

Alba Patozi

University of Cambridge

GREEN TRANSMISSION: MONETARY POLICY IN THE AGE OF ESG

Green Transmission: Monetary Policy in the Age of ESG

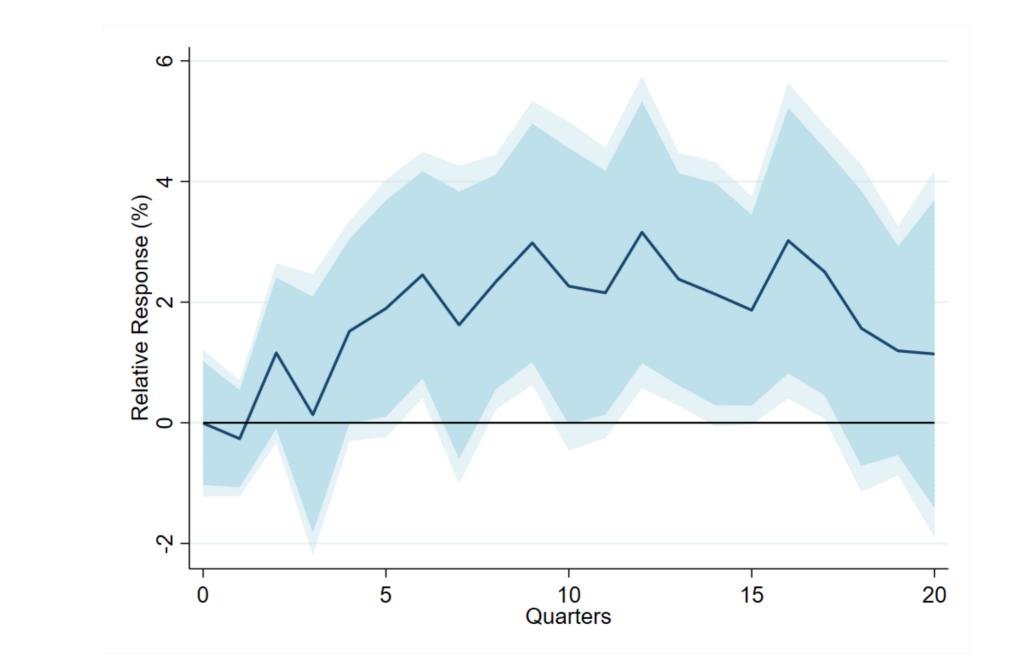
Alba Patozi¹

¹University of Cambridge

Motivation

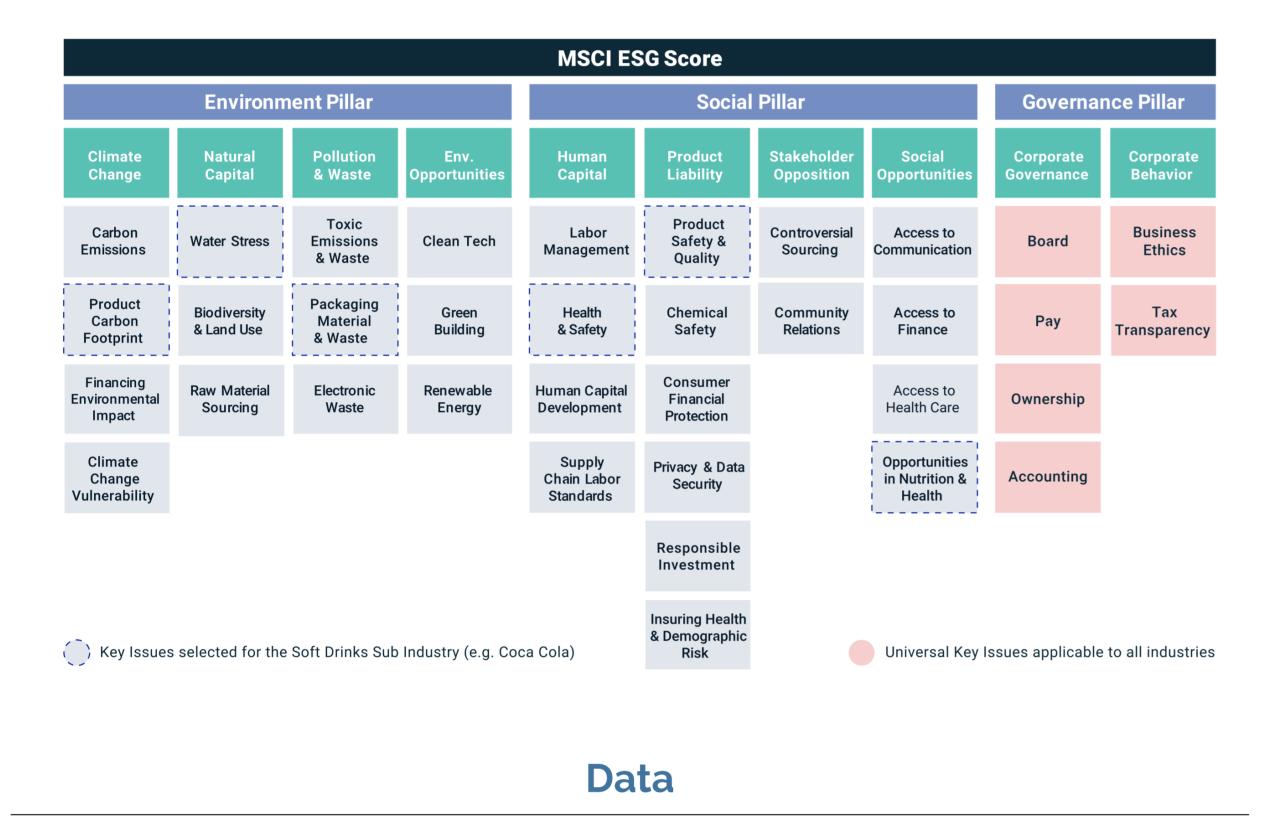
- Env. objectives are increasingly becoming a key priority for business leaders and boards of directors.
- As of 2020, \$35trn of institutional assets track firms' environmental, social and governance (ESG) ratings.
- Speech by Isabel Schnabel (2023): In light of the current monetary policy tightening green investments were relatively shielded from the impact of higher borrowing costs.

