

Universitat Autònoma de Barcelona (UAB) and Barcelona School of Economics (BSE)

Snapshot

Monetary policy should take into account symmetrically and explicitly stock prices in an economic environment where

- agents have imperfect knowledge about the structure of the economy
- stock prices are driven by animal spirits

Policy Recommendation: announce 12 bp increase in policy rates for every 100% increase in stock prices

Motivation

There is growing evidence that the Fed reacts *implicitly* to stock prices: The Fed Put (Cieslack and Vissing-Jorgensen (2020))

- the stock market does cause Fed actions
- the main channel the Fed considers is through consumption wealth effects \implies aggregate demand

The magnitude of the consumption wealth effect is relevant: Di Maggio et al. (2020) estimate MPC between 2%-20%

Most monetary models that study stock price targeting do not

- consider the aggregate demand channel
- have a realistic stock market and expectation dynamics

Contribution

- decoupling of stock prices from fundamentals due to imperfect information \implies wealth effects
- quantitative model replicates joint behaviour of stock prices and expectations

Main Transmission Channel

sentiment swings \implies capital gain expectations \implies booms and busts in stock prices \implies wealth effects \implies aggregate demand

Monetary policy can break these links by managing long-term stock price expectations: transparency is crucial

Stock Price Wealth Effect: Intuition

- simple endowment economy, continuum of identical households
- $Q_t \equiv$ stock price of an asset paying D_t
- agent i solves

$$\max_{\substack{C_t^i, B_t^i, S_t^i}} E_0^{\mathcal{P}_i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\sigma}}{1-\sigma}$$

s.t. $P_t C_t^i + B_t^i + S_t^i Q_t \leq$

where $D_t \sim \mathcal{N}(\mu, \sigma^2)$ and i_t

- similarly to RE, agents have perfect knowledge about d_t, i_t
- agents think that inflation and stock prices follow an unobserved component model

$$\begin{aligned} x_t &= \beta \\ \beta_t^x &= 1 \end{aligned}$$

where $x = (\tilde{q}, \pi)'$.

• optimality condition for stock prices is of the one-step ahead form

$$q_t = \delta E_t^{\mathcal{P}} \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} (d_{t+1} + q_{t+1}) \right].$$
(3)

Learning Equilibrium $\boldsymbol{\pi}_{\boldsymbol{t}} = \frac{\delta\sigma}{\phi_{\pi}} \boldsymbol{\hat{\beta}}_{\boldsymbol{t}-1}^{\boldsymbol{q}} - \left[\frac{\sigma}{\phi_{\pi}} - \frac{(1-\sigma)(\delta\phi_{\pi}-1)}{(1-\delta)\phi_{\pi}}\right],$

• imperfect knowledge about stock prices influences the equilibrium relation of inflation

The Fed Put and Monetary Policy: An Imperfect Knowledge Approach

Adrian Ifrim

$$B_{t-1}^{i}(1+i_{t-1}) + S_{t-1}^{i}(Q_{t}+D_{t})$$
(1)
$$= \phi_{\pi}\pi_{t}$$

Optimal consumption decision under Imper-

$$\sum_{j=0}^{\infty} \delta^{j}(i_{t+j} - \pi_{t+j+1})$$

$$\left[\delta^{j} \tilde{d}_{t+j} - \frac{\delta}{1-\delta} E_{t}^{\mathcal{P}} \sum_{j=0}^{\infty} \delta^{j}(i_{t+j} - \pi_{t+j+1}) \right]$$
counted sum of Dividends
der Rational Expectations

$$\begin{aligned} \beta_t^x + \epsilon_t \\ \beta_{t-1}^x + \psi_t \end{aligned} (2)$$

 ϕ_{π}

Quantitative Model

Two Agent New Keynesian (TANK) model with a stock market + Imperfect Knowledge

- heterogeneity in stock market participation
- internally rational agents optimise given their belief system
- rest of model blocks standard in the learning literature
- Shocks: cost push, monetary policy, sentiment shock about stock prices

		Learning Model	
Business Cycle	Data Moment	Moment	<i>t</i> -ratio
Std. dev. of output	1.45	1.47	-0.39
Std. dev. of inflation	0.54	0.45	1
Correlation output/inflation	0.29	0.26	0.36
Financial Moments			
Average PD ratio	154	154	-0.38
Std. dev. of PD ratio	63	65	-0.34
Auto-correlation of PD ratio	0.99	0.96	0.57
Std. dev. of equity return $(\%)$	6.02	6.05	0.04
Std. dev. real risk free rate $(\%)$	0.72	0.8	0.59
Non-Targeted Moments			
volatility ratio stock prices/output	6.7	5.2	2
corr. Stock Prices/ output	0.5	0.45	0.53
Consumption Wealth Effect	[0.02 - 0.2]	0.09	
Std. dev. Expected $\operatorname{Returns}(\%)$	2.56	1.8	
corr. Survey Expect./ PD ratio	0.74	0.45	

Table: Model implied moments.

Figure: Simulation: Stock Prices vs rational prices

Policy Influence on Wealth Effects

Taylor rule: $i_t = \phi_\pi \pi_t + \phi_y \tilde{y}_t + \phi_q \tilde{q}_{t-1}$

Figure: Stock Price Wealth Effects and Monetary Policy

• responding to stock prices transparently is efficient in influencing wealth effects

Welfare Analysis

 $i_t = 1.5 \ \pi_t + 0.125 \ \tilde{y}_t + \phi_q \ \tilde{q}_{t-1} \mathbf{1}_{\tilde{q}_{t-1} < Q^-}$ (Fed put) $i_t = 1.5 \ \pi_t + 0.125 \ \tilde{y}_t + \phi_q \ \tilde{q}_{t-1} (1_{\tilde{q}_{t-1} < Q^-} + 1_{\tilde{q}_{t-1} > Q^+})$ (Fed put-call)

Figure: Welfare Costs of Fed Put/Call Non-Transparency

• responding in both booms and busts is superior to Fed Put even under non-transparency

Figure: Welfare Costs of Transparency vs Non-Transparency

• responding transparently and symmetrically brings considerable efficiency gains

Contact Information

• Email: adrian.ifrim@barcelonagse.eu