second-order

connections at horizon h = 1, respectively. It is easy to see that here yj Granger-causes

yi at horizon h if and only if there exists a connection from i to j of at least one order

k ∈ {h, h+ 1, ..., 2h}. In the example, firm i can be affected by suppliers of suppliers with a

lag of only one observational period.

Combining these ingredients yields a model which entertains the assumption that inno-

vations transmit only via bilateral links and can accommodate general patterns on how this

transmission materializes over time:

yt =

p∑
l=1

Φlyt−l + ut , Φl =

q∑
g=1

αlgA
g , αlg ∈ R . (4)

In this process, assuming again αlg 6= 0 ∀ l, g, yj Granger-causes yi at horizon h if and only

if there exists a connection from i to j of at least one order k ∈ {k, k + 1, ..., hq}, where

k = ceil(h/p) (see Proposition 1 in Appendix A.1). To prove this, I establish that the GIRF

is of the form

∂yi,t+h
∂uj,t

= chk(α)
[
Ak
]
ij

+ ...+ chhq(α)
[
Ahq
]
ij
. (5)

The coefficients {chk(α)}k=k:hq are polynomials in {αlh}l=1:p,h=1:q and show the importance

of different connection-orders for the impulse response at any one horizon h. As a result,

dynamics in this process depend on the strength of network connections of relevant order

as determined by p, q and α = {αlh}l=1:p,h=1:q. The parameter p determines how many

connections of order lower than h matter at horizon h, q determines how many connections

of order higher than h come into play, while the role of α is to amplify or suppress connections

of certain order at certain horizons. I will dub this model NVAR(p, q).

2.3 Contemporaneous Innovation Transmission via Bilateral

Links

The proposed NVAR abstracts from contemporaneous network interactions, which feature

prominently in the macroeconomic literature on production networks. In that case, the

implicit assumption is that connections of all order materialize in any given period of obser-
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vation:

ỹt = Aỹt + εt = (I − A)−1εt = (A+ A2 + A3 + ...)εt .
18

In that literature, contemporaneous interactions rationalize the cross-sectional comovement

among {ỹit}ni=1 as the network-induced amplification of cross-sectionally uncorrelated, id-

iosyncratic shocks εit. Ultimately, contemporaneous interactions concern shock identifica-

tion, which is not the focus of the present analysis. Instead, the interest lies in how networks

shape innovation transmission over time, regardless of the origin of these innovations.

Contemporaneous links are useful if the interest lies in quantifying overall connectedness

via networks, but they are silent on how networks drive dynamics.19 Nevertheless, models

with contemporaneous and lagged network interactions are related. By Proposition 7 in Ap-

pendix A.4, the (contemporaneous) response of yit to a (transitory or persistent) innovation

to yjt under contemporaneous interactions is equal to its long-run response to a persistent

innovation to yjt under lagged interactions in a corresponding NVAR(p, 1). Specifically, for

yt = α1Ayt−1 + ...+ αpAyt−p + ut and ỹ(t) = αAỹ(t) + ũ(t) , α =

p∑
l=1

αl ,

we have

limh→∞

[
∂yt+h
∂ut

+
∂yt+h
∂ut+1

+ ...+
∂yt+h
∂ut+h

]
=
∂ỹ(t)

∂ũ(t)

= (I − αA)−1 ,

provided the processes are stationary.20 Both responses are given by element (i, j) of the

Leontief inverse (I − αA)−1, which is a sufficient statistic for the (long-term) cross-sectional

comovement of interest. The difference between the two processes is that yt contains infor-

mation on how any such long-term effect materializes over time. To provide this information,

it needs to take a stance on the time profile of network interactions. In contrast, the timing

of interactions is irrelevant if the interest lies only in steady state comparisons rather than

full transition dynamics.

Note that the timing of the long-term response to a permanent shock provides evidence

on the timing of this impulse-response more generally, regardless of the nature of the shock.

18Note that if such contemporaneous interactions are combined with the lagged ones featured in the
NVAR(p, q), connections of all order higher than h matter for Granger causality at any horizon h, regardless
of the values of p and q, albeit in such a specific, restricted way.

19At least in absence of further structure, such as provided by a dynamic macroeconomic model with
intertemporally linked optimization problems of agents who are impacted by disturbances to ỹt. In this case,
even though within the same period idiosyncratic shocks travel through the whole network and effects of all
order play out, agents can smooth adjustment to these (amplified) shocks over several periods. Even then,
networks only amplify dynamics but are not capable of causing dynamics themselves.

20A sufficient condition is |α| < 1/|λ|, where λ is the largest (in absolute value) Eigenvalue of A. If
αl ≥ 0 ∀ l, this condition is both necessary and sufficient. Stationarity is discussed in Appendix A.2.
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This is because for any VAR, the response to a permanent shock is equal to the cumulative

response to a temporary shock (to the same variable). Therefore, the fraction of the long-

term response which materialized until horizon h is equal to the area under the IRF to a

temporary shock until horizon h as a fraction of the total area. As a result, a slow long-term

response to a permanent shock implies a persistent response to a temporary shock.

2.4 Time Aggregation of Lagged Transmission Patterns

The NVAR embodies two ideas. First, innovation transmission through the network is not in-

stantaneous but happens with a lag (of one or several periods). Second, the frequency of such

network interactions can differ from the frequency of observation. In this section, I explicitly

differentiate between these two frequencies and discuss the particular NVAR(p, q) followed

by the observed process under lagged innovation transmission and different assumptions on

the relative frequencies of network interactions and observation.

Let the cross-sectional time series xτ follow an NVAR(p∗, 1):

xτ = δ1Axτ−1 + ...+ δp∗Axτ−p∗ + vτ , δ = (δ1, ..., δp∗) ∈ Rp∗ .

This means that xτ is shaped by lagged network interactions, whereby innovation transmis-

sion takes p∗ periods to fully materialize. Suppose we observe {yt}Tt=1 = {xq∗t}Tt=1, where

q∗ denotes the frequency of network interactions relative to the frequency of observation.

If q∗ = 1, these two coincide and we in fact observe xτ . Trivially, yt follows the same

NVAR(p∗, 1) as xτ . To deal with the cases q∗ 6= 1, I assume that xτ is a stock variable (like

prices) such that its values at lower frequency are just snapshots of its values at higher fre-

quency rather than (weighted) sums of realizations during an interval of time, which would

be the case if xτ was a flow variable (like output).

If q∗ < 1 with 1/q∗ ∈ N, network interactions happen at a lower frequency than that of

observation. In this case, yt follows an NVAR(p, 1) with p = p∗/q∗, whereby every (1/q∗)th

lag has a non-zero coefficient in front of it:

yt = α1Ayt−1 + ...+ αpAyt−p + ut , αl =

{
δlq∗ if l is multiple of 1/q∗

0 otherwise
, ut ∼ vτ .

21

For example, with monthly observations, q∗ = 1/3 signifies that network interactions occur

at quarterly frequency. As a result, the observed monthly series depends on its value three

months ago, six months ago, etc., up to 3p∗ months ago.

If q∗ > 1, q∗ ∈ N, network interactions take place at a higher frequency than that of

observation. Then, provided that xτ is stationary, the process for yt can be approximated

21As can be easily verified, under distributional equivalence of ut and vτ , E[ytyt−h] = E[xτxτ−hq∗ ] ∀ h.
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arbitrarily well by an NVAR(p, q) with restricted parameters α and autocorrelated innova-

tions. For simplicity, consider p∗ = 3 and suppose we observe xτ every q∗ = 2 periods. Under

monthly observations, this means that network interactions happen bi-weekly. The case for

general p∗ and q∗ is discussed in Appendix A.3. The process of xτ is

xτ = δ1Axτ−1 + δ2Axτ−2 + δ3Axτ−3 + vτ , δ1, δ2, δ3 ∈ R .

Suppose the particular realization at period τ , xτ , is observed. Inserting sequentially for the

non-observed xτ−1 and xτ−3, we get

xτ =
[
δ2A+ δ2

1A
2
]
xτ−2 +

[
(δ1δ2 + 2δ1δ3)A2

]
xτ−4

+ vτ + δ1Avτ−1 + (δ3A+ δ1δ2A
2)vτ−3 + terms in xτ−6, xτ−7 .

This can be written (for a generic observational period t) as

yt = Φ1yt−1 + Φ2yt−2 + Θ0ut + Θ1ut−1 + terms in xτ−6, xτ−7 ,

where yt−l = xτ−2l for l = 0, 1, 2, ut = [v′τ , v
′
τ−1]′ stacks all the errors which occurred between

the periods of observation t− 1 and t and analogously ut−1 = [v′τ−2, v
′
τ−3]′. The matrices are

given by

Φ1 = δ2A+ δ2
1A

2 , Φ2 = (δ1δ2 + 2δ1δ3)A2 , Θ0 = [In, δ1A] , Θ1 =
[
0n, δ3A+ δ1δ2A

2
]
.

The exact process {yt}Tt=1 = {xq∗t}Tt=1 contains infinitely many lags with ever higher powers of

A at higher lags. However, if xτ is stationary, then so is yt and the latter can be approximated

well with a finite number of lags p.22 Given p, we get q = pq∗ − p+ 1 (see Appendix A.3).

Note that time aggregation preserves the property that long-term responses to persistent

disturbances are equivalent to responses in the corresponding model with contemporaneous

interactions. Specifically, the long-term response of the observed series yt to a permanent in-

crease in the underlying high-frequency innovation vτ equals (I−dA)−1, with d =
∑p∗

l=1 δl.
23

This discussion reveals another way to think about contemporaneous network effects. They

arise in the limit, as the frequency of network interactions relative to the frequency of ob-

servation goes to infinity. Therefore, in empirical analyses with contemporaneous network

effects, one needs to look at data of sufficiently low frequency.

In the following, I consider two distinct applications of the NVAR. Section 3 is concerned

with the case where the network is given and the interest lies in quantifying its impact

on cross-sectional dynamics. In contrast, Section 4 discusses how the assumption of shock

transmission via bilateral links can be useful for parsimoniously modeling cross-sectional time

series by estimating a sparse network that captures the observed dynamic comovement.

22See Appendix A.2 for a proof that stationarity of yt follows from stationarity of xτ , and vice versa.
23See Appendix A.4 for details.
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3 Input-Output Links and the Dynamics of Prices

How do price innovations propagate across sectors in an economy? Given an observed price

increase in, say, energy-related sectors, what is the expected path of aggregate prices? How

do we expect prices in another sector to react? With sectors linked through an input-output

network, the answers depend on the positions of the shocked (and responding) sector in the

network as well as on the velocity at which a shock travels through the network.

The literature so far has used the assumption of contemporaneous transmission of id-

iosyncratic shocks to document that input-output linkages can rationalize the sectoral co-

movement of prices at a given point in time. In the following, I use the NVAR introduced

in the previous section to analyze the dynamic aspects of this comovement. Consistent with

the literature on granular origins of business cycles, I consider the propagation of relative

price changes induced by supply-side TFP shocks, as motivated by an input-output economy

in the Real Business Cycle (RBC) tradition, which I discuss in Section 3.1. The long-term

price responses to permanent disturbances in my framework are equal to their responses in

the static framework with contemporaneous network interactions. I contribute to the lit-

erature by documenting how these long-run responses materialize over time and how this

time profile of transmission depends on sectors’ positions in the input-output network. After

theoretically motivating the analysis in Section 3.1, I discuss the data in Section 3.2 and the

estimation procedure in Section 3.3, before presenting the results in Section 3.4.

3.1 Theory

This section extends a benchmark input-output economy by introducing time lags in input-

output conversion and shows that the resulting process of sectoral prices can be approximated

by an NVAR(p, 1). The derivation here is based on Carvalho and Tahbaz-Salehi (2019), who

discuss a static input-output economy. Details are provided in Appendix B.1.

Assume there are n sectors, in each of which a representative firm produces a differenti-

ated good i by combining labor services lit and goods produced by other sectors j, {xijt}nj=1,

using a Cobb-Douglas production function. Firms maximize profits taking prices as given.

The profits of firm i in period t are

Πit = pityit − wtlit −
n∑
j=1

pjtx
ij
t ,

yit = zitl
bi
it

n∏
j=1

x
aij
ijt , bi > 0 , aij ≥ 0 , bi +

n∑
j=1

aij = 1 ,

where zit denotes TFP in sector i and wt is the price of labor. No restrictions on the process

of zit are made. xijt denotes the amount of good j purchased in period t. As discussed
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below, it can differ from the amount of good j used in the production at time t, xijt.

Under perfect competition and constant returns to scale (CRS) Cobb-Douglas production

functions, prices are entirely determined by supply. Nevertheless, to show that the following

results hold in general equilibrium and to obtain results for output dynamics, I assume

there is a representative household who supplies one unit of labor inelastically and exhibits

log-preferences over the n goods:

u({cit}ni=1) =
n∑
i=1

γi ln(cit/γi) ,
n∑
i=1

γi = 1 .

Different assumptions on the timing of input-output conversion lead to different dynamics

of sectoral prices and output in this economy. In the following, I focus on prices and relegate

further results, including output dynamics, to Appendix B.1. Let xijt,t−h denote the use of

good j purchased at time t− h in the production of good i at time t.

Most of the literature assumes that inputs are converted to outputs in the same period

when they are produced and purchased, i.e. xijt = xijt,t = xijt . This leads to a static economy

with contemporaneous network effects. We obtain the following equation for sectoral prices

pt = (p1t, ..., pnt)
′ as a function of sectoral productivities zt = (z1t, ..., znt)

′ and input-output

relations summarized by the adjacency matrix A:

p̃t = kp + Ap̃t + εt ,

where p̃t = ln(pt/wt), εt = −ln(zt) and kp is a vector of constants. This equation fully

characterizes prices in this economy, whereby wages are taken as the numéraire.

To analyze the cases of lagged input-output conversion, I additionally assume perfect

foresight. If, as in Long and Plosser (1983), it takes one period to convert purchased inputs

into output, i.e. xijt = xijt,t−1 = xijt−1, we obtain that sectoral prices approximately follow an

NVAR(1,1):

p̃t = kp1t + Ap̃t−1 + εt ,

where kp1t = kp1 − (ι − b)ln (Gw
t ). Thereby, kp1 is a vector of constants, ι is a vector of

ones, b = (b1, ..., bn)′ contains sectoral labor shares and Gw
t = wt/wt−1 is wage growth in

period t. This process only deviates from an NVAR(1, 1) to the extent that the numéraire

wt changes in value. This result can easily be extended to input-output conversion at single

lags of arbitrary length; if it takes p∗ periods to convert inputs into output, p̃t approximately

follows an NVAR(p∗, 1) where the coefficients in front of all but the p∗th lag are zero.

As shown in Appendix B.1, this economy leads to almost the same steady state as the

above economy with contemporaneous network interactions.24 However, while the latter is

24Differences vanish as the discount factor β → 1.
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always in steady state, this economy is dynamic and after a disturbance to εt only asymp-

totically converges to the steady state. For empirical analyses one has to take a stance on

what a period in this model signifies, in particular relative to an observational period in the

data.

An NVAR where the last several lags matter for dynamics is obtained if firms use inputs

purchased in the past several periods in their production at time t. To model this case,

I assume that xijt aggregates quantities of input j purchased at different periods in the

past using a Constant Elasticity of Substitution (CES) aggregator. To keep the exposition

tractable, let xijt include amounts of good j bought at t − 1 and t − 2, xijt,t−1 and xijt,t−2.25

This means that a good perishes after two periods, at least with regard to its suitability

as an input in production. An extension to arbitrary lengths p is straightforward. As in

the Long and Plosser (1983) economy above, the presumption is that storage is done by the

buyer. We then have

xijt =
[
η1(xijt,t−1)r + η2(xijt,t−2)r

]1/r
, η1, η2 > 0 , η1 + η2 = 1 , r > 0 .

In the Cobb-Douglas case r → 0, we obtain that sectoral prices approximately follow an

NVAR(2,1):

p̃t = kp2t + η1Ap̃t−1 + η2Ap̃t−2 + εt ,

where kp2t = kp2 − (ι− b)
[
η1ln (Gw

t ) + η2ln
(
Gw
t G

w
t−1

)]
. Again, this relation is only approxi-

mate because the numéraire can change in value.26

Under a more general elasticity of substitution r, excluding the case of perfect substi-

tutability (r = 1), we can derive a similar result by log-linearizing around the steady state.

Let a hat denote percentage deviation from steady state, whereby, with slight abuse of

notation, p̂t denotes this deviation for pt/wt. We obtain

p̂t = k̂p3t + χ1Ǎp̂t−1 + χ2Ǎp̂t−2 + ε̂t .

