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Abstract
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1 Introduction

We study a model where households make decisions according to a dual-process

framework widely used in the cognitive psychology literature to describe human

decision making (see, e.g., Stanovich and West (2000)). System 1 uses heuristics to

make quick decisions that require little or no effort but are prone to biases and sys-

tematic errors. System 2 uses mental effort to make slower, more deliberate decisions

that are more accurate. Our paper builds on the elegant formulation of dual process

reasoning proposed by Ilut and Valchev (2023).

In our model, households make errors in their purchase decisions because of

cognitive costs. Monopolistic producers, for whom these errors result in high levels

of demand relative to the rational optimum, have an incentive to keep their prices

constant to discourage households from activating System 2 and reconsidering their

purchasing decisions. This behavior generates a novel type of price inertia.

This form of inertia is consistent with the “sticky winners” phenomenon docu-

mented by Ilut et al. (2020): firms that receive a high demand realization are less

likely to change their prices.

Our model offers a natural explanation for a puzzling empirical regularity doc-

umented by Karrenbrock (1991), Neumark and Sharpe (1992), and Peltzman (2000)

known as ”rockets and feathers”: prices increase rapidly when costs rise but de-

crease slowly when costs fall. This phenomenon arises naturally from the strategic

interaction between monopolistic producers and households.1

When costs rise significantly in our model, all firms increase prices to avoid

losses, so costs and prices rise together. When costs fall, the firms that benefit from

1Matějka (2015) is another interesting example of strategic interaction between producers and
households. In his model, monopolistic producers choose prices as a function of unit input costs.
However, households cannot observe prices perfectly due to limited information-procession ability.
As a result, it is optimal for monopolists to implement simple pricing policies where prices take only
a few values. These policies make prices easier to observe for households, thereby reducing pricing
uncertainty and increasing sales.
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favorable demand have an incentive to keep their prices constant so that households

do not reoptimize their purchase decisions. So, on average, prices decline by less

than costs.

Price stability is generally optimal in cashless economies with sticky prices be-

cause it eliminates the relative price distortions produced by inflation (see Wood-

ford (2003)). In our model, price stability is not optimal because of the strategic

interaction between monopolists and boundedly rational households. When aver-

age inflation is zero, firms that receive favorable demand due to behavioral mistakes

maintain their prices. The other firms increase or decrease their prices slightly to try

to obtain a more favorable demand. As a result, sizeable behavioral mistakes become

ingrained, and households choose a significantly inefficient consumption bundle. It

is generally optimal to deviate from zero inflation to reduce this inefficiency.

We now discuss three observations consistent with the importance of System 1 in

consumer behavior. The first is “shrinkflation,” a situation where manufacturers re-

duce product sizes while keeping prices constant. The UK Office for National Statis-

tics (2019) found 206 instances between September 2015 and June 2017 where prod-

ucts were downsized, yet their prices remained largely unchanged. Budianto (2024)

documents that 35 percent of the products included in the U.K. consumer price index

between 2012 and 2023 have suffered changes in quantity.

This practice suggests that some manufacturers are prepared to incur consider-

able expenses to keep prices stable, presumably to avoid triggering a re-optimization

of household purchasing decisions.2

The second phenomenon is the increasing adoption of subscription-based busi-

ness models, such as streaming or software-as-a-service, and the tendency for sub-

2President Biden deemed shrinkflation important enough to merit discussion in a February 2024
Super Bowl video broadcast. The president noted that “sports drinks bottles are smaller, a bag of
chips has fewer chips, but they’re still charging us just as much [...] ice cream cartons have shrunk in
size but not in price. [...] Some companies are trying to pull a fast one by shrinking the products little
by little and hoping you won’t notice.”
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scription prices to remain stable. This stability can be interpreted as a tactic produc-

ers use to dissuade households from engaging System 2 and reassessing the value of

their subscriptions.3

Amazon Prime subscription prices are remarkably sticky. Initially offered at an

annual rate of $79 in 2011, the fee has only been adjusted a few times: to $99 in

2014, $119 in 2018, and $139 in 2022. These adjustments were often accompanied

by enhancements in service offerings, including the introduction of Amazon Prime

Day, which served to justify the higher fees.