Research Questions:


- Are green firms more (or less) responsive to monetary policy shocks?
- If so, what explains their sensitivity (or lack thereof) to monetary policy shocks?

This Paper:

- **combines** firm-level (financial) data, with ESG indicators and monetary policy shocks
- **exploits** the high-frequency nature of market-based data
- **provides** evidence of heterogeneous responses to monetary policy based on firm-level greenness 4. **considers** a stylized theoretical model to explain the transmission mechanism


Relative Response of Green Firms' Investment to MP shocks

• In spirit of Ottonello & Winberry (2020) and given potential dynamic effects: $\Delta_h log k_{i,t} = \alpha_i^h + \alpha_{s,t}^h + \beta^h (\varepsilon_t^m \times g_{i,t-1}) + \delta^h g_{i,t-1} + \Gamma'^h Z_{i,t-1} + e_{i,t,h}$

What constitutes a 'green' firm?

- The 'E' in ESG measures a company's resilience to long-term environmental risks
- 'E' is a weighted av. score across 13 environmental issues

• Environmental Scores: MSCI ESG IVA Ratings

Notes: In line with local projection methods, each horizon is estimated separately. The dependent variable is $\Delta log k_{i,t+h}$, over the horizons considered. The independent variable is $\varepsilon_t^m \times g_{i,t-1}$. The light blue shaded areas denote the 95% and 90% confidence intervals around point estimates constructed with standard errors clustered at the time level.

Differences in Financial Characteristics

	Green	Brown	Difference
Env. performance	-0.291		3.798***
Size	8.074	8.170	-0.096***
Leverage	0.454	0.485	-0.031*
Short term finance	0.029	0.030	-0.001
Long debt share	0.871	0.888	-0.017***
Profitability	0.028	0.027	0.002**
Retained earnings to assets	-0.028	0.055	-0.083***
Dividends per share	0.134	0.227	-0.093***
Liquidity	0.171	0.073	0.098***
Market to book ratio	2.175	1.316	0.859***
Age (since CRSP incorp)	25.262	33.397	-8.135***
D2default	9.067	7.161	1.905***
Transparency	49.251	28.766	20.486***
Observations	11,388	11,368	

 Double sorting firms based on their environmental performance and financial characteristics does not explain the dampened sensitivity of green firms to monetary policy

Preferences for Sustainable Investing in a Stylized Theoretical Framework

- Monetary Policy Surprises: Bu, Rogers & Wu (2021)
- Firm-level Data: Compustat, CRSP, I/B/E/S, IHS Markit
- The final dataset:
- Covers 102 FOMC announcements
- Spans the 2008 2020 period
- Has information on 1,361 US publicly listed firms