In this expression, χ1, χ2 are positive scalars that sum to one, Ǎ contains scaled bilateral

links aij/(1 + bi(1 − r)) and ε̂t contains scaled TFP deviations ε̂it = − 2−r
1+bi(1−r) ẑit. These

scalings vanish as we move towards the case of perfect substitutability, r → 1. The vector

k̂p3t is composed of elements k̂p3it = 1−φi
φi
ŷit + (1− bi/φi)

[
χ1Ĝ

w
t + χ2(Ĝw

t + Ĝw
t−1)
]
, with φi =

(1+ bi(1−r))/(2−r). Hence, for general elasticities of substitution r, the process of sectoral

prices differs from an NVAR(2,1) not only by the extent that the numéraire changes, but

also as sectoral output changes. Note that the output-term vanishes as r → 1.

25Therefore, the amount of good j purchased at time t can be used in production at periods t + 1 and
t+ 2: xijt = xijt+1,t + xijt+2,t.

26Note that Gwt G
w
t−1 = wt

wt−2
is the wage growth from t− 2 to t.
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To sum up, under general lags in input-output conversion, the log of sectoral prices, xτ ,

at some model-frequency evolves according to an NVAR(p∗, 1),

xτ = δ1Axτ−1 + ...+ δp∗Axτ−p∗ + vτ ,

with δl ≥ 0 ∀ l and
∑p∗

l=1 δl = 1. Also,
∑

j aij < 1 ∀ i. These restrictions imply that the

process is stationary.27 In the empirical analysis that follows, I allow the model-frequency

to differ from the observational frequency, as in Section 2.4, and infer their relation from the

data by model selection criteria.

A difference to the (unrestricted) NVAR(p, 1) from the previous section stands out: the

domain restrictions δ1, ..., δp ≥ 0 imply that the impulse response to a shock in sector j has

the same sign for all units i. There are two reasons for this. First, perfect competition implies

that prices equal marginal costs and prevents strategic price setting by firms. Second, Cobb-

Douglas production functions imply constant input shares regardless of prices and prevent

upstream propagation of price shocks. Note that the model can nevertheless rationalize price

movements in opposite directions because in the same period some sectors might experience

positive, others negative shocks, while the remaining sectors differ in the extent to which

they are impacted by the two owing to different positions in the network.

3.2 Data

To construct the network of sectoral links, I use annual data on input-output matrices

provided by the Bureau of Economic Analysis (BEA). Following the theory in Section 3.1

and most of the literature, I simplify the analysis by assuming constant network connections

over time. I take the input-output data for 2010, roughly the midpoint of the sample of

sectoral Producer Price Indices (PPI) (see below). Due to availability of the latter, I consider

the level of 64 mostly three- and four-digit sectors rather than the finer level of around 400

six-digit commodities (NAICS classification). The analysis is restricted to non-farm and

non-governmental sectors. Following Acemoglu et al. (2016), links aij are defined as

aij ≡
salesj→i
salesi

,

where salesj→i is the total value of goods and services purchased by sector i from sector j

as determined by the corresponding entry in the BEA’s “use” table. The value of aij shows

27Berman and Plemmons (1979, p. 37) show that for an element-wise nonnegative matrix with row sums
strictly smaller than 1, the absolute value of the largest Eigenvalue is strictly less than 1. Stationarity then
follows by Corollary 1, derived from Propositions 2 and 3, all of which are in Appendix A.2. The intuition is
that for an NVAR(p∗, 1), as well as for the NVAR(p, q) derived from it by time-aggregation, walks of order
k in the GIRF at any horizon h are multiplied by products of δls such that the sum of their exponents is k.
The domain restrictions above imply that products of δls remain bounded above by 1, while limk→∞A

k = 0.
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how many dollars worth of output of sector j sector i needs to purchase in order to produce

one dollar’s worth of its own output.28

The corresponding time series data on sector-level PPI is obtained from the Bureau

of Labor Statistics (BLS). Data availability narrows the analysis to 51 sectors and the time

frame January 2005 - August 2022. This includes the Great Recession as well as the COVID-

19 recession. More details on the matching of PPI and input-output data are provided in

Appendix B.2.

Most of the raw log PPI series show a clear upward trend. To render the series stationary,

I estimate and subtract a linear trend and a seasonality component.29 In the theoretical

model, any time trends in sectoral prices are given by idiosyncratic trends in sectoral TFP

levels amplified by the network. However, for these trends the exact timing of network

effects is irrelevant, just as it is irrelevant for the steady state. Therefore, given the goal of

the present analysis, no information is lost by subtracting time trends.

For the purposes of descriptive statistics only, I set links smaller than 0.01 to 0, as in

Carvalho (2014). As a result, network density, defined as the fraction of non-zero links out

of the total number of possible links, falls from 73.55% to 16.88%. This reveals that the

majority of links are quite weak. As expected for the lower level of disaggregation in the

present analysis, the network density is much higher than the 3% reported for the finer

level of 417 sectors in Carvalho (2014). A tabular illustration of the network is provided in

Appendix B.2.

As illustrated in the left panel of Figure 2, the weighted in-degree, wdini ≡
∑

j aij, lies

below 1 for all sectors, as posited by theory. The heterogeneity in this statistic across sectors

shows that they rely to different extent on intermediary inputs in production. The right

panel shows the weighted out-degrees, wdoutj ≡
∑

i aij, a measure of the reliance of other

sectors on the input supplied by a sector j. This plot provides evidence that most sectors

are specialized input-suppliers, while there are also a few general-purpose suppliers. This

point is further supported by non-weighted out-degrees, doutj ≡
∑

i 1 {aij > 0}, which show

the number of customers of a given sector. They are depicted alongside in-degrees in Figure

A-3 in Appendix B.2. All statistics are tabulated by sector in Table A-2.

28As discussed in Appendix B.1, the expression for aij in steady state changes slightly in economies with
different lags of input-output conversion. For example, in the Long and Plosser (1983) economy, the above
aij would need to be multiplied by β−1, the inverse of the discount factor. Under Cobb-Douglas aggregation
of inputs purchased in the past two periods, one would need to multiply by (δ1β+ δ2β

2)−1. For general CES
aggregation, this constant is also a function of the elasticity r. For now I abstract from these differences in
the proper calibration of aij . In other words, the analysis assumes β → 1.

29Given the raw series of the natural logarithm of PPI in sector i, pit, I estimate

pit = βit+

12∑
m=1

γim1 {observation t is in month m}+ eit ,

where 1 {·} is the indicator function. In turn, I set yit = êit and base the subsequent analysis on yt.
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Figure 2: Weighted In-Degrees & Out-Degrees
Notes: The left panel plots weighted in-degrees, equal to the column-wise sums of A, which show the differing reliance on
intermediate inputs across sectors. The right panel plots weighted out-degrees, equal to the row-wise sums of A, which show
the differing importance of a sector as a supplier to other sectors in the economy.

The distance or shortest path from sector i to sector j is the lowest order at which i is

linked to j. It measures how closely connected sector i is to sector j. Even though only

16.88% of links are non-zero, the average distance in the network is 2.41. This means that

each sector is on average 1.4 in-between suppliers away from other sectors. The longest

distance, or diameter of the network, is 7, which means that it takes at most 6 in-between

suppliers for a sector to reach another sector. These relatively low numbers provide evidence

of the small-world nature of the input-output network, which the literature attributes to a

small number of hub-like sectors (general purpose suppliers in the case of an input-output

network) and which is a common feature of networks in economics.30

Suggestive evidence that network proximity does not only have implications for the con-

temporaneous, cross-sectional correlation of inflation across sectors, but also for dynamics is

provided in Figure 3. The lightest-blue line plots the contemporaneous correlation of prices

in two sectors against their distance(s). It reproduces for prices the finding in Carvalho

(2014) that sectoral comovement decreases with the distance between sectors, although this

relationship is much less pronounced at the higher level of disaggregation analyzed here.

However, it is not only the contemporaneous comovement between sectors that decreases

with distance, but also the comovement of sector i’s PPI with lagged values of sector j’s PPI

is declining with the distance from sector i to sector j. This is illustrated by the remaining

lines in Figure 3, which show this correlation for lags ranging from one to twelve months in

darker shades of blue. In fact, the downward slope is more pronounced for higher lags.31

The left panel in Figure 4 depicts the raw PPI series for a few sectors. It provides evidence

of considerable heterogeneity in price dynamics across sectors, even disregarding the highly

30See Figure A-2 for a tabular representation of distances between sectors.
31Note that Figure 3 plots mean correlations by distance and masks plenty of heterogeneity across sector-

pairs.
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Figure 3: Network Distance and the Correlation of Sectoral Inflation
Notes: The figure plots the average correlation of sectoral prices for different distances between them. The lightest blue line
refers to contemporaneous correlations. Darker lines show the average correlation of a sector i with lagged values of a sector j
as a function of the distance from i to j. Lags range from 0 to 12 months. The series refer to de-trended and de-seasonalized
log PPIs.

volatile energy-related sectors. The mean, standard deviation and range of sectoral PPI

changes can be found in Table A-2. Oftentimes, studies on production networks are interested

in implications for an aggregate variable, given by some weighted sum of the same variable

measured at the cross-sectional level. The right panel of Figure 4 shows that an output-

weighted average of sectoral PPIs included in the analysis replicates the actual aggregate

PPI fairly well, despite the fact that some sectors are excluded due to data limitations.32

Aggregate PPI shows a clear upward trend, with a smaller spike around the Great Recession

as well as a very pronounced spike in the aftermath of the COVID-19 recession. The latter

is included in the analysis because it contains potentially valuable information on how price

shocks transmit through the input-output network.

3.3 Estimation

The general NVAR(p, q) from Section 2 is

yt =

p∑
l=1

(
q∑
g=1

αlgA
g

)
yt−l + ut .

32The aggregate PPI is obtained from the FRED database of the Federal Reserve Bank of St. Louis.
Weights are constructed using sectoral output in 2010.
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Figure 4: Sectoral and Aggregate PPI
Notes: The left panel shows the raw PPI series for a few selected sectors. The right panel compares the aggregate PPI from
the FRED Database and the output-weighted average of PPIs of sectors included in the analysis.

In absence of further imposed structure, analyzing how a given network A shapes the dy-

namics of yt requires estimating the coefficients {αlg}l=1:p,g=1:q. They provide information on

how innovations uit propagate cross-sectionally over time through the network.

The model from Section 3.1 does, however, impose additional structure on the estimation

problem. It states that sectoral prices at some model-frequency follow an NVAR(p∗, 1):

xτ = δ1Axτ−1 + ...+ δp∗Axτ−p∗ + vτ ,

with δl ≥ 0 ∀ l and
∑p∗

l=1 δl = 1. Rather than estimating α, I build on the theoretical frame-

work and estimate (δ1, .., δp∗). The unrestricted estimation of α|A is discussed in Appendix

B.3. It amounts to a linear regression with regressors generated by summarizing information

in lagged values of yt using the network adjacency matrix A.

I allow the frequency of network interactions to differ from the frequency of observation

and infer their relation from the data by model selection criteria. As in Section 2.4, let

{yt}Tt=1 = {xq∗t}Tt=1 denote the observed series. I consider q∗ = 1
3
, 1

2
, 1, 2, 4, which under

monthly observations corresponds to quarterly, bi-monthly, monthly, bi-weekly and weekly

network interactions, respectively.

Consistent with the literature on granular origins of business cycles, I assume that viτ is

uncorrelated across i and τ with E[vτ ] = 0 and V[vτ ] = Σ, Σ = diag(σ2
1, ..., σ

2
n). Furthermore,

I assume Normality of vτ and consider Maximum Likelihood (ML) estimation of θ = (δ, σ),

where δ = (δ1, .., δp∗−1) and σ = (σ1, ..., σn). Because of the restriction
∑p∗

l=1 δl = 1, I drop

δp∗ from δ and impose the domain restrictions δl ∈ [0, 1] for l = 1 : p∗ − 1 and
∑p∗−1

l=1 δl ≤ 1.

In turn, δp∗ = 1−
∑p∗−1

l=1 δl with δp∗ ∈ [0, 1].

For q∗ ≤ 1, the likelihood p(Y |θ) can be evaluated directly. For q∗ > 1, the process has

a linear-Gaussian state space representation and p(Y |θ) can be evaluated using the Kalman
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filter.33 Regardless of the value for q∗, the ML estimator (MLE) θ̂ML cannot be obtained

analytically because of the non-trivial domain restrictions for δ. Additionally, for q∗ > 1,

likelihood evaluation is costly because it is a nonlinear function of θ. For the same reason, any

attempt at obtaining θ̂ML using nonlinear optimization would suffer from local optima issues.

Therefore, I consider a Bayesian implementation of the MLE. Under a prior distribution p(θ)

proportional to a constant, the posterior p(θ|Y ) is proportional to the likelihood p(Y |θ):

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

∝ p(Y |θ)p(θ) ∝ p(Y |θ) .

Therefore, θ̂ML is equal to the posterior mode. The posterior can be obtained efficiently

using the Sequential Monte Carlo (SMC) algorithm.34 I use independent, Uniform priors for

{δl}l=1:p∗−1 ∈ [0, 1]p
∗−1, truncated to satisfy the additional domain restriction

∑p∗−1
l=1 δl ≤ 1.

The resulting distribution is derived in Appendix B.3. The priors for σi are also independent

Uniform distributions, ranging from zero to upper bounds large enough to ensure that the

domain encompasses σ̂i,ML.

3.4 Results

Table 1 reports the Marginal Data Density (MDD) for different specifications of the NVAR.

The values for q∗ along rows refer to quarterly, bi-monthly, monthly, bi-weekly and weekly

network interaction frequencies, respectively. The values for p∗ in the columns indicate how

many of up to six past months matter for dynamics. The most preferred specification features

monthly network interactions and lags up to six months. Model selection according to the

Bayesian or Akaike Information Criteria lead to the same conclusion (see Table A-3).35 The

following analysis is based on this preferred NVAR(6, 1).

Table 2 reports the estimation results for δ. The first column shows the MLE, approx-

imated by the Maximum A-Posteriori (MAP) estimator, i.e. the posterior draw (particle

in the SMC algorithm) with the highest likelihood. It is very close to the posterior mean,

reported in the second column. With some estimates close to the boundary of the parameter

space, standard asymptotic theory for extremum estimators breaks down and it is difficult to

assess the precision of the MLE in the frequentist sense. Instead, I report the 95% Bayesian

Highest Posterior Density (HPD) sets, which together with the peaked marginal posteriors,

33See Section 2.4 and Appendix A.3 for discussion on the process for observables yt implied by the
NVAR(p∗, 1) for xτ and see Appendix B.3 for its state space representation under q∗ > 1.

34See Herbst and Schorfheide (2015) for a general discussion of the SMC algorithm and Appendix B.3
for more details on its implementation for this application. I choose it over alternative posterior sampling
techniques because it is parallelizable, allows for an effective tuning of the sampling accuracy and recent
advances show how to speed up its computations by using a well-designed proposal density.

35Note that with monthly data, models with higher network interaction frequency than monthly (q∗ > 1)
are at a disadvantage because estimation under time aggregation introduces noise. In an ideal setting, data
would be sampled at the highest possible frequency and only specifications with q∗ ≤ 1 would be assessed.
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Table 1: Model Selection: Log MDD

p∗

1q∗ 2q∗ 3q∗ 4q∗ 5q∗ 6q∗

1/3 19079 19044

1/2 19384 18768 18690

q∗ 1 20153 20056 19675 19879 18899 20218

2 17546 19570 19248 20142 18662 19636

4 18517 19808 19754 19655 18904 19301

Notes: The table shows values for the natural logarithm of the Marginal Data Density (MDD)
across model specifications. The values for q∗ (from top to bottom) refer to quarterly, bi-monthly,
monthly, bi-weekly and weekly network interactions, respectively, while p∗ = mq∗ implies that the
last m months matter for dynamics.

shown in Figure A-4 in Appendix B.4, illustrate that δ is estimated very precisely. This is

not surprising as there are nT = 51 · 206 = 10, 506 observations and only n + p∗ − 1 = 56

parameters.

Table 2: Estimation Results: δ

MLE Mean Low High

δ1 0.1550 0.1557 0.1370 0.1745
δ2 0.3460 0.3382 0.3168 0.3605
δ3 0.2816 0.2865 0.2644 0.3129
δ4 0.0915 0.0991 0.0785 0.1174
δ5 0.1045 0.0975 0.0837 0.1135

Notes: The first column shows the Maximum Likelihood or Maximum
A-Posteriori (MAP) Estimator, the second refers to the posterior mean, and
Low and High report the bounds of the 95% Bayesian HPD credible sets.