Netflix provides a case study of both price stability and shrinkflation. The stan-

dard subscription price remained at $7.99 from November 2010 until May 2014. At

that point, the price was increased to $8.99, but only for new subscribers. Exist-

ing subscribers were grandfathered in at the $7.99 rate for an additional two years.

Concurrently, Netflix rolled out a new basic plan priced at $7.99, which offered

only standard-definition video on a single screen, a downgrade from the two high-

definition screens available under the regular plan. The price for this basic plan

remained unchanged until 2019.

The third observation consistent with the elements of our model is that conve-

nient prices that are slightly below a round number (e.g., $9.99 instead of $10) are

widely used (Kashyap (1995) and Blinder et al. (1998)), and less likely to change

than other prices (Levy et al. (2011) and Ater and Gerlitz (2017)). This practice can

be interpreted as a way to exploit System 1 thinking, creating the perception that the

price is lower than its actual value.

Our paper is organized as follows. Section 2 describes our model. Section 3

shows that our model is consistent with the rockets and feathers phenomenon. Sec-

tion 4 discusses optimal fiscal and monetary policy. Section 5 summarizes our find-

ings.

3See Della Vigna and Malmendier (2006) for evidence that consumers often fail to assess the value
of subscription services rationally.
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2 Model

In this section, we describe the household problem, the monopolistic producers’

problem, the government’s fiscal and monetary policy, and the economy’s equilib-

rium.

2.1 Household problem

There is a representative household that maximizes its utility,

U =
C1−σ − 1

1 − σ
− N1+η

1 + η
−
ˆ 1

0
Iidi, σ, η > 0,

The variable N denotes the labor supply and Ii is the cognitive cost of using System

2 to choose how much of good i to buy. We discuss this cost in more detail below.

Consumption, C, is a composite of differentiated goods, ci,

C =

(ˆ 1

0
c

θ−1
θ

i di

) θ
θ−1

, θ > 1. (1)

The household maximizes utility subject to the budget constraint,
ˆ 1

0
Picidi ≤ WN +

ˆ 1

0
Πidi − T , (2)

where Pi is the nominal price of good i, W is the nominal wage, Πi is the nominal

profits of firm i, and T is nominal lump-sum taxes.

The representative household observes ω, the vector with the relevant state vari-

ables,

ω =

[
W, Pi,

ˆ 1

0
Πidi − T

]
.

Fully rational solution The familiar solution to this maximization problem is

c∗i (ω) =

(
Pi

P

)−θ

C∗ (ω) ,
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[C∗ (ω)]σ [N∗ (ω)]η = w, , (3)

C∗ (ω) = wN∗ (ω) +

(´ 1
0 Πidi − T

P

)
, (4)

where the superscript ∗ denotes the optimal value of different variables.

The price of aggregate consumption, P, is given by

P =

(ˆ 1

0
P1−θ

i di

) 1
1−θ

. (5)

The variable w denotes the real wage rate,

w ≡ W
P

.

Bounded rationality solution Now, consider the household problem with bounded

rationality. Throughout, we use the formulation of dual process reasoning proposed

by Ilut and Valchev (2023).

Households observe the vector of relevant state variables, ω, but cannot solve

for the optimal values of c∗i (ω) and N∗(ω). They have prior beliefs about x∗i (ω), the

optimal level of ln
[
c∗i (ω)

]
and can use costly signals to update these beliefs. Once

households choose the values of ci, the labor demand, N, is chosen to satisfy the

budget constraint.

Period t = 0 In order for System 1 to be well defined at t = 1, we need to consider a

pre-period, t = 0, in which households observe prices and make purchase decisions.

The household is uncertain about the optimal log demand for good i, so it treats this

demand as a random variable. At the beginning of the pre-period, households have

a normally distributed prior about log demand N
(
xi,t−1 (Pi) , σi,t−1

(
Pi, P′

i
))

. The

household observes Pi,t and chooses σ2
ϵ,i,t, the variance of si,t, the noisy signal about

x∗ (