Empirical Specification

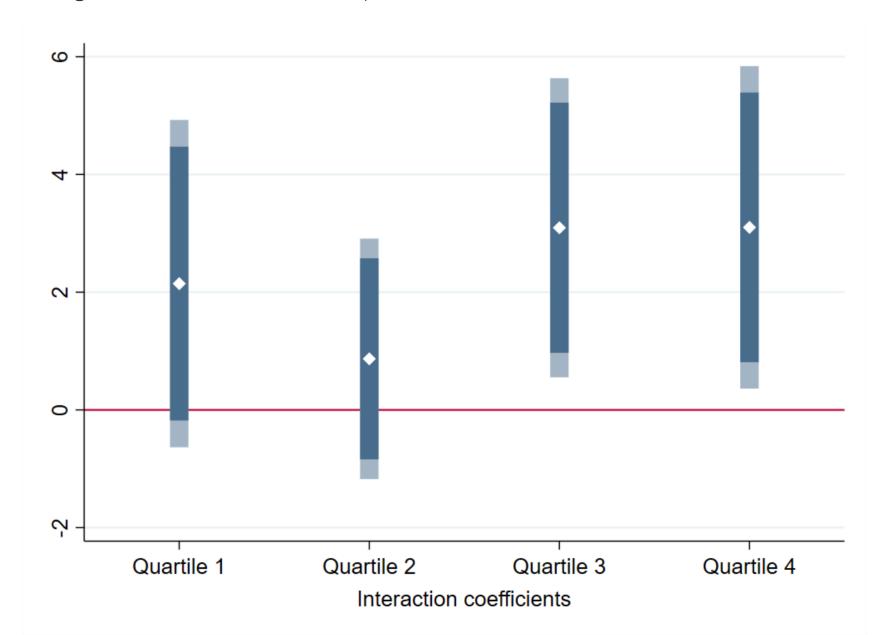
$\Delta p_{i,t} = \alpha_i + \alpha_t + \beta(\varepsilon_t^m \times g_{i,t-1}) + \delta g_{i,t-1} + \Gamma' Z_{i,t-1} + e_{i,t}$

- $\Delta p_{i,t}$ is the difference in (log) stock price of firm i at date t+1 relative to date t-1- ε_t^m is the BRW monetary policy surprise at FOMC date t
- $g_{i,t-1}$ is the environmental performance score of firm i in year t-1
- $Z_{i,t}$ is a vector of firm-level controls

Stock Price Semi-Elasticities

	(1)	(2)	(3)	(4)
	$\Delta p_{i,t}$	$\Delta p_{i,t}$	$\Delta p_{i,t}$	$\Delta p_{i,t}$
MP shock (ε_t^m)	-16.04***	-14.66***		
	(3.950)	(3.878)		
MP shock \times Env. score ($\varepsilon_t^m \times g_{i,t-1}$)		2.411***	2.587***	2.209***
		(0.604)	(0.550)	(0.506)
Env. score ($g_{i,t-1}$)		0.0217	0.0199	0.0471
		(0.0506)	(0.0380)	(0.0320)
Firm FE	Yes	Yes	Yes	Yes
Time FE	No	No	Yes	Yes
Industry_time FE	No	No	No	Yes
Controls	Yes	Yes	Yes	Yes
R-squared	0.0775	0.0790	0.314	0.359
Observations	38037	38037	38037	37928

• When investors derive a non-pecuniary benefit from holding 'green' assets, the semi-elasticity of green asset prices to monetary policy can be decomposed into:


$$\frac{dln(q_{B,1}^*)}{dr} = \underbrace{\frac{1}{\underbrace{1+r}}}_{\text{Pecuniary Effect}}, \frac{dln(q_{G,1}^*)}{dr} = -\frac{1}{1+r} \underbrace{\frac{1}{1+\alpha}y}_{\text{Green Preferences Effect}} \underbrace{\frac{\pi}{1+\alpha}y}_{\text{Green Preferences Effect}}$$

• **Testable Prediction:** The differential response of green asset prices (compared to brown) with respect to monetary policy gets amplified in states of the world with stronger preferences for sustainable investing, given $\alpha > 0$.

Evidence from index funds with ESG Mandates

• Augment baseline specification with a triple interaction term:

 $\Delta p_{i,t} = \alpha_i + \alpha_t + \beta(\varepsilon_t^m \times g_{i,t-1}) + \delta g_{i,t-1} + \gamma(\varepsilon_t^m \times g_{i,t-1} \times s_{i,t}) + \Gamma' Z_{i,t-1} + e_{i,t}$ - $s_{i,t}$ is the percentage of firm i that is held by index funds with ESG mandates

Notes: The numbers in parenthesis are standard errors, which are clustered at the event-level. The asterisks denote statistical significance (*** for p < 0.01, ** for p < 0.05, * for p < 0.1).

Interpretation: Following a 1pp surprise in monetary policy, stock prices of green firms (quintile 5 firms) fall by around 10%, whereas the stock prices of their brown counterparts (quintile 1 firms) fall by around 21%.

Robustness: These results are robust to (i) alternative monetary policy shock measures, (ii) alternative environmental performance scores, (iii) sample-splitting, (iv) longer horizons, (v) quintile classification, and (vi) in line with evidence from CDS spreads.

Notes: This graph plots the beta coefficients (before the interaction of monetary policy with firm-level greenness) for the four different quartiles of the Investor-based ESG mandate distribution. Quartile 1 (Quartile 4) refers to securities that are held by a small (large) proportion of index funds with ESG mandates as of a quarter before the monetary policy shock. Confidence intervals are reported at the 90% and 95% level.

Conclusions

- Preferences for sustainable investing play an essential role in the transmission of shocks in financial markets.
- All else equal, monetary policy may be less powerful when the share of greener firms increases, or when preferences for sustainable investing gain traction.

ECB Forum on Central Banking, Sintra 2023