The dynamics of yt can be summarized by impulse response functions (IRF). As discussed

in Section 2.2, the impulse response of yt at horizon h comprises supply chain connections

of order k ∈ k : h, with k = ceil(h/6):

∂yi,t+h
∂uj,t

=

[
∂yt+h
∂ut

]
ij

= chk(δ)
[
Ak
]
ij

+ ...+ chh(δ)
[
Ah
]
ij
.36 (6)
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(d) IRF of Truck Transportation to Utilities
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Figure 5: Impulse Responses: Transmission of Price Shocks via Supply-Chain Links
Notes: The top left panel shows the importance of different connection-orders for shock transmission as a function of the time
elapsed since a shock took place. The top right panel shows the supply chain connections of different order from the sectors
“Chemical Products” and “Truck Transportation” to the utilities sector, and the bottom panels show their resulting IRFs to
an increase in the price of utilities by one standard deviation.

The coefficients {chk(δ)}k=k:h are functions of δ and show the importance of upstream supply

chain connections of different order for the response of sectoral prices at any one horizon

h. As the present analysis abstracts from hetereogeneity in δ, these coefficients are constant

across time and sector-pairs. They are obtained using Algorithm 1 in Appendix A.3.

Figure 5 illustrates this composition of impulse responses. The dots in the top left panel

depict the coefficients {chk}k=k:h with connection-orders k on the y-axis and horizons h on

the x-axis. Larger values are represented by larger and darker dots. As stated above, under

δl > 0 for l = 1 : 6, at a given horizon h, orders k : h matter. Hence, there are h − k + 1

dots aligned vertically at horizon h. As time passes, a shock spreads through the network

and reaches more distant nodes. However, it is the exact values of {δl}l=1:6 that determine

the exact width and speed of this propagation. This is illustrated by the differing sizes and

colors of the dots.

The top right panel in Figure 5 shows the strength of network connections of different

36See Proposition 1 and the discussion on IRFs in Appendix A.4.
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order from the sectors “Chemical Products” and “Truck Transportation” to the sector “Util-

ities”, respectively. The former sector is more dependent on utilities as a supplier than the

latter, as evidenced by stronger network connections, in particular of first and second order.

As Equation 6 makes clear, such network-connections from a sector i to a sector j are the

second building block of impulse responses in the NVAR.

The lower panels of Figure 5 illustrate the resulting impulse responses. The different

shades of blue depict the individual terms chk(δ)
[
Ak
]
ij

, which show the contribution of

network-connections of order k to the impulse-response of i to j at horizon h. Darker shades

refer to network connections of lower order. As a result of its stronger network-connections

to the utilities sector, the price of chemical products reacts more strongly to a one-standard

deviation increase in the price of utilities than does the price of truck transportation. The

price of chemicals rises quickly and peaks after two months. In contrast, the price of truck

transportation increases slowly and remains slightly elevated, without a noticeable peak. It

is in particular the direct and second-order supply-chain connections that make up the dif-

ference between the two responses, in line with the top right panel. Longer-term responses

are driven by higher-order connections and after nine months they are of similar size for the

two sectors since the latter share similarly strong higher-order connections to the utilities

sector.

In sum, the stronger the connections from sector i to sector j, the more pronounced will

be the response of sector i’s PPI to a price shock in sector j. Also, how fast sector i responds

depends on the importance of sector j as a more immediate – rather than further upstream

– supplier to sector i. The exact mapping from network-connections to impulse responses is

determined by the extent to which connections of different order matter at different horizons.

This is true not only for prices in a sector i, but also for a weighted average of sectoral prices,

such as the aggregate PPI.

Thanks to the literature on granular origins of business cycles, we know that the effects of

sectoral price shocks on aggregate prices are stronger for sectors with more central positions

in the supply chain network. As shown in Section 2.3, the present NVAR(6, 1) leads to

the same long-term responses of prices to permanent shocks as in the static framework of

contemporaneous network interactions used in that literature. The comparative advantage

of the present framework is that it allows us to study how the effects of a shock unfold

over time. In the following, I will focus on the responses of aggregate PPI, in line with the

literature, but the same analysis could also be conducted for sector-pairs (i, j).

The left panel of Figure 6 shows a few time profiles of aggregate PPI responses to sectoral

price shocks. It suggest that sectors differ in the speed at which they impact aggregate PPI.

For example, the response of aggregate PPI to a shock to wholesale trade prices materializes

rather quickly, while its response to an increase in the price of oil and gas extraction takes

time. As revealed by the IRF discussion above, this is because wholesale trade connects

to other sectors mostly as a direct or lower-order supplier, while the oil and gas extraction
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Figure 6: Size and Timing of Aggregate PPI Response to Sectoral Shocks
Notes: The left panel shows the time profile of the effect of sectoral price disturbances on aggregate PPI for a few selected
sectors. The right panel relates the strength of the effect on aggregate PPI to its timing. The shock sizes are equal to one
standard deviation of the respective sectoral disturbance.

sector sits further upstream in its supply-chain relationships. In case of the aggregate PPI,

the relevant counterpart is a weighted average of customer-sectors, with weights given by

their contribution to aggregate output.

The right panel of Figure 6 plots the strength of aggregate PPI responses against the

fractions which materialize in the first quarter after the shocks to the respective sectors’

prices. Although stronger effects tend to take more time to realize, there is no clear rela-

tionship between the strength and timing of responses. For example, the construction and

primary metals sectors have similar overall effects on aggregate prices. This means that other

sectors (or the output-weighted average of them) have similar overall connections to both,

as judged by the sum of connections of all order in the Leontief inverse.37 Yet the impact of

price increases in the construction sector materializes much more quickly since this sector is

more relevant as an immediate supplier to relevant sectors in the economy compared to the

primary metals sector.

4 Global Industrial Production Dynamics

How does economic activity co-move across countries? Given an expansion in one country,

how do we expect economic activity in other countries to react? The international economics

literature has long been interested in such spillover and spillback effects and the transmission

of US shocks in particular. In this section, I shed light on global business cycles from a

novel perspective, by assuming that the dynamic comovement in economic activity across

countries is the result of bilateral connections, which I estimate. This is in starkest contrast

37Put simply, when summing up the connections of all order from sectors i to the construction sector and
taking a weighted average, one gets a similar number as for the primary metals sector. See the expression
for the Leontief inverse in Section 2.3.
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with factor models, which in this context posit that it is the result of exposure to a few

influential countries.

The previous section examined a case where an observed cross-sectional time series is

arguably driven by one particular network of bilateral links for which data is available, and

the interest lies in quantifying how network effects materialize over time. In this section, I

consider the case where no network data is available, yet the assumption of an underlying

network structure that shapes cross-sectional dynamics appears reasonable. I first provide

some intuition on the merits and limitations of the NVAR as a tool for approximating cross-

sectional time series in Section 4.1. The relation to factor models, arguably the most popular

tool for modeling high-dimensional time series in macroeconomics, is analyzed in more detail

in Section 4.2. In Section 4.3 I discuss the estimation of the parameters in the NVAR, this

time including the network adjacency matrix. Finally, the results of the application to

cross-country industrial production growth are presented in Section 4.4.

4.1 Modeling Cross-Sectional Processes by Sparse Networks

Consider the problem of approximating the process of a cross-sectional time series yt. Even

for intermediate sizes of the cross-section, an unrestricted VAR(p) is not feasible. Modeling

the series as an NVAR(p, q) process,

yt =

p∑
l=1

Φl(α,A)yt−l + ut , Φl =

q∑
g=1

αlgA
g , αlg ∈ R , aij ∈ [0, 1] , (7)

and estimating (α,A) gives a sparse, yet flexible and interpretable alternative.

Sparsity is obtained by the assumption that innovations transmit cross-sectionally only

via bilateral links. As a result, the information in the high-dimensional vector of potential

covariates – given by lagged values of yt – is compressed into a low-dimensional vector of

regressors that summarizes this information using network connections of different order. To

see this, note that the NVAR(p, q) above can be re-written as

yt = Xtα + ut , Xt =
[
ỹ1
t−1, ỹ

2
t−1, ..., ỹ

q
t−1, ỹ

1
t−2, ..., ỹ

q
t−p
]
, ỹgt−l ≡ Agyt−l . (8)

The n × pq matrix Xt summarizes the information in lags 1 to p of yt using network con-

nections of order 1 to q. Furthermore, because two units can be connected even in absence

of a direct link between them, the dynamic, cross-sectional comovement may potentially be

captured by relatively few non-zero bilateral links. In other words, A can be sparse, leading

to additional parsimony. Assuming that dynamic relations across all unit-pairs (i, j) are

driven by a relatively small set of bilateral links is akin to the assumption that longer-term

dynamics are driven by a set of shorter-term dynamics, which is upheld by the general class

of VARMA(p, q) models.
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There are two ways in which the assumption of bilateral links shaping the dynamics

at all lags could be restrictive. First, units may be affected by common forces outside of

the network. To some extent, this is captured by potential cross-sectional correlation in

the disturbances uit. It could further be captured by including additional covariates into the

equation. Second, the restriction that the effects of lagged values of yjt on yit are proportional

to a linear combination of connections from i to j of different order may be too limiting.

However, this appears unlikely given the flexibility of the NVAR(p, q).

Flexibility is obtained because the adjacency matrix A and hence connections of different

order are estimated as well as the fact that the parameters {αlg}l=1:p,g=1:q can capture a

very general pattern of which connection-orders matter at which horizons. The latter point

is discussed theoretically in Section 2.2 and documented empirically for the case of price

dynamics and input-output links in Section 3.4. The general NVAR(p, q) in Equation 7

brings to mind functional approximation of the linear projection of yt on the information set

at t− 1 using a polynomial expansion in A. Thereby, adding a term αlkA
k to the equation

satisfies the two main requirements on basis functions, orthogonality and locality: the term

i) adds new, orthogonal information to that captured by lower powers of A, ii) adds different

information across node-pairs (i, j), and iii) adds this information only at lag l. Note that

the first point is qualified by the requirement that A,A2, ..., Ak are linearly independent,

which requires k not to be too large. The Cayley-Hamilton theorem gives the upper bound

for the highest power q. It states that for any n × n matrix A, An can be expressed as a

linear combination of lower powers of A. Therefore, q ≤ n− 1.

There is a vast literature on modeling high-dimensional time series. The methods by

which parsimony is induced can be roughly split into three categories: variable selection

methods, shrinkage estimators, and factor models and reduced rank regression.38 Variable

selection methods like Lasso or boosting aim at finding the most important predictors by

excluding less relevant ones. Instead of imposing outright exclusion restrictions, shrinkage

methods such as Ridge regression or Minnesota-type priors do so by downweighting less rele-

vant ones. Finally, factor models and reduced rank regression models reduce dimensionality

by summarizing a large set of predictors by a few linear combinations of them.

The NVAR combines insights from factor models and variable selection. Compared to

factor models, it offers a particular way of finding the linear combination that effectively

summarizes the information in the high-dimensional set of predictors y′t−1, y
′
t−2, ..., namely

by the set of bilateral links among cross-sectional units. This leads to a model that nat-

urally incorporates weak factors and adds to the interpretability of the estimated process.

Compared to variable selection methods, the NVAR places exclusion restrictions on bilateral

links aij, which in turn summarize the information in the predictors, rather than on the

predictors themselves. Relatedly, it entertains the additional sparsity assumption that for

every yit, the same linear combinations of predictors yjt matter at all lags (see Equation 8),

38See Carriero et al. (2011) for an extensive discussion.
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although possibly in different ways, as captured by differences in (αl1, ..., αlq) across lags l.

This additional restriction can become important in higher dimensions.39

Note that in principle the NVAR could be applied for general, not necessarily cross-

sectional time series. However, then the assumption of an adjacency matrix with all positive

entries becomes untenable. While this is permissible from a network perspective, estimation

becomes non-trivial. I leave this case for future research and limit the analysis to cross-

sectional time series.

4.2 Relation to Factor Models

In this section, I derive an equivalence result between an NVAR(p, 1) and a factor model.

It supports the subsequent discussion on the environment in which an NVAR is expected to

better capture cross-sectional dynamics than a factor model.

For expositional simplicity, the equivalence result is shown for an NVAR(2, 1). The

extension to general p is straightforward. The NVAR(2, 1) can be written as

yt = A[α1yt−1 + α2yt−2] + ut .

Let r denote the rank of A. We can find n×r and r×n matrices B and C, both of full rank,

such that A = BC. In turn, the NVAR(2, 1) can be represented as a factor model with r

factors:

yt = BC[α1yt−1 + α2yt−2] + ut = Λft + ut .

The n × r matrix of loadings Λ is given by B, while factor k is given by fkt = α1Ck·yt−1 +

α2Ck·yt−2, where Ck· denotes the kth row of C. Note that this factor representation is

not unique, as an observationally equivalent process is obtained by writing A = BC =

BQQ−1C = B̃C̃ for any r × r full-rank matrix Q.

Conversely, let yt permit a factor structure, with r factors evolving dynamically according

to a VAR(2):

yt = Λft + ξt , ft = Φ1ft−1 + Φ2ft−2 + ηt .

Using an argument similar to the one in Cesa-Bianchi and Ferrero (2021), take r distinct

vectors of weights wk = (wk1 , ..., w
k
n), k = 1 : r, and consider weighted averages of {yit}ni=1 of

39Note that more coarse levels of cross-sectional granularity offer a rationale to apply shrinkage rather
than selection to the bilateral links in A because with less units, the assumption that two units do not share
a direct link becomes less tenable. Generally, elements in A could be estimated using an elastic net approach.
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the form

n∑
i=1

wki yit =
n∑
i=1

wki Λi·ft +
n∑
i=1

wki ξit .

For n large enough, ξ̄kt ≡
∑n

i=1 w
k
i ξit ∼ Op(n

−1/2) is negligible and we can write

Wyt = WΛft ,

where the r×n matrix W stacks wk′ along rows. In turn, we can solve for ft = (WΛ)−1Wyt.

As this equation holds for all t, we can re-write the process for yt as

yt = Λ (Φ1ft−1 + Φ2ft−2 + ηt) + ξt

= ΛΦ1(WΛ)−1Wyt−1 + ΛΦ2(WΛ)−1Wyt−2 + ut ,

with ut = Ληt + ξt. If the dynamic evolution of the r factors is restricted to an NVAR(2, 1),

then Φ1 = φ1Φ and Φ2 = φ2Φ for some φ1, φ2,Φ, and the above equation simplifies to

yt = ΛΦ(WΛ)−1W [φ1yt−1 + φ2yt−2] + ut .

Assuming that Λ has all positive entries, this equation implies that yt follows an NVAR(2, 1)

with adjacency matrix A = ΛΦ(WΛ)−1W . A has rank r and can be written as A = BC

with B = ΛQ, C = Q−1Φ(WΛ)−1W for any r × r orthogonal matrix Q. Note that we can

re-scale A and (φ1, φ2) in case an element in A exceeds unity (see Appendix C.1).

Summing up, and more generally, an NVAR(p, 1) yields a particular factor model, where

the number of factors is given by the number of non-redundant columns in A. Conversely,

for large n, a factor model for yt can be cast as an NVAR(p, 1) – with the number of factors

again equal to the rank of A – provided that the factor loadings are all positive and that

the factors themselves evolve according to an NVAR(p, 1). Note that for p = 1, the latter

condition is equivalent to saying that the factors evolve according to a VAR(1), while in case

of a single factor, it just requires the factor to follow an AR(p). The assumption of positive

factor loadings Λ is the factor model-equivalent to the assumption of positive links aij in A

and is tenable in many cross-sectional environments. It implies that the sign of the response

of yit to a disturbance in yjt is the same for all units i. It is violated, for example, in case

an increase in economic activity in one country leads to a contraction in other countries, or

if a price increase in one sector leads to a price decrease in other sectors.

Sparse or weak factors are rationalized by the NVAR as locally important nodes. Exam-

ples are sectors which supply only a subset of other sectors in the economy or countries that

trade only with a subset of other countries. In many cases, we expect A to be sparse, yet of

close-to-full rank. For example, for most sectors we can find at least one other sector whose

output or price-setting behavior depends on that of the sector in question. Similarly, in the
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study of global business cycles, for most countries we can find at least one other country

whose output depends on the economic activity in the country in question.

Based on these insights, the NVAR is expected to better capture cross-sectional dynamics

in cases where the latter are composed of many seemingly neglibile micro links rather than

driven by a few influential units, i.e. if A is close to full rank. It is an empirical question

to what extent these micro links can be captured by a few latent factors. Yet, regardless of

the rank of A, the NVAR is expected to better capture the dynamics of yit for units i with

a dependence structure in Ai· or Λi· that differs considerably from that of other units. As

pointed out in Boivin and Ng (2006), the more dispersion there is in the factor loadings across

series, the worse will be the forecasting performance of a factor model.40 This dispersion

notably includes the case of weak factors, as captured by a sparse loading matrix Λ or a

sparse adjacency matrix A in the case of an NVAR. Note that in the context of the NVAR,

sparsity of A leads not only to cross-sectional differences in the strength of exposure to some

given unit, but also to differences in the timing of this exposure (see causality chain discussion

in Section 2.2). Therefore, the NVAR is preferred to factor models whenever some notion of

cross-sectional distance is expected to be relevant for the timing of impulse responses.

Even in case the NVAR offers no advantage to factor models in terms of modeling and

forecasting cross-sectional dynamics, it may be preferred for other reasons. First, it estimates

a network as relevant for dynamics and, relatedly, offers an interpretable way of approximat-

ing the dynamics in yt. Second, it enables the analysis of spillover and spillback effects as it

estimates the whole set of IRFs. Third, the estimated network offers a possible method for

shock identification even in high dimensions, the assumption being that the same bilateral

links that rationalize lagged innovation transmission are also behind contemporaneous shock

transmission.

4.3 Estimation

This section discusses the joint estimation of (α,A) in the NVAR. For now, the analysis is

limited to an NVAR(p, 1),

yt =

p∑
l=1

αlAyt−l + ut , α ≡ (α1, ..., αp) ∈ Rp , aij ∈ [0, 1] , V[ut] = Σ .

although some results I discuss hold for q > 1 as well.

Note that (α,A) are jointly identified only up to scale. To render them identified, I

normalize ||α||1 = 1. Note that this requires ||α||1 > 0 to hold in the true data-generating

40More specifically, while they suggest to select the number of factors for each series separately in order
to improve forecasts, the forecasts for series that depend on less dominant factors will nevertheless be more
noisy than forecasts for series that depend on the most dominant factors. This is because including more
estimated factors induces more sampling variability into the forecasts.
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process. To deal with the possibility that ||α||1aij > 1 for some (i, j), I change the domain

of aij to R+ and, if needed, re-scale the estimates to interpret the estimated A as a network.

Appendix C.1 contains more details on identification and normalization.

Consistent with the motivation above, I consider Least Squares (LS) estimation of (α,A,Σ)

under a Lasso-penalty for elements aij in A. For generality, I also consider a Ridge-penalty

for α. Shrinkage of α becomes important for estimating a general NVAR(p, q) as different

powers of A could be close to multicollinear.41 This leads to the following optimization

problem:

min
α,A

1

nT

T∑
t=1

ut(α,A)′Σ−1ut(α,A) + λ̃

n∑
i,j=1

aij + ϕ̃
∑
l,g

α2
lg s.t. aij ≥ 0 , ||α||1 = 1 , (9)

with

ut(α,A) = yt −
p∑
l=1

αlAyt−l = yt −Xtα = yt − Azt .

In this expression, Xt(A) = A[yt−1, ..., yt−p] is an n×p matrix and zt(α) = [α1yt−1, ..., αpyt−p]

is an n× 1 vector. The hyperparameters ϕ̃ and λ̃ control the shrinkage of α and sparsity of

A, respectively. Under Ordinary Least Squares (OLS), we get the conditional estimators

α̂LS|A =

[
ϕI +

T∑
t=1

X ′tXt

]−1 [ T∑
t=1

X ′tyt

]
, (10)

âij,LS|(α,Ai,−j) = max{0, ǎij} , ǎij =

∑T
t=1(yit − Ai,−jz−j,t)zjt − λ∑T

t=1 z
2
jt

, (11)

where ϕ = nT ϕ̃ and λ = nT
2
λ̃. Ai,−j is the ith row and all except the jth column of A. z−j,t

is defined analogously. Below, I wil write A·,−j to denote the matrix obtained by deleting

the jth column of A.

There is no analytical expression for the unconditional estimator (α̂LS, ÂLS). However, it

is obtained efficiently by iterating on the conditional estimators α̂LS|A and Â·,j,LS|(A·,−j, α)

until convergence as outlined in Meng and Rubin (1993). Appendix C.2 discusses the pro-

cedure in more detail. In turn,

Σ̂LS =
1

T
ut(α̂LS, ÂLS)ut(α̂LS, ÂLS)′ .

Provided ut is Normal, the LS estimator of (α,A,Σ) in the general NVAR(p, q) is equal to

the posterior mode under the priors α ∼ N(0, ϕ−1I), aij ∼ Exponential(λ) and an improper

41The rationale is the same as under the estimation of α when A is given, which is discussed in Section
B.3.
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prior for Σ: p(Σ) ∝ c (see again Appendix C.2). By standard arguments, analytical expres-

sions for the conditional posteriors and posterior modes of α|A,Σ and Σ|α,A are available.

The conditional posterior and posterior mode of A|α,Σ can only be solved for under q = 1.

In this case, Bayesian estimation can be implemented efficiently using Gibbs sampling. In

contrast, estimation under q > 1 cannot be conducted by iterating on conditional posteriors

- in case of Bayesian estimation - or posterior modes - in case of LS estimation.

4.4 Results

In this section, I apply the NVAR(p, 1) with (α,A) estimated by LS to model the dynamics of

monthly industrial production growth across countries. This shows that even this restricted

version of the proposed NVAR(p, q) is a viable alternative to factor models for modeling

cross-sectional dynamics. Also, I demonstrate that an IRF-analysis akin to that in Section

3 can be conducted, despite the lack of network data.

Industrial production data is obtained from the IMF and OECD databases. Based on the

raw data, I compute growth rates relative to the same month a year ago. Data availability

narrows the sample to 44 countries and the time frame January 2001 to July 2022. In all of

the following, I limit the analysis to pre-COVID-19. The data is summarized in Table A-4

in Appendix C.3.

To assess forecasting performance, I first estimate the NVAR(p, 1) as well as a factor

model based on data from January 2001 to December 2017 and consider out-of-sample fore-

casting performance for horizons up to 24 months ahead. The sample is iteratively increased

by one month and the analysis is repeated until the sample end date reaches December 2019.

Forecasts for periods after January 2020 are excluded from the assessment.

The NVAR(p, 1) is estimated as outlined in the previous section. I select the optimal

degree of sparsity in A based on BIC by counting the number of non-zero elements in

Â(λ) (see Zou et al. (2007)). No shrinkage to α is applied (ϕ = 0). Once the NVAR is

estimated, forecasts are obtained in the same way as for any VAR(p) model. The factor

model is estimated using principal components. The number of factors is selected based

on the information criterion developed in Bai and Ng (2002). Forecasts are constructed by

fitting a VAR(p) for the factors.

The results of the forecasting exercise are shown in Figure 7. It reports the average

out-of-sample Mean Squared Error (MSE) across countries under the estimated NVAR(4, 1)

relative to those obtained under the factor model. The results for alternative choices of p are

similar (see Figure A-6). The NVAR(p, 1) yields a substantial reduction in MSE compared

to the factor model. This holds in particular for forecasts up to six months ahead.

On top of forecasting performance, an additional advantage of the NVAR is the high

degree of interpretability it offers. In particular, it returns an estimate for the network as

relevant for industrial production dynamics as well as for the full set of spillover and spillback
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Figure 7: Out-of-Sample Forecasting Performance: NVAR(4, 1) vs. Factor Model
Notes: The plot depicts the percentage difference between the out-of-sample Mean Squared Errors generated by the NVAR(1, 1)
to those generated by the Principal Components Factor Model.

effects among units. The following discussion is based on the estimated network using data

from January 2001 to December 2017 and setting λ = 0. Note that even in this case, the

estimated A is sparse as the (conditional) estimator for aij is truncated to R+ (see Equation

11). In the estimated network, 22% of the links are non-zero. Excluding links below 0.05,

this density drops to 11%. Yet, Â has rank 38 and is therefore close to full-rank. For higher

values of λ, selected as optimal by BIC and used to construct the forecasts in Figure 7, this

number is lower, but always stays at rather high levels.

Figure 8 shows weighted out-degrees, ŵd
j

out =
∑

i âij, a measure of country j’s influence

on industrial production dynamics of other countries in the sample. Without any informa-

tion beyond the industrial production series across countries, the NVAR estimates the most

influential country to be the United States, in line with intuition. The second most influen-

tial country is Russia, another large economy and major energy-exporter. The ordering of

countries according to this measure does also show some surprises. In particular, Germany,

France and Italy are estimated to not influence any other country in the sample. This is

presumably because of the high (contemporaneous) correlation of economic activity among

countries in the Euro Area and EU. As a result, the model likely attributes innovations com-

ing from these three major European economies to Slovenia, Sweden, Portugal and Poland,

all of which are estimated to be among the most influential countries. Such results can be

avoided by including prior information. For example, one could shrink links to some measure

of bilateral connection from the data, such as capital or trade flows, or restrict the link of

Germany to Slovenia, say, to be no greater than the link from Slovenia to Germany.

In the top left panel of Figure 9, I illustrate the propagation pattern of innovations to
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Figure 8: Weighted Out-degrees in the Estimated Network
Notes: The plot depicts the weighted outdegrees in the estimated network as relevant for monthly industrial production dynamics
across countries.

industrial production growth through the network as captured by α̂. As before in Figure 5,

the dots show which connection orders matter for innovation propagation at which horizon,

with the strength reflected by the dots’ size and shading. As opposed to the case of Figure

5, however, the coefficients in α are not restricted to be positive in this application. To

distinguish positive from negative transmission via network connections, I show the former in

blue and the latter in red. The plot suggests that following an incrase in a country’s industrial

production growth, other countries’ response features an initial overshooting and subsequent

correction. The exact magnitudes of these forces depend on network connections of different

order between any given pair (i, j). The top right panel of Figure 9 reports these connections

from Germany and Finland, respectively, to the United States. While Germany is estimated

to have a strong direct link to the US, the dependence of Finnish industrial production on

that of the US comes only from higher-order connections and is weaker overall. As a result,

the lower panels of Figure 9 show that industrial production in Germany responds much faster

and stronger to an increase in US industrial production growth. In contrast, it takes time

for this increase to travel through the network and affect economic activity in Finland. Both

impulse responses show a sinusoidal pattern of innovation transmission via any one given

order of network connections, reflecting the initial overshooting and subsequent correction.

This is depicted by different shading for different link-orders. Even before network effects

come to a complete halt, the impulse response dies out as the positive transmission through

higher link-orders starts to balance with the corrective, negative transmission via lower
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Figure 9: Impulse Responses: Network-Induced Transmission of Economic Activity
Notes: The top left panel shows the importance of different connection-orders for transmission as a function of the time elapsed
since an innovation took place. The top right panel shows the connections of all order from Germany and Finland to the United
States, and the bottom panels show their resulting IRFs to a one standard deviation increase in US industrial production.

orders.42

5 Conclusion

In this paper I develop an econometric framework for the dynamics of a cross-section linked

by a network of bilateral ties. In a first application, I use it to document how supply chain

linkages affect the dynamics of sectoral prices in the US economy. In a second applica-

tion, I use it as a dimensionality-reduction technique for modeling cross-country industrial

production growth.

Directions for future research in the spirit of the first application abound; many environ-

ments in economics feature a cross-section linked by a network, for which oftentimes data is

42Note that the interpretative decomposition of impulse responses in Figure 9 is impacted by the nor-
malization applied. To generate the Figure, I re-scale the estimated network such that limk→∞ Âk = 0 by
dividing the estimated adjacency matrix by its largest Eigenvalue in absolute values.
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available. Thereby, the framework could be modified to accommodate heterogeneous prop-

agation patterns across units or time. By adding covariates, it could assess to what extent

dynamics are driven by a particular network as opposed to other forces.

In contrast to its appeal for conducting inference on the time dimension of network effects,

the usefulness of the proposed framework as a parsimonious modeling device can only be

determined over time by practical applications. A methodological innovation in this realm

would be to use covariates on the unit- or unit-pair-level to shrink the estimated network

towards a prior benchmark, thereby avoiding an illusion of sparsity.
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A Network-VAR

A.1 Granger Causality

Proposition 1 (Granger Causality in NVAR(p, q)).

Let yt follow an NVAR(p,q):

yt =

p∑
l=1

Φlyt−l + ut , Φl =

q∑
g=1

αlgA
h , αlh ∈ R ,

and assume αlg 6= 0 for l = 1 : p, g = 1 : q. Then
∂yi,t+h
∂yj,t
|Ft > 0⇔ (Ak)ij > 0 for at least one

k ∈ k : hq, k = ceil(h/p), i.e. yj Granger-causes yi at horizon h if and only if there exists a

walk from i to j of at least one length k ∈ k : hq.

Proof: Using the companion form of this process, we have

∂yt+h
∂yt

= [In, 0n×n(p−1)]F
h[In, 0n×n(p−1)]

′ = (F h)11 ,

F =


Φ1 Φ2 ... Φp−1 Φp

In 0n ... 0n 0n
0n In ... 0n 0n
...

. . .
...

0n 0n ... In 0n

 , Φl =

q∑
g=1

αlgA
g .

I will prove the following claim by induction: (F h)1l, the n × n matrix in position (1, l)

of the np× np matrix F, has powers of A in the set ceil(h+l−1
p

) : hq. Note that the claim is

true for h = 1. Assume it is true for h. For h+ 1 we have

F h+1 =


(F h)11 (F h)12 ... (F h)1p

(F h)21 (F h)22 ... (F h)2p

...
. . .

...

(F h)p1 (F h)p2 ... (F h)pp




Φ1 Φ2 ... Φp−1 Φp

In 0n ... 0n 0n
0n In ... 0n 0n
...

. . .
...

0n 0n ... In 0n


=

[
(F h)11Φ1 + (F h)12 (F h)11Φ2 + (F h)13 ... (F h)11Φp−1 + (F h)1p (F h)11Φp

...
...

. . .
...

...

]
,

where I only show the first row of blocks in F h+1 as only they are relevant to the argument.

Let h + m for some m ∈ 1 : p − 1 be a multiple of p such that ceil(h+l−1
p

) = h+m
p

for

l = 1 : m + 1, while ceil(h+l−1
p

) = h+m
p

+ 1 for l = m + 2 : p. This means that (F h)1l for

l = 1 : m + 1 have powers of A in h+m
p

: hq, while (F h)1l for l = m + 2 : p have powers
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in h+m
p

+ 1 : hq. Then, using the equation above, (F h+1)1l for l = 1 : m have powers of

A in h+m
p

: hq + q = ceil(h+1+l−1
p

) : (h + 1)q, while (F h+1)1l for l = 1 : m have powers in
h+m
p

+ 1 : hq + q = ceil(h+1+l−1
p

) : (h + 1)q. Note that these sets are independent of m and

therefore the claim holds for h+ 1 in all possible cases. �

A.2 Stationarity

Proposition 2 (Stationarity of NVAR(1, 1)).

Let xt follow an NVAR(1,1):

x̃t = dAx̃t−1 + ut ,

where ut ∼ WN . If d 6= 0, x̃t is stationary if and only if for all Eigenvalues λi of A it holds

that |λi| < 1/|d|.

Proof: This follows directly from the fact that λi is an Eigenvalue of A if and only if dλi is

an Eigenvalue of dA. More formally, let

L = {λi : |λiI − A| = 0} ,

L̃ =
{
λ̃i : |λ̃iI − dA| = 0

}
.

Stationarity of x̃t is equivalent to the statment that

∀ λ̃i ∈ L̃ , |λ̃i| < 1

⇔ ∀ λ̃i ∈ L̃ , |λ̃i/d| = |λ̃i|/|d| < 1/|d| .

Also, note that

|λ̃iI − dA| = |d(λ̃i/dI − A)| = dn|λ̃i/dI − A| = 0⇔ |λ̃i/dI − A| = 0 ,

regardless of the dimension n of A. Therefore, we have that

∀ λ̃i such that |λ̃i/dI − A| = 0 , |λ̃i/d| < 1/|d|
⇔ ∀ λi ∈ L , |λi| < 1/|d| . �
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Proposition 3.

Let xt follow an NVAR(p∗, 1):

xt = δ1Axt−1 + ...+ δpAxt−p + vt ,

where vt ∼ WN , and assume δl ≥ 0 for l = 1 : p and δl > 0 for at least one l. Define

d =
∑p

l=1 δl, and let

x̃t = dAx̃t−1 + ut .

Then, xt is stationary if and only if x̃t is stationary.

Proof: Note that d > 0. Let Z be the set of all zi that solve the characteristic polynomial

|I − δ1Azi − ...− δpAzpi | = |I − (δ1zi + ...+ δpz
p
i )A| = 0 .

Similarly, let

Z̃ = {z̃i : |I − z̃idA| = 0} .

Note that stationarity of xt is equivalent to the statement that for all zi ∈ Z, |zi| > 1,

and stationarity of x̃t is equivalent to the statement that for all z̃i ∈ Z̃, |z̃i| > 1. Therefore,

the proof shall show

∀ z̃i ∈ Z̃, |z̃i| > 1 ⇔ ∀ zi ∈ Z, |zi| > 1 .

We have

∀ z̃i ∈ Z̃ , |z̃i| > 1

⇔ ∀ z̃i ∈ Z̃, |dz̃i| = d|z̃i| > d

⇔ ∀ zi ∈ Z , |δ1zi + ...+ δpz
p
i | > d

⇔ ∀ zi ∈ Z , |zi| > 1 .

To show the last (both-sided) implication, suppose first that the statement on the second-last

line is true, but the statement on the last line is not. Then ∃ zi ∈ Z s.t. |zi| ≤ 1. In turn,

|δ1zi + ...+ δpz
p
i | ≤ |(δ1 + ...+ δp)zi| = |dzi| = d|zi| ≤ d ,

a contradiction. Conversely,

∀ zi ∈ Z , |zi| > 1

⇒ ∀ zi ∈ Z , |δ1zi + ...+ δpz
p
i | > |(δ1 + ...+ δp)zi| = |dzi| = d|zi| > d . �
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Corollary 1 (Stationarity of NVAR(p∗, 1) With Positive Coefficients).

Let xt follow an NVAR(p∗, 1):

xt = δ1Axt−1 + ...+ δpAxt−p + vt ,

where vt ∼ WN , and assume δl ≥ 0 ∀ l = 1 : p and δl > 0 for at least one l. Define

d =
∑p

l=1 δl. Then xt is stationary if and only if for all Eigenvalues λi of A it holds that

|λi| < 1/d.

Proposition 4.

Let xt follow an NVAR(p∗, 1):

xt = δ1Axt−1 + ...+ δpAxt−p + vt ,

where vt ∼ WN , and assume δl 6= 0 for at least one l. Define d =
∑p

l=1 |δl|, and let

x̃t = dAx̃t−1 + ut .

Then, xt is stationary if x̃t is stationary.

Proof: As in the proof of Proposition 3, let

Z = {zi : |I − δ1Azi − ...− δpAzpi | = |I − (δ1zi + ...+ δpz
p
i )A| = 0} ,

Z̃ = {z̃i : |I − z̃idA| = 0} .

The proof shall show

∀ z̃i ∈ Z̃, |z̃i| > 1 ⇒ ∀ zi ∈ Z, |zi| > 1 .

We have

∀ z̃i ∈ Z̃ , |z̃i| > 1

⇔ ∀ z̃i ∈ Z̃, |dz̃i| = d|z̃i| > d

⇔ ∀ zi ∈ Z , |δ1zi + ...+ δpz
p
i | > d

⇒ ∀ zi ∈ Z , |zi| > 1 .

To show the last implication, suppose first that the statement on the second-last line is true,

but the statement on the last line is not. Then ∃zi ∈ Z s.t. |zi| ≤ 1. In turn,

|δ1zi + ...+ δpz
p
i | ≤ |δ1zi|+ ...+ |δpzpi | ≤ |δ1zi|+ ...+ |δpzi| ≤ (|δ1|+ ...+ |δp|)|zi| = d|zi| ≤ d ,

a contradiction. �
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Corollary 2 (Stationarity of NVAR(p∗, 1), Sufficient Condition).

Let xt follow an NVAR(p∗, 1):

xt = δ1Axt−1 + ...+ δpAxt−p + vt ,

where vt ∼ WN , and assume δl 6= 0 for at least one l. Define d =
∑p

l=1 |δl|. Then xt is

stationary if for all Eigenvalues λi of A it holds that |λi| < 1/d.

Proposition 5 (Stationarity of NVAR(p∗, 1)).

Let xt follow an NVAR(p∗, 1):

xt = δ1Axt−1 + ...+ δpAxt−p + vt ,

where vt ∼ WN and δl 6= 0 for at least one l. Then, xt is stationary if and only if the

univariate process

x̌t = λiδ1x̌t−1 + ...+ λiδpx̌t−p + v̌t

is stationary for all Eigenvalues λi of A.

Proof: Stationarity of xt is equivalent to the statement that for all Eigenvalues li of

F =


δ1A δ2A ... δp−1A δpA

In 0n ... 0n 0n
0n In ... 0n 0n
...

. . .
...

0n 0n ... In 0n


it holds that |li| < 1. We have

|liI − F | = 0

⇔
∣∣∣∣lpi I − lp−1

i δ1A− ...− liδp−1A− δpA
∣∣∣∣ = 0

⇔ l
n(p−1)
i

∣∣∣∣liI − (δ1 + δ2/li + ...+ δp/l
p−1
i

)
A

∣∣∣∣ = 0

⇔
(
lp−1
i

(
δ1 + δ2/li + ...+ δp/l

p−1
i

))n ∣∣∣∣ li

δ1 + δ2/li + ...+ δp/l
p−1
i

I − A
∣∣∣∣ = 0

⇔
∣∣∣∣ li

δ1 + δ2/li + ...+ δp/l
p−1
i

I − A
∣∣∣∣ = 0 .

This establishes a relation between the Eigenvalues li of F and the Eigenvalues λi of A.

Given an Eigenvalue li of F , we know li/
(
δ1 + δ2/li + ...+ δp/l

p−1
i

)
is an Eigenvalue of A.
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Conversely, given an Eigenvalue λi of A, all Eigenvalues li that solve

lpi − l
p−1
i λiδ1 − ...− liλiδp−1 − λiδp = 0

are Eigenvalues of F . This equation is the characteristic polynomial for stationarity of the

AR(p) process x̌t defined above. �

Proposition 6 (Stationarity Preservation Under Time-Aggregation).

Let xτ follow an NVAR(p∗, 1)

xτ = δ1Axτ−1 + ...+ δpAxτ−p + vt ,

where vt ∼ WN . Consider the time series yt defined by {yt}Tt=1 = {xtq∗}Tt=1 for some

q∗ ≥ 1, q∗ ∈ N or for some q∗ < 1, 1/q∗ ∈ N. Then yt is stationary if and only if xτ is

stationary.

Proof: Stationarity of xτ is defined by the two conditions

1. E[xτ ] = E[xτ−l] ∀ l

2. Cov(xτ , xτ−h) = Cov(xτ−l, xτ−l−h) ∀ l, h

This implies that

1. E[yt] = E[xtq∗ ] = E[x(t−l)q∗ ] = E[yt−l] ∀ l

2. Cov(yt, yt−h) = Cov(xtq∗ , x(t−h)q∗) = Cov(x(t−l)q∗ , x(t−l−h)q∗) = Cov(yt−l, yt−l−h) ∀ l, h ,

which in turn is the definition of stationarity for yt.

Conversely, the stationarity of yt implies that

1. E[xtq∗ ] = E[x(t−l)q∗ ] ∀ l

2. Cov(xtq∗ , x(t−h)q∗) = Cov(x(t−l)q∗ , x(t−l−h)q∗) ∀ l, h .

Without further assumptions on the process of xτ , its mean and variance could be different

in observed and non-observed periods, and more generally the covariance could be different

over time for displacements other than q∗ (i.e. for displacements which are not observed).

However, if xτ follows an NVAR(p∗, 1), then the fact that first and second moments are the

same every q∗th period implies that they are the same in every period τ . �
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Corollary 3 (Stationarity of Time-Aggregated NVAR(p∗, 1)).

Let xτ follow an NVAR(p∗, 1)

xτ = δ1Axτ−1 + ...+ δpAxτ−p + vt ,

where vt ∼ WN , and assume δl 6= 0 for at least one l. Let d =
∑p

l=1 |δl| and define yt by

{yt}Tt=1 = {xtq∗}Tt=1 for some q∗ ≥ 1, q∗ ∈ N or for some q∗ < 1, 1/q∗ ∈ N.

Then, yt is stationary if and only if the univariate process

x̌t = λiδ1x̌t−1 + ...+ λiδpx̌t−p + v̌t

is stationary for all Eigenvalues λi of A.

Furthermore, a sufficient condition for stationarity of yt is that for all Eigenvalues λi of A

it holds that |λi| < 1/d. If in addition δ1, ..., δp ≥ 0, this condition is both necessary and

sufficient.

A.3 Time Aggregation of an NVAR(p∗, 1)

Let xτ follow an NVAR(p∗, 1):

xτ = δ1Axτ−1 + ...+ δp∗Axτ−p∗ + vτ .

If we observe a snapshot of xτ every q∗ > 1 periods, the observed process {yt}Tt=1 = {xq∗t}Tt=1

can be approximated by an NVAR(p, q) with α = {αlg}l=1:p,g=1:q being a function of δ =

{δl}l=1:p∗ and with errors following an MA with p− 1 lags:

yt = Φ1yt−1 + ...+ Φpyt−p + Θ0ut + Θ1ut−1 + ...+ Θp−1ut−p+1 ,

Φl(δ) =

q∑
g=1

αlg(δ)A
g ,

Θ0(δ) =

[
In,

q∑
g=1

β2
0g(δ)A

g, ...,

q∑
g=1

βq
∗

q∗g(δ)A
g

]
,

Θl(δ) =

[
0n,

q∑
g=1

βlq
∗+2

lg (δ)Ag, ...,

q∑
g=1

β
(l+1)q∗

lg (δ)Ag

]
, l = 1 : p− 1 ,

where ut = [v′τ , v
′
τ−1, ..., v

′
τ−q∗+1]′ = [v′q∗t, v

′
q∗t−1, ..., v

′
q∗t−q∗+1]′. The approximation error in-

volves terms in xτ−pq∗−1, ..., xτ−pq∗−p, which under stationarity vanish for p large enough. In

the following I show how to obtain {Φl(δ)}pl=1 and {Θl(δ)}p−1
l=0 .

Let vh be the set which collects the n × n matrices in front of {xτ−1, xτ−2, ...} in the

linear projection of xτ on the information set at t − h, Fτ−h = {xτ−h−j, vτ−h−j}∞j=0, which
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I denote as xτ |τ−h ≡ xτ | Fτ−h. For example, v1 = {δ1A, δ2A, ..., δpA, 0n, 0n, ...}. Let wh
collect the n × n matrices in front of {vτ , vτ−1, ...} in the forecasting error at horizon h,

vτ |τ−h ≡ xτ − xτ |τ−h. For h = 1, we have w1 = {I, 0n, 0n, ...}. The procedure of iteratively

inserting for xτ−l for all l = 1, 2, ..., h − 1 would decompose xτ as xτ = xτ |τ−h + uτ |τ−h, i.e.

it would lead to vh and wh. Doing so for all l = 1, 2, ... except multiples of q∗, we get the

information necessary to construct the equation for yt, which includes the linear projection

of yt on the infinite past, yt|t−1 ≡ yt| Gt−1, Gt−1 = {yt−1−j, ut−1−j}∞j=0, as well as the one-step

ahead forecasting error ut|t−1 ≡ yt − yt|t−1 = Θ0ut.

Algorithm 1 formalizes this iterative procedure performed in the time aggregation of xτ .

Iteration h inserts the equation δ1Axτ−h + ...+ δpAxτ−h−p+1 + uτ−h−p+1 to eliminate xτ−h+1

in case h is not a multiple q∗ and leaves the equation unchanged if h is a multiple of q∗, in

which case xτ−h is observed.43 Note that v1[h : h + p − 1] = {δ1A, ..., δpA} and w1[1] = I

yield the matrices in the original equation for xτ = xτ |τ−1 + vτ |τ−1.

Algorithm 1 (Time Aggregation: Obtaining {Φl(δ)}pl=1 and {Θl(δ)}p−1
l=0 ).

1. Let

v1 = {δ1A, δ2A, ..., δpA, 0n, 0n, ...} ,
w1 = {In, 0n, 0n, ...} .

2. For h = 2 : pq∗, given vh−1 and wh−1, obtain vh and wh as follows:

a) If h is a multiple of q∗,

vh = vh−1 , wh = wh−1 .

b) If h is not a multiple of q∗,

vh[l] =


vh−1[l] for l = 1 : h− 2

0n for l = h− 1

vh−1[h− 1]v1[l − h+ 1] + vh−1[l] for l = h : h+ p− 1

0n for l ≥ h+ p

,

wh[l] =


wh−1[l] for l = 1 : h− 1

vh−1[h− 1]w1[1] for l = h

0n for l ≥ h+ 1

.

43This holds if we define τ and t such that xτ = yt is observed.
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3. The n× n matrices in front of yt−1, ..., yt−p in yt|t−1 are the elements q∗, 2q∗, ..., pq∗ in

vpq∗:

Φl = vpq∗ [lq
∗] , l = 1 : p .

The n× n matrices which make up the n× nq∗ matrices in front of ut−1, ..., ut−p+1 in

yt|t−1 as well as the matrix in front of ut = ut|t−1 are contained in wpq∗:

Θ0 =

[
wpq∗ [1], ..., wpq∗ [q

∗]

]
,

Θl =

[
0n, wpq∗ [lq

∗ + 2], ..., wpq∗ [(l + 1)q∗]

]
, l = 2 : p− 1 .

Note that the linear projection of yt on Gt−1 involves infinitely many lags in yt and in

ut. Nevertheless, for a given cutoff lag p, it suffices to carry out the iterative procedure for

h = 2, 3, ..., pq∗ as vpq∗ already contains the matrices in front of yt−1, yt−2, ..., yt−p and wpq∗

contains the matrices in front of ut, ut−1, ..., ut−p+1.

Also, note that in practice, because each element in vh and wh is a polynomial in A,

rather than carrying out the costly multiplications of these polynomials in each iteration,

I keep track of the coefficients obtained when multiplying two polynomials and only in the

end I construct the polynomials of interest in the relevant positions of vpq∗ and wpq∗ . These

coefficients are products of elements in δ = {δl}p
∗

l=1.

Finally, note that for an approximation order p chosen by the researcher, one obtains

an NVAR(p, q) with q = pq∗ − (p − 1). To see this, note that by proposition 1, the largest

power of A in ∂xτ
∂xτ−h

| Fτ−h is h. As mentioned above, if the iterative procedure in step 2b

of Algorithm 1 was carried out for all h including multiples of q∗, vh would contain the

matrices in front of xτ−h, xτ−h−1, ... in the projection of xτ on Fτ−h, i.e. vh[h] = ∂xτ
∂xτ−h

| Fτ−h.
By Proposition 1 we know the highest power of A in vlq∗[lq∗] = ∂xτ

∂xτ−lq∗
| Fτ−lq∗ would be lq∗.

As opposed to this case, the time aggregation performed above skips every q∗th iteration,

which means that Φl = vlq∗[lq∗] has the largest power in A equal to lq∗− (l−1). It is largest

for l = p.
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A.4 Impulse Responses

Proposition 7 (Long-Term Response in NVAR(p∗, 1)).

Let xt follow an NVAR(p∗, 1):

xt = δ1Axt−1 + ...+ δpAxt−p + vt .

Define d =
∑p

l=1 δl, and let

x̃t = dAx̃t−1 + ut ,

x̂t = dAx̂t + wt .

Assume xt and x̃t are stationary. Then, the long-term response of xt to a permanent increase

in vt is equivalent to the long-term response of x̃t to a permanent increase in ut, i.e.

R̃ ≡ limh→∞

[
∂x̃t+h
∂ut

+
∂x̃t+h
∂ut+1

+ ...+
∂x̃t+h
∂ut+h

]
= limh→∞

[
∂xt+h
∂vt

+
∂xt+h
∂vt+1

+ ...+
∂xt+h
∂vt+h

]
≡ R .

Both, in turn, are equivalent to the contemporaneous reponse of x̂t to a disturbance in wt,

∂x̂t/∂wt.

Proof: First of all, note that

x̂t = (I − dA)−1wt ,

which means that ∂x̂t/∂wt = (I − dA)−1.

Turning to xt and x̃t, note that under stationarity

R = lim
h→∞

h+1∑
j=0

∂xt+h
∂vt+h−j

= lim
h→∞

h+1∑
j=0

∂xt+j
∂vt

=
∞∑
j=0

∂xt+j
∂vt

,

and analogously for R̃. It is easy to see that

R̃ =
∞∑
j=0

∂x̃t+j
∂ut

=
∞∑
j=0

(dA)j = (I − dA)−1 .

To get the impulse response function for xt, write it in companion form as

zt = Fzt−1 + et ,

where zt = [x′t, x
′
t−1, ..., x

′
t−p+1]′ and et = [v′t, 0

′, ..., 0′]′ are np-dimensional vectors, and the
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n× n matrix F is defined as

F =


δ1A δ2A ... δp−1A δpA

In 0n ... 0n 0n
0n In ... 0n 0n
...

. . .
...

0n 0n ... In 0n

 .

The impulse response of xt to a disturbance in vt is then given by n× n upper left block in

F h, denoted by (F h)11:

∂xt+h
∂vt

=
∂xt+h
∂zt+h

∂zt+h
∂et

∂et
∂vt

= [In, 0n, ..., 0n]
∂zt+h
∂et

[In, 0n, ..., 0n]′ = (F h)11 .

Note that

∞∑
j=0

∂zt+j
∂et

=
∞∑
j=0

F j = (I − F )−1 .

Therefore,

R =
∞∑
j=0

∂xt+j
∂vt

=
∞∑
j=0

[In, 0n, ..., 0n](I − F )−1[In, 0n, ..., 0n]′ =
(
(I − F )−1

)
11
.

Let M be the inverse of (I−F ) and partition it into p2 blocks of dimension n×n, denoted

by {Mlm}l,m=1:p. We have

I = M(I − F )

=


M11 M12 M13 ... M1,p−1 M1p

M21 M22 M23 ... M2,p−1 M2p

...
...

...
. . .

...
...

Mp1 Mp2 Mp3 ... Mp,p−1 Mpp





I − δ1A −δ2A −δ3A ... −δp−1A −δpA
−In In 0n ... 0n 0n
0n −In In ... 0n 0n
...

. . . . . .
...

0n 0n ... −In In 0n
0n 0n ... 0n −In In


As it turns out, the first row of this product is sufficient to solve for the object of interest,

M11 = ((I − F )−1)11. Comparing the left- and right-hand sides for the last element, block

(1, p), we get

0n = −M11δpA+M1p ,
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which implies M1p = M11δpA. For elements l = 2, ..., p− 1 we get

0n = −M11δlA+M1l −M1,l+1 ,

which implies

M12 = M11δ2A+M13 = M11δ2A+M11δ3A+M14 = ... = M11(δ2 + ...+ δp)A .

The first element gives

In = M11(I − δ1A)−M12 = M11 (I − (δ1 + δ2 + ...+ δp)A) = M11(I − dA) ,

which implies M11 = ((I − F )−1)11 = (I − dA)−1. �

Note that the fact that xt may not be observed every period does not change its long-term

response to a permanent increase in vt (see below).

Impulse Responses in an NVAR(p, q)

Let yt follow an NVAR(p, q). Its IRF can be computed using its companion form, as outlined

in the proof of Proposition 1. The latter shows that the impulse response at any horizon h

is a polynomial in A with powers ranging from k = ceil(h/p) to hq. Overall,

∂yt+h
∂ut

= (F h)11 = ck(α)
[
Ak
]
ij

+ ...+ chq(α)
[
Ahq
]
ij
.

The coefficients ck(δ) can be obtained using Algorithm 1, ignoring step 2a) (see discussion

in Section A.3).

Impulse Responses Under Time-Aggregation of an NVAR(p∗, 1)

Let xτ follow an NVAR(p∗, 1) and denote the observed series by {yt}Tt=1 = {xq∗t}Tt=1. As

discussed in Section 2.4, if q∗ ≤ 1, 1/q∗ ∈ N, yt follows an NVAR(p, 1) with p = p∗/q∗, which

can be characterized analytically. Impulse responses are computed as outlined above. If

instead q∗ > 1, q∗ ∈ N, yt follows an NVAR(p, q) with restricted parameters and MA-errors.

In this case, the error ut in the observed process yt contains all high-frequency errors vτ
which occurred between the periods of observation t − 1 and t. As a result, the impulse

responses for yt can be computed not only over different horizons of observation h, but also

for disturbances that occurred at different high-frequency periods within the same horizon

of observation h. In other words, the usual impulse response, ∂yt+h/∂ut, is composed of

∂yt+h
∂ut

=

[
∂yt+h
∂vtq∗

,
∂yt+h
∂vtq∗−1

, ...,
∂yt+h

∂vtq∗−q∗+1

]
.
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It holds that

∂yt+h
∂vtq∗−l

=
∂x(t+h)q∗

∂vtq∗−l
=
∂xtq∗+hq∗+l
∂vtq∗

=
∂xτ+hq∗+l

∂vτ
.

Therefore, we obtain

∂yt+h
∂vtq∗−l

=
∂xτ+h∗

∂vτ
= (F hq∗+l

x )11 .

In practice, we can compute (F h∗
x )11 for h∗ = 0, 1, 2, ..., and given (F h∗

x )11, obtain ∂yt+h/∂vtq∗−l =

(F h∗)11 for h = floor(h∗/q∗), l = h∗ − hq∗.

By the same token, long-term responses of yt to permanent disturbances to vτ , starting

from period τ = tq∗ − l, are given by

limh→∞

[
∂yt+h
∂vtq∗−l

+
∂yt+h

∂vtq∗−l+1

+ ...+
∂xt+h
∂v(t+h)q∗

]
=limh→∞

[
∂xτ+hq∗+l

∂vτ
+
∂xτ+hq∗+l

∂vτ+1

+ ...+
∂xτ+hq∗+l

∂vτ+hq∗+l

]
.
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B Input-Output Network and Price Dynamics

B.1 Structural Model Details

Contemporaneous Input-Output Conversion

In this case, the amount of good j purchased at t and used in the production at t coincide:

xijt = xijt,t = xijt . I will write xij for this quantity. Because the environment is static, I drop

time subscripts for notational simplicity. Firm i solves the problem

max
li,{xij}nj=1

pizil
bi
i

n∏
j=1

(
xij
)aij − wli − n∑

j=1

pjx
ij .

The first-order conditions (FOCs) w.r.t. li and xij give

li = bi
piyi
w

, xij = aij
piyi
pj

.

The latter FOC provides an interpretation of aij = (pjx
ij)/(piyi) as the amount of good j

purchased by sector i divided by the total output of sector i. Plugging these expressions into

the production function and taking logs yields

ln (pi/w) = kpi +
n∑
j=1

aijln (pj/w) + εi ,

where εi = −ln(zi) and the constant kpi = −
[
biln(bi) +

∑n
j=1 aijln(aij)

]
reflects differences

in the reliance on different production factors across sectors i. Stacking this expression for

all sectors i yields the equation for sectoral prices in the main text.

The representative household’s problem is

max
{ci}ni=1

n∑
i=1

γi ln(cit/γi) , s.t.
n∑
i=1

pici = w .

The FOC yields ci = γi
w
pi

. Hence, γi is the share of good i in households’ expenditures.

The market clearing condition for good j reads yj = cj +
∑n

i=1 x
ij. Plugging in the

expressions for cj and xij and multiplying by pj/w yields the following expression for the

Domar weight of sector j, λj:

λj ≡
yjpj
w

= γj +
n∑
i=1

aijλi .
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As a result, the vector of sectoral Domar weights is λ = (I − A′)−1γ. The Domar weight

of sector i reflects its importance as a supplier to relevant sectors in the economy, with

relevance given by households’ expenditure share: λi =
∑n

j=1 γjlji. In this expression, lij is

element (i, j) of the Leontief-inverse (I − A)−1. It sums up connections of all order from a

sector i to a sector j and therefore shows how important sector j is in i’s supply chain. This

relation holds regardless of TFP levels in ε. Using the definition of λi, we get the following

expression for output:

ln (y) = ln (λ)− ln
( p
w

)
= ky + Aln (y)− ε ,

with ky = (I − A)ln (λ) − kp. The labor market clearing condition reads
∑n

i=1 lit = 1 and

gives wt =
∑n

i=1 pityit, but it can be ignored by Walras’ law.

In the unperturbed state ε = 0, we get

ln (p/w) = (I − A)−1kp ,

and ln (yi) = ln (λi)− ln (pi/w).

Single-Lag Input-Output Conversion

In this case, the amount of good j purchased at time t− 1 is used in production at time t:

xijt = xijt,t−1 = xijt−1. I will write xijt−1 for this quantity. Firm i’s problem is

max
{lit,{xijt ,x

ij
t,t−1}nj=1}∞t=0

∞∑
t=0

βt

[
pitzitl

bi
it

n∏
j=1

(
xijt−1

)aij − wlit − n∑
j=1

pjtx
ij
t−1

]
.

This leads to the following value function:

Vi

({
xijt−1

}n
j=1

)
= max

lit,{xijt }nj=1

pitzitl
bi
it

n∏
j=1

(
xijt−1

)aij − wtlit − n∑
j=1

pjtx
ij
t−1 + βVi

({
xijt
}n
j=1

)
.

The FOC w.r.t. lit and xijt give

lit = bi
pityit
wt

, xijt = βaij
pi,t+1yi,t+1

pjt
.

Note that in steady state, the latter expression yields aij = β−1(pjx
ij)/(piyi), which means

that the meaning of aij changes slightly compared to the case of contemporaneous input
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usage before. Plugging these expressions into the production function and taking logs gives

ln

(
pit
wt

)
= kp1it +

n∑
j=1

aijln

(
pj,t−1

wt−1

)
+ εit ,

where again εit = −ln(zit) and kp1it = −
[
biln(bi) +

∑n
j=1 aijln(βaij) + (1− bi)ln(Gw

t )
]

with

Gw
t = wt/wt−1. Stacking this expression for all sectors i gives the equation in the main text.

Provided that in every period t households spend all their period t income, wt, we again

get cit = γiwt/pit. Even if they are endowed with a storage technology, market clearing

ensures that the whole output is consumed in period t. For example, with a bond that costs

one unit of the numéraire and repays (1 + rt) next period, market clearing implies rt = ρ,

where ρ is the households’ discount rate.

By market clearing of good j,

yjt = cjt +
n∑
i=1

xijt = γj
wt
pjt

+
n∑
i=1

βaij
pi,t+1yi,t+1

pjt
.

Multiplying again by pjt and dividing by wt gives

λjt ≡
yjtpjt
wt

= γj +
n∑
i=1

βaij
wt
wt−1

λi,t+1 .

Stacking this equation for all i and solving forward shows that, compared to before, Domar

weights are adjusted by future changes in the value of the numéraire:

λt =
∞∑
h=0

βh
wt+h
wt

(A′)hγ .

For output, we obtain

ln(yt) = ky1
t + Aln(yt−1)− εt ,

where ky1
t = ln(λt)− Aln(λt−1)− kp1t .

In the steady state with εt = 0 ∀ t we get

λ = (I − βA′)−1γ , ln (p/w) = (I − A)−1kp1 ,

where kp1 contains elements kp1i = −
[
biln(bi) +

∑n
j=1 aijln(βaij)

]
. For output we have,

as before, ln (yi) = ln (λi) − ln (pi/w). Taking into account the slightly altered meaning

of A in this economy, the steady state value for λ is unaltered compared to the above

economy with contemporaneous input-output conversion. Specifically, while in the latter
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aij = (pjx
ij)/(piyi), here aij = β−1(pjx

ij)/(piyi). The steady state value for ln(p/w) never-

theless changes sligthly. The difference vanishes as β → 1.

Multiple-Lags Input-Output Conversion

I start with the general CES case. Firm i’s problem is then

max
{lit,{xijt ,x

ij
t,t−1,

xijt,t−2}nj=1}∞t=0

∞∑
t=0

βt

[
pitzitl

bi
it

n∏
j=1

[
η1

(
xijt,t−1

)r
+ η2

(
xijt,t−2

)r]aijr − wtlit − n∑
j=1

pjtx
ij
t

]

s.t. xijt = xijt,t + xijt+1,t + xijt+2,t ∀ t, i, j .

For each input j, the firm chooses how much to buy in period t, xijt , and how to distribute

the bought amount for production over periods t+ 1, t+ 2. Because I abstract from the case

of perfect substitutability, I ignore the boundary constraints lit, x
ij
t+1,t, x

ij
t+2,t ≥ 0 ∀ t, i, j.

Let x̌ijt+h,t be the amount of good j purchased at t and not used up in production up to

(but not including) period t+ h. We obtain the following value function:

Vi
(
{x̌ijt,t−2}j, {x̌

ij
t,t−1}j

)
= max

lit,{xijt ,
xijt,t−1,x

ij
t,t−2}j

[
pitzitl

bi
it

n∏
j=1

[
η1

(
xijt,t−1

)r
+ η2

(
xijt,t−2

)r]aijr

−wtlit −
n∑
j=1

pjtx
ij
t

]
+ βVi

(
{x̌ijt+1,t−1}j, {x̌

ij
t+1,t}j

)
s.t. x̌ijt+1,t = xijt ,

x̌ijt,t−1 = xijt,t−1 + xijt+1,t−1 ,

x̌ijt,t−2 = xijt,t−2 .

The problem can be written more compactly as

Vi
(
{xijt,t−2}j, {x̌

ij
t,t−1}j

)
= max

lit,{xijt ,
xijt+1,t−1}j

[
pitzitl

bi
it

n∏
j=1

[
η1

(
x̌ijt,t−1 − x

ij
t+1,t−1

)r
+ η2

(
xijt,t−2

)r]aijr

−wlit −
n∑
j=1

pjtx
ij
t

]
+ βV

(
{xijt+1,t−1}j, {x

ij
t }j
)

This means that in each period t, and for each input j, a firm essentially only chooses how

how much to buy for production in t + 1 and t + 2 and how much of the leftover amount

purchased at t− 1 to use at t as opposed to leaving it for t+ 1.
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Cobb-Douglas Aggregation of Past-Purchased Inputs Under r → 0, we have xijt =(
xijt,t−1

)η1 (
xijt,t−2

)η2
and the optimality conditions yield

lit = bi
pityit
w

, xijt,t−1 = βη1aij
pityit
pj,t−1

, xijt,t−2 = βη2aij
pityit
pj,t−2

.

Inserting these expressions into the production function, leads after a little algebra to

ln

(
pit
wt

)
= kp2t +

n∑
j=1

aij

[
η1ln

(
pj,t−1

wt−1

)
+ η2ln

(
pj,t−2

wt−2

)]
+ εt ,

where

kp2it = kp2i − (1− bi)
[
η1ln

(
wt
wt−1

)
+ η2ln

(
wt
wt−2

)]
,

and kp2i = −biln(bi) −
∑n

j=1 aij [η1ln(βaij) + η2ln(β2aij)]. Stacking this equation for all i

gives the expression in the main text.

The market clearing condition for good j is now

yjt = cjt +
n∑
i=1

xijt = cjt +
n∑
i=1

xijt+1,t + xijt+2,t .

Plugging in the optimality conditions and multiplying by pjt/wt to solve for λjt gives

λjt = γj + βη1
wt
wt−1

n∑
i=1

aijλi,t+1 + β2η2
wt
wt−2

n∑
i=1

aijλi,t+2 .

When stacked for all i, one could solve forward to obtain λt. Its value is independent of TFP

levels εt. For output we get then

ln(yt) = ky2
t + η1Aln(yt−1) + η2Aln(yt−2)− εt ,

where ky2
t = ln(λt)− η1Aln(λt−1)− η2Aln(λt−2)− kp2t .

In the steady state with εt = 0 ∀ t we get

λ = (I − (βη1 + β2η2)A′)−1γ , ln (p/w) = (I − A)−1kp2 .

For output we have, as before, ln (yi) = ln (λi)− ln (pi/w). Taking into account the slightly

altered meaning of A in this economy, the steady state value for λ is again unaltered compared

to the above two economies. In this economy, we have

aij =
[
βη1 + β2η2

]−1
(pjx

ij)/(piyi)
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in steady state. The steady state value for ln(p/w) nevertheless changes sligthly. Again the

difference vanishes as β → 1.

General CES-Aggregation of Past-Purchased Inputs For general r, the optimality

conditions yield

lit = bi
yitpit
wt

, xijt,t−1 =

[
aijη1β

yitpit/xijt
pjt−1

] 1
1−r

, xijt,t−2 =

[
aijη2β

2yitpit/xijt
pjt−2

] 1
1−r

,

Inserting the resulting expressions into the equation for xijt gives

xijt = (pityit)
1

2−r Λ
1−r
2−r
ijt , Λijt =

[
η1(η1aijβ)

r
1−r (pj,t−1)−

r
1−r + η2(η2aijβ

2)
r

1−r (pj,t−2)−
r

1−r

]1/r

.

In turn, inserting this equation for xijt into the production function and linearizing around

a steady state yields

p̂it = k̂p3it +
n∑
j=1

1

φi

aij
2− r

[χ1p̂i,t−1 + χ2p̂i,t−2] +
1

φi
ε̂it ,

where

k̂p3it =
1− φi
φi

ŷit − (1− bi/φi) [χ1(ŵt − ŵt−1) + χ2(ŵt − ŵt−2)] ,

and

χ1 =
(η1β

r)
1

1−r

(η1βr)
1

1−r + (η2β2r)
1

1−r
, χ2 = 1− χ1 .

B.2 Data

The sectors in the PPI and input-output data were matched as follows. Excluding govern-

mental and farming sectors, the BEA input-output data contains 64 sectors. For each of

these, I find the corresponding PPI sector. For 13 BEA-sectors, no PPI data is available.

Out of the remaining 51, 39 can be matched perfectly, although sometimes the BEA data

uses other codes than those of the NAICS classification, which are used in the PPI data.

For 12 BEA-sectors, PPI data for only a subset of subsectors which make up these sectors

is available. In case data for only one subsector is available, I take this series as an approx-

imation of the sectoral PPI. If multiple subsectors are available, I take an output-weighted

average of these subsectors to construct the sectoral PPI. In some cases, some subsectors

are excluded because there is no output data available or because the PPI series for this

subsector starts late in the sample. Data on sectoral outputs at the fine level of 405 sectors
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is obtained from the BEA’s detailed input-output table for 2010 (also available in 2007).

Many of the relevant sectoral and subsectoral PPI series start in December 2003, so that

no earlier starting date is possible. I move the starting date of the sample a bit further to

January 2005 because this adds two more sectors to the analysis.
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Figure A-1: Tabular Representation of the Input-Output Matrix
Notes: The figure shows the input-output matrix A, with darker shades of blue indicating stronger links aij .

Table A-1: Quarterly Correlation at Different Months

Q1 Q2 Q3 Q4

Month 1 0.9697 0.9723 0.9836 0.9737
Month 2 0.9670 0.9642 0.9847 0.9694
Month 3 0.9675 0.9709 0.9793 0.9695

Notes: The table shows the cross-sectional mean of the three-month-lagged
autocorrelation of log PPI computed separately for each month of the year. No
difference between end-of-quarter months and remaining months is noticeable.
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Figure A-2: Tabular Representation of Shortest Paths
Notes: The figure shows the matrix of shortest paths or distances from a sector i to any other sector j, with darker shades of
blue indicating longer distances.
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Figure A-3: In-Degrees and Out-Degrees
Notes: The left panel plots in-degrees, equal to the number of non-zero entries by columns of A, which show the number of
input-suppliers across sectors. The right panel plots out-degrees, equal to the number of non-zero entries by rows of A, which
show the number of customers supplied across sectors.
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B.3 Estimation of the Network-VAR Given Network Data

Estimation of α|A in Unrestricted NVAR(p, q)

This section outlines the estimation of (α,Σ)|A in the general NVAR(p, q),

yt =

p∑
l=1

(
q∑
g=1

αlgA
g

)
yt−l + ut , V[ut] = Σ.

This model can alternatively be written as

yit = x′itα + uit ,

where α = (α′1, ..., α
′
p), αl = (αl1, ..., αlq)

′ and xit = (x1′
it , ..., x

p′

it )
′, xlit = (ỹ1

it−l, ..., ỹ
q
t−l)

′, and

where ỹgit−l is the ith element of the n × 1 vector ỹgt−l ≡ Agyt−l. Because the network A is

taken as given, the dependence of ỹgt−l on A is suppressed. This is a linear regression with

regressors generated by summarizing information in lagged values of yt using the network

adjacency matrix A. In matrix form,

yt = Xtα + ut . (A.1)

The n × pq matrix Xt summarizes the information in lags 1 to p of yt using network-

connections of order 1 to q:

Xt =

x′1t...
x′nt

 =
[
Ayt−1, A

2yt−1, ..., A
qyt−1, Ayt−2, ..., A

qyt−p
]
.

Least Squares (LS) estimation of α with a Ridge-penalty to potentially induce shrinkage

yields the following optimization problem:

min
α

1

nT

T∑
t=1

(yt −Xtα)′Σ−1 (yt −Xtα) + ϕ̃

p∑
l=1

q∑
g=1

α2
lg .

In turn, Σ̂|α = 1
T

∑T
t=1 utu

′
t. We obtain

α̂LS|Σ = V̄α

[
T∑
t=1

X ′tΣ
−1yt

]
, V̄α =

[
ϕ̃I +

T∑
t=1

X ′tΣ
−1Xt

]−1

.

Note that under ϕ̃ = 0 and Σ = I, the estimator for α takes the form of a pooled OLS
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estimator, as expected based on the model representation in equation A.1:

α̂LS|(Σ = I, ϕ̃ = 0) =

(
T∑
t=1

X ′tXt

)−1 T∑
t=1

X ′tỹt =

(
n∑
i=1

T∑
t=1

xitx
′
it

)−1( n∑
i=1

T∑
t=1

xityit

)
.

In Appendix C.2, I derive α̂LS|Σ as the posterior mode under the prior α ∼ N(0, ϕ−1I)

with ϕ = nT ϕ̃ and Normality of ut. With the conditional posteriors available, Bayesian

estimation of α,Σ|A can be implemented straightforwardly using Gibbs sampling.

If α is estimated without shrinkage (ϕ̃ = 0), we require
∑T

t=1X
′
tXt to be of full rank:

λmin (E [X ′tXt]) ≥ c > 0 , for some c ∈ R+ ,

where λmin(M) denotes the smallest Eigenvalue of the matrix M . Due to the stochastic

process of innovations ut, we expect yt, ..., yt−p to be linearly independent. Given the struc-

ture of Xt, this means that the above requirement demands q to be such that the matrices

A,A2, ..., Aq are linearly independent. The Cayley-Hamilton theorem gives the upper bound

q ≤ n− 1. It states that for any n×n matrix A, An can be expressed as the linear combina-

tion of lower powers of A. In practice, A could be such that even for small q one runs into

issues of almost perfect multicollinearity in the estimation of α, which provides a rationale

for applying shrinkage by setting ϕ̃ > 0.

Estimation of δ|A in (Potentially) Time-Aggregated NVAR(p∗, 1)

This section is concerned with estimating (δ,Σ)|A, where δ is the vector of coefficients in

the NVAR(p∗, 1) for xτ , whereby a snapshot of xτ is observed every q∗ periods: the observed

process is {yt}Tt=1 = {xq∗t}Tt=1. First I discuss how to obtain the likelihood of {yt}Tt=1 for

general q∗. Then I discuss the Bayesian implementation of the MLE used to obtain the

results in Section 3.4.

Likelihood Evaluation The process for xτ is

xτ = δ1Axτ−1 + ...+ δp∗Axτ−p∗ + vτ .

The observed process is {yt}Tt=1 = {xq∗t}Tt=1. If q∗ ≤ 1, 1/q∗ ∈ N, yt follows an NVAR(p, 1)

with p = p∗/q∗. In this case, there are analytical expressions for the LS objective function

and likelihood.

If instead q∗ > 1, q∗ ∈ N, the process for yt can be approximated arbitrarily well by an

NVAR(p, q) with errors following an MA(p− 1):

yt = Φ1yt−1 + ...+ Φpyt−p + Θ0ut + Θ1ut−1 + ...+ Θp−1ut−p+1 .
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where ut = [v′τ , v
′
τ−1, ..., v

′
τ−q∗+1]′ = [v′q∗t, v

′
q∗t−1, ..., v

′
q∗t−q∗+1]′. The dependence of {Φl(δ)}pl=1

and {Θl(δ)}p−1
l=0 on δ = (δ1, ..., δp∗) is suppressed for notational simplicity. Appendix A.3

outlines how to obtain these matrices.

Assume vτ ∼ N(0,Σ) and let zt = (z′1t, z
′
2t, ..., z

′
pt)
′. The process for {yt}Tt=1 can be cast

in state space form as

zt = Fzt−1 + Tut , ut ∼ N (0, Q) ,

yt = Mzt = z1t ,

where M = [In, 0n, ..., 0n] and

F =


Φ1 In 0n ... 0n
Φ2 0n In
...

...
. . .

Φp−1 0n In
Φp 0n ... 0n

 , T =


Θ0

Θ1

...

Θp−1

 , Q =


Σ 0n ... 0n
0n Σ
...

. . .

0n Σ

 .

The likelihood can be evaluated using the Kalman filter. To obtain the conditional likelihood,

the filter is initialized as follows. Partition F into p blocks of dimension n× n. Let F−1,· be

the n(p− 1)× np matrix obtained by deleting the first n rows of F , let F−1,1 be the first n

columns of it, and let F−1,−1 be the n(p− 1)×n(p− 1) matrix obtained by deleting the first

n rows as well as the first n columns of F . Correspondingly, define z−1,t = (z′2t, ..., z
′
pt)
′ so

that zt = (z′1,t, z
′
−1,t)

′. The object of interest is the distribution

z0|y0, y−1, ..., y−p+1 ≡ z0|y0:−p+1 ∼ N(µz,Σz) .

We know E[z1,0|y0:−p+1] = y0. For the remaining part of µz, we get

E[z−1,0|y0:−p+1] = F−1,·

[
y−1

E[z−1,−1|y0:−p+1]

]
= F−1,1y−1 + F−1,−1E[z−1,−1|y0:−p+1] .

We can iterate on this expression starting from E[z−1,−p+1|y0:−p+1] on the right-hand side.

Note that because of the nature of F−1,−1, this gives an exact expression for E[z−1,0|y0:−p+1]

as a function of y−1, ..., y−p+1.

Turning to the variance, y0 is known and therefore the first n rows and the first n columns

of Σz are zero. For the remaining part, we get

V[z−1,0|y0:−p+1] = T−1QT
′
−1 + F−1,−1V[z−1,−1|y0:−p+1]F ′−1,−1 ,

which can again be iterated on starting from V[z−1,−p+1|y0:−p+1] on the right-hand side.
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Bayesian Implementation of MLE For reasons outlined in the main text, I obtain

the MLE for the application in Section 3 as the posterior mode under a prior for θ which

is proportional to a constant. For δ, the domain restrictions δl ∈ [0, 1] and
∑p∗−1

l=1 δl ≤
1 lend themselves into a prior distribution which is the product of independent uniform

distributions, truncated to the region where
∑p∗−1

l=1 δl ≤ 1:

δ1, ..., δp∗−1 ∼
p∗−1∏
l=1

U(0, 1) 1

{
p∗−1∑
l=1

δl ≤ 1

}
.

As one can verify, this leads to

p(δ1, ..., δp∗−1) = p(δ1|δ2, ..., δp∗−1)p(δ2|δ3, ..., δp∗−1)...p(δp∗−2|δp∗−1)p(δp∗−1)

=

{
(p∗ − 1)! if

∑p∗−1
l=1 δl ≤ 1

0 otherwise
,

where for l = 1 : p∗ − 2,

p(δl|δl+1, ..., δp∗−1) =

l
(

1−
∑p∗−1
m=l δm

)l−1

(1−
∑p∗−1
m=l+1 δm)

l−1 if δl ∈
[
0, 1−

∑p∗−1
m=l+1 δm

]
0 otherwise

,

and

p(δp∗−1) =

{
(p∗ − 1) (1− δp∗−1)p

∗−2 if δp∗−1 ∈ [0, 1]

0 otherwise
.

To draw from p(δ1, ..., δp∗−1), one can draw δp∗−1 from its marginal distribution and iteratively

draw δp∗−2, ..., δ1 from the conditionals. In each of these steps, efficient drawing from these

non-standard distributions is implemented using the inverse-cdf method; to draw yi ∼ f(y),

it draws xi ∼ U(0, 1) and finds yi so that
∫ yi
−∞ f(y)dy = xi. In the present case, this yields

δl|(δl+1, ..., δp∗−1) =

(
1−

p∗−1∑
m=l+1

δm

)[
1− (1− xl)1/l

]
, xl ∼ U(0, 1) , l = 1 : p∗ − 2

and δp∗−1 = 1− (1− xp∗−1)1/(p∗−1), xp∗−1 ∼ U(0, 1).

For the parameters σi, only the lower bound of the prior distribution is determined by

the domain restriction σi > 0. The choice of the upper bound may appear non-trivial.

If it is too low, it might restrict the posterior mode, if it is too large, posterior sampling

will be inefficient. However, one can choose a lower bound low enough to ensure efficient

computation and still allow the SMC sampler to go beyond the upper bound in the search

for σi associated with high likelihood values in case it is needed by not enforcing the upper
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bound as a domain restriction. In case the posterior contains draws that do not obey the

boundary of the prior, the resulting marginal data density (MDD) will be wrong, but can be

adjusted easily ex-post. Let s̄i be the upper bound in the prior draws for σi, and take any

d̄i. We have

p(Y ) =

∫
p(Y |θ)p(θ)dθ

=

∫
p(Y |δ, σ)p(δ)p(σ)d(δ, σ)

= (p∗ − 1)!
n∏
i=1

1

s̄i

∫
p(Y |δ, σ)d(δ, σ) ,

so that the (estimated) ln p(Y ) returned by the SMC sampler,

ln p(Y ) = ln (p∗ − 1)!−
n∑
i=1

ln s̄i + ln

∫
p(Y |δ, σ)d(δ, σ) ,

can be adjusted to reflect an effective uniform prior for σi with an upper bound different

than the one used to initialize the sampler. For example, to go from U(0, s̄i) to U(0, d̄i),

one adds ln s̄i − ln d̄i. To be able to use MDD as a model selection device, the prior for

σ and hence the effective prior upper bounds {d̄i}i=1:n should be the same for all different

models indexed by (q∗, p∗). I choose s̄i = 5V[yit] and abstract from the re-scaling of the

MDD because its exact value is not of importance in the present analysis, only the relative

values for different models.

In absence of more precise prior information (and in particular due to the wide priors

for σi), the SMC algorithm would take a long time to converge if the proposal distribution

is taken to be the prior (likelihood tempering). To ameliorate this issue, I use the model

tempering variant of the SMC from Mlikota and Schorfheide (2022) and implement a mock

model to construct a proposal distribution that tilts the prior draws for σ towards values

that are more compatible with high likelihood values conditional on the prior draws for δ.

To do so, I obtain a consistent estimator for σ|δ using the method of moments applied to

the variance of the high-frequency process xτ .
44 We know that V[yt] = V[xtq∗ ]. The latter

can be computed as a function of Σ:

V[xτ ] = Φ1V[xτ ]Φ
′
1 + ...+ Φp∗V[xτ ]Φ

′
p∗ + Σ ,

44As opposed to that, using the process for yt, the conditional MLE for σ|δ would only be available using
data augmentation due to the presence of MA errors whose dimension surpasses that of yt.



This Version: November 24, 2022 A.28

which in turn implies

vec(V[xτ ]) =

(
p∗∑
l=1

Φl ⊗ Φl

)
vec(V[xτ ]) + vec(Σ)

=

(
p∗∑
l=1

δ2
l

)
(A⊗ A) vec(V[xτ ]) + vec(Σ) .

Overall, we get

vec(Σ̂MM |δ) =

[
I −

(
p∗∑
l=1

δ2
l

)
(A⊗ A)

]
vec(V̂MM [xτ ]) , V̂MM [xτ ] = V̂MM [yt] =

1

T

T∑
t=1

yty
′
t .

I then construct the likelihood for the mock model as the density of independent Inverse

Gamma distributions for σi with a mode at σ̂i,MM |δ = (Σ̂MM |δ)ii. This means that the

proposal distribution is the product of the prior for δ and Inverse Gamma distributions for

σi|δ.

I also use the adaptive tempering method proposed by Cai et al. (2021), which ensures

a precise estimation of the posterior in the present case in which the distance between the

proposal and posterior distributions is difficult to assess. Finally, to implement the algorithm

under the presence of the tight domain restrictions for δ, I consider a transformation of the

parameters in the mutation step of the SMC algorithm. Define the function g s.t. θ̌ = g−1(θ)

is generated by taking logs of σi and computing γl = ln δl/δp∗ for δ1, ..., δp∗−1. Note that both

are one-to-one mappings and ensure that the transformed parameters can fall everywhere

on the real line. As a result, no draws in the mutation step are rejected because of domain

violations. I use a Random Walk Metropolis Hastings (RWMH) algorithm in the mutation

step. Even though the proposal density for the transformed draws is symmetric, for the

original parameters it is not. The mutation step needs to be adjusted to reflect this. Overall,

the mutation of particle i in iteration n of the SMC algorithm is performed as follows:

Algorithm 2 (Particle Mutation in SMC Algorithm).

1. Given particle θin−1, set θi,0n = θin−1.

2. For m = 1 : NMH :

• Compute θ̌i,m−1
n = g−1(θi,m−1

n ) and draw

v̌|θi,m−1
n ∼ q̌(v̌|θi,m−1

n ) = N(θ̌i,m−1
n , c2

nΣn) = N(g−1(θi,m−1
n ), c2

nΣn) .
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• Set

θi,mn =

{
v = g(v̌) w.p. α(v|θi,m−1

n )

θi,m−1
n otherwise

,

where

α(v|θi,m−1
n ) = min

{
1,

p(Y |v)p(v)/q(v|θi,m−1
n )

p(Y |θi,m−1
n )p(θi,m−1

n )/q(θi,m−1
n |v)

}
.

The densities q(v|θi,m−1
n ) and q(θi,m−1

n |v) are obtained using analogous density

transformations starting from q(v̌|θi,m−1
n ) and q(θ̌i,m−1

n |v), respectively;

q(v|θi,m−1
n ) = q̌(g−1(v)|θi,m−1

n )|J(v)| ,

where the Jacobian matrix J(θ) is block diagonal with

J11(θ) =

δ
−1
1 0

. . .

0 δ−1
p∗−1

+ δ−1
p∗ ιι

′ , J22(θ) =

σ
−1
1 0

. . .

0 σ−1
N

 .45

3. Set θin = θi,NMH
n .

Note that because q̌(g−1(v)|θi,m−1
n ) = q̌(g−1(θi,m−1

n )|v) is symmetric, we obtain

α(v|θi,m−1
n ) = min

{
1,

p(Y |v)p(v)

p(Y |θi,m−1
n )p(θi,m−1

n )

|J(θi,m−1
n )|
|J(v)|

}
,

and one can show that

ln
|J(θi,m−1

n )|
|J(v)|

=
N∑
j=1

[
ln σj − ln σi,m−1

j,n

]
+ ln |J11(θi,m−1

n )| − ln |J11(v)| .

B.4 Results

45ι denotes a column vector of ones, and I write a capital N for the cross-sectional sample size to distinguish
it from the iteration of the SMC algorithm, n.
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Table A-3: Model Selection

Log MDD

p∗

1q∗ 2q∗ 3q∗ 4q∗ 5q∗ 6q∗

1/3 19079 19044

1/2 19384 18768 18690

q∗ 1 20153 20056 19675 19879 18899 20218

2 17546 19570 19248 20142 18662 19636

4 18517 19808 19754 19655 18904 19301

BIC

p∗

1q∗ 2q∗ 3q∗ 4q∗ 5q∗ 6q∗

1/3 -38568 -38487

1/2 -38849 -38194 -38089

q∗ 1 -40964 -40799 -39650 -39944 -38060 -41060

2 -36597 -39556 -39073 -40832 -37206 -39420

4 -38096 -39883 -39648 -39274 -37806 -38659

AIC

p∗

1q∗ 2q∗ 3q∗ 4q∗ 5q∗ 6q∗

1/3 -38939 -38865

1/2 -39220 -38572 -38474

q∗ 1 -41335 -41177 -40036 -40336 -38460 -41467

2 -36975 -39948 -39480 -41253 -37640 -39868

4 -38488 -40304 -40098 -39753 -38313 -39194

Notes: The values for q∗ (from top to bottom) refer to quarterly, bi-monthly, monthly, bi-weekly
and weekly network interactions, respectively, while p∗ = mq∗ implies that the last m months
matter for dynamics.
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Figure A-4: Marginal Priors and Posteriors For δ
Notes: The solid line shows the posterior, the dotted line the prior.

C Process Approximation by Sparse Networks

C.1 Identification and Normalization

Without further assumptions, (α,A) is not identified. For simplicity, consider the case of

p = 1 and q = 1. Then

yt = α11Ayt−1 + ut ,

and for any (α̂11, Â), an observationally equivalent process that satisfies the same domain

restriction for the elements of A is obtained with (c−1α̂11, cÂ) for any c ∈ (0, c̄) with c̄ =

[supi,j âij + ε]−1 for ε > 0 small. Generally, for any (α̂, Â), an observationally equivalent

process is obtained with (α̃, Ã) defined by

Ã = cÂ , α̃lg = c−gα̂lg for l = 1 : p, g = 1 : q ,

where as before c ∈ (0, c̄) with c̄ = [supi,j âij + ε]−1 for ε > 0 small.

To identify (α,A), at least one element in α or A needs to be normalized. For example,

consider fixing α11 = 1. Because the elements in A are restricted to be positive, this means

one requires α11 > 0 to hold in the true data generating process. Alternative normalizations

are possible. To estimate the NVAR(p, 1) in Section 4.4, I normalize ||α||1 = 1. One could

also normalize one of the elements in A to some positive number, reasoning that two units

(i, j) ought to share a direct and directed link.

One related subtlety arises. For many normalizations, the constraint aij ∈ [0, 1) becomes

potentially too restrictive. For example, under α11 = 1 this is because some elements in the
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matrix α11A might be larger than 1. To deal with this, one can first estimate the model

without an upper bound for aij. If needed, the parameters can then be re-scaled along the

lines outlined above in order to preserve the network interpretation. More specifically, let

(α̌, Ǎ) be the solution for the problem with restrictions aij ≥ 0 and α11 = 1 fixed. Given

(α̌, Ǎ), define (α̂, Â) as

α̂11 = sup
i,j

ǎij + ε , Â =
1

α̂11

Ǎ , α̂lg = α̂g11α̌lg for l = 1 : p, g = 1 : q , (l, g) 6= (1, 1)

for some ε > 0 small.

C.2 Estimation of the Network-VAR

Least Squares Estimator as Posterior Mode

Estimating (α,A,Σ) in the general NVAR(p, q) using (Generalized) Least Squares (LS) with

a Lasso penalty term to induce sparsity in A and a Ridge penalty term to induce shrinkage

in α amounts to the following optimization problem:

min
α,A

1

nT

T∑
t=1

ut(α,A)′Σ−1ut(α,A) + λ̃
n∑

i,j=1

aij + ϕ̃
∑
l,g

α2
lg s.t. aij ≥ 0 , (A.2)

with

ut(α,A) = yt −
p∑
l=1

(
q∑
g=1

αlgA
g

)
yt−l ,

and with (at least) one element in or statistic of α or A normalized (see Appendix C.1). In

turn, Σ̂LS|α,A = 1
T

∑T
t=1 ut(α,A)ut(α,A)′.

I suppress the dependence of ut on (α,A) for notational simplicity. Under Normality of

ut, the (conditional) likelihood function associated with this problem is

p(Y1:n,1:T |θ, Y1:n,−p+1:0) =
T∏
t=1

p(yt|θ, yt−p:t−1)

=
T∏
t=1

(2π)−n/2|Σ|−1/2exp

{
−1

2
u′tΣ

−1ut

}

= (2π)−nT/2|Σ|−T/2exp

{
−1

2

T∑
t=1

u′tΣ
−1ut

}
.



This Version: November 24, 2022 A.33

Consider the prior

α ∼ N(0, ϕ−1I) , aij ∼ Exponential(λ) , p(Σ) ∝ c .

The posterior of (α,A,Σ) is then

p(α,A,Σ|Y ) ∝ p(Y |α,A,Σ)p(α)
n∏

i,j=1

p(aij)

∝ |Σ|−T/2exp

{
−1

2

T∑
t=1

u′tΣ
−1ut

}
exp

{
−1

2
ϕα′α

}
exp {−λι′Aι} ,

where ι is an n-dimensional vector of ones and therefore ι′Aι =
∑n

i,j=1 aij. Under ϕ = nT ϕ̃

and λ = nT
2
λ̃, the negative of the logarithm of this posterior is proportional to the objective

function in the LS minimization problem in equation A.2 above. Therefore, with the proper

re-scaling of the penalty parameters, the conditional posterior mode of α,A|Y,Σ is equal

to (α̂LS, ÂLS)|Σ, while the mode of p(Σ|Y, α,A) is equal to Σ̂LS|α,A. These posteriors and

their modes are derived below.

Conditional Posteriors

To find the conditional posterior p(α|Y,A,Σ), it is convenient to rewrite ut as in Section B.3

as ut = yt −Xt(A)α, where the n× pq matrix Xt depends only on A and the data:

Xt =
[
ỹ1
t−1, ỹ

2
t−1, ..., ỹ

q
t−1, ỹ

1
t−2, ..., ỹ

q
t−p
]
, ỹgt−l ≡ Agyt−l .

Under the stated prior, the conditional posterior of α|A,Σ is

p(α|Y,A,Σ) ∝ p(Y |α,A,Σ)p(α)

∝ exp

{
−1

2

T∑
t=1

(yt −Xtα)′Σ−1 (yt −Xtα)

}
exp

{
−1

2
ϕα′α

}

∝ exp

{
−1

2

(
ϕα′α +

∑
t

(yt −Xtα)′Σ−1 (yt −Xtα)

)}

∝ exp

{
−1

2

{
α′

[
ϕI +

∑
t

X ′tΣ
−1Xt

]
α− 2α′

[∑
t

X ′tΣ
−1yt

]}}
,

which shows that

α|Y,A,Σ ∼ N
(
ᾱ, V̄α

)
, with V̄α =

[
ϕI +

∑
t

X ′tΣ
−1Xt

]−1

, ᾱ = V̄α

[∑
t

X ′tΣ
−1yt

]
.
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For p(Σ|Y, α,A), we obtain

p(Σ|Y, α,A) ∝ p(Y |α,A,Σ)

∝ |Σ|−T/2exp

{
−1

2

T∑
t=1

u′tΣ
−1ut

}

= |Σ|−T/2exp
{
−1

2
tr
[
Σ−1U ′U

]}
,

where U is T × n and stacks u′t along rows. This shows that

Σ|Y, α,A ∼ IW(S̄, v̄) , S̄ = U ′U , v̄ = T .

To find p(A|Y, α,Σ) for q = 1, write the model as

yt = Azt + ut , ut ∼ N(0,Σ) ,

with the n× 1 vector zt given by zt = [α11yt−1 + ...+ αp1yt−p]. Defining the T × n matrices

Y , Z and U , this can be written as

Y = ZA′ + U .

In turn,

p(A|Y, α,Σ) ∝ exp

{
−1

2

T∑
t=1

(yt − Azt)′Σ−1 (yt − Azt)

}
exp {−λι′Aι}

= exp

{
−1

2

T∑
t=1

tr
[
Σ−1 (yt − Azt) (yt − Azt)′

]}
exp {−λι′Aι}

= exp

{
−1

2

T∑
t=1

tr
[
Σ−1 (y′t − z′tA′)

′
(y′t − z′tA′)

]}
exp {−λι′Aι}

= exp

{
−1

2
tr
[
Σ−1 (Y − ZA′)′ (Y − ZA′)

]}
exp {−λι′A′ι} .

To simplify exposition, define Ǎ = A′. Using the rules a′Ba = tr[Baa′], tr[AB] = tr[BA]
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and tr[A] = tr[A′],46 we get

p(A|Y, α,Σ) ∝ exp

{
−1

2
tr
[
Σ−1

(
Y ′Y − Ǎ′Z ′Y − Y ′ZǍ+ Ǎ′Z ′ZǍ

)
+ 2λǍιι′

]}
∝ exp

{
−1

2
tr
[
Σ−1

(
Y ′Y − Ǎ′Z ′Y − Y ′ZǍ+ Ǎ′Z ′ZǍ

)
+ 2λιι′Ǎ

]}
∝ exp

{
−1

2
tr
[
Σ−1

(
Y ′Y − Ǎ′Z ′Y − Y ′ZǍ+ Ǎ′Z ′ZǍ+ 2λΣιι′Ǎ

)]}
∝ exp

{
−1

2
tr
[
Σ−1

[
Ǎ′Z ′ZǍ− 2Ǎ′Z ′Y + 2λǍ′ιι′Σ

]]}
∝ exp

{
−1

2
tr
[
Σ−1

[
Ǎ′Z ′ZǍ− 2Ǎ′ (Z ′Y − λιι′Σ)

]]}
,

which implies

Ǎ|Y, α,Σ ∼ N
(
Ā,Σ⊗ P̄−1

)
, truncated to Rn2

+ , with P̄ = Z ′Z , Ā = P̄−1 [Z ′Y − λιι′Σ] .

Estimation of an NVAR(p, 1)

Bayesian estimation of the NVAR(p, 1) can be implemented by Gibbs sampling, i.e. itera-

tively drawing from the conditional posteriors. Analogously, the OLS estimator (α̂OLS, ÂOLS, Σ̂OLS)

can be obtained by iterating on conditional OLS estimators as outlined in Meng and Rubin

(1993). These are given by

α̂OLS|A =

[
ϕ̃I +

∑
t

Xt(A)′Xt(A)

]−1 [∑
t

Xt(A)′yt

]
,

âij,LS|(Ai,−j, α) = max{0, ǎij} , ǎij =

∑T
t=1(yit − Ai,−jz−j,t)zjt − λ∑T

t=1 z
2
jt

.

Under OLS, conditional on α, the estimators âij,LS are independent across i. This leads to

the following procedure:

Algorithm 3 (OLS Estimation of (α,A) in NVAR(p, 1)).

1. Let α(0) = (1, 0, ..., 0)′ and A(0) = 0n.

2. For m = 1, 2, ..., do the following:

46I also make use of the symmetry of Σ and the fact that tr[A] + tr[B] = tr[A+B].
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a) Given α(m−1) and A
(m−1)
·,k for columns k = 2 : n of A, update the estimate for the

first column of A by computing

{âi1,LS}ni=1|(A
(m−1)
·,−1 , α(m−1))

b) Repeat the above iteratively for columns j = 2 : n: given α(m−1), A
(m)
·,k for columns

k = 1 : j− 1 of A and A
(m−1)
·,k for columns k = j + 1 : n of A, update the estimate

for column j of A by computing

{âij,LS}ni=1|(A
(m)
·,1:j−1, A

(m−1)
·,j+1:n, α

(m−1))

c) Compute α(m)|A(m).

d) Let c = ||α(m)||1. Implement the normalization by dividing α(m) by c and multi-

plying A(m) by c.

e) If max
{
||α(m) − α(m−1)||, ||Σ(m) − Σ(m−1)||

}
< ε for some ε small, break. Other-

wise, continue.

C.3 Data and Results
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Figure A-5: Weighted Indegrees in the Estimated Network
Notes: The plot depicts the weighted indegrees in the estimated network as relevant for monthly industrial production dynamics
across countries.
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Table A-4: Descriptive Data Statistics and Estimated Outdegrees

Code Name Mean yit StdD yit Min yit Max yit ŵd
out

i

AUT Austria −0.14 7.11 −25.92 32.05 0.00
BGD Bangladesh 2.09 8.51 −33.49 65.66 0.90
BEL Belgium 0.62 7.53 −22.55 36.17 0.00
BRA Brazil −0.74 7.09 −29.14 33.29 1.07
CAN Canada 0.07 5.58 −20.86 15.40 1.69
CHL Chile 0.12 4.40 −13.09 12.39 0.72
COL Colombia 0.45 7.88 −36.73 58.73 2.94
CRI Costa Rica −0.60 3.93 −14.67 12.74 0.19
CYP Cyprus −0.35 8.40 −37.58 58.53 0.95
CZE Czech Republic 0.58 8.37 −37.33 51.70 0.04
DEU Germany −0.21 7.84 −31.27 35.07 0.00
DNK Denmark 0.19 6.77 −21.50 22.43 0.09
EST Estonia −0.09 10.79 −40.17 31.80 0.57
ESP Spain −1.24 7.85 −35.60 51.00 0.00
FIN Finland −1.30 6.71 −27.86 21.42 0.12
FRA France −0.71 6.50 −35.64 43.58 0.00
GBR United Kingdom −0.78 5.81 −26.57 28.56 1.02
GRC Greece −0.18 8.52 −25.33 21.84 0.52
HRV Croatia −0.17 5.42 −16.18 15.68 0.24
HUN Hungary 1.11 9.20 −39.83 56.31 0.06
IRL Ireland −1.52 16.10 −38.83 59.64 1.41
ISR Israel 0.08 8.12 −22.43 31.42 0.15
IND India −2.13 11.35 −58.94 127.82 0.16
ISL Iceland 0.29 13.65 −25.78 50.08 1.11
ITA Italy −0.56 9.52 −29.31 78.25 0.00
JOR Jordan −0.14 7.86 −25.26 26.30 1.90
JPN Japan −1.28 8.40 −37.18 26.70 1.16
KOR Korea, Republic of −3.03 7.10 −32.63 31.36 2.77
LTU Lithuania 0.48 9.28 −31.29 33.41 0.57
LUX Luxembourg −1.01 8.64 −34.17 42.01 0.47
LVA Latvia −0.10 7.95 −31.12 20.58 0.70
MKD North Macedonia, Republic of 1.11 9.34 −22.59 32.46 0.46
MEX Mexico −1.01 5.63 −31.73 34.86 0.19
MYS Malaysia −1.54 5.45 −22.03 13.90 1.44
NLD Netherlands −0.36 5.78 −21.61 20.80 0.63
NOR Norway −2.38 5.32 −15.40 10.80 0.61
POL Poland 1.24 6.59 −29.50 40.54 2.04
PRT Portugal −1.99 6.04 −30.68 36.22 2.04
RUS Russian Federation 1.74 4.95 −18.98 11.01 3.46
SWE Sweden −1.00 6.49 −24.47 20.95 2.62
SVN Slovenia 0.10 7.06 −27.74 32.12 2.90
SVK Slovakia 1.97 10.31 −45.26 65.41 1.30
TUR Turkey 0.58 9.19 −35.66 59.56 2.24
USA United States −1.24 4.65 −18.84 14.73 3.94
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p = 1 p = 2

p = 3 p = 4

p = 5 p = 6

Figure A-6: Out-of-Sample Forecasting Performance: NVAR(p, 1) vs. Factor Model
Notes: The plot depicts the percentage difference between the out-of-sample Mean Squared Errors generated by the NVAR(p, 1)
to those generated by the Principal Components Factor Model for different choices of p.
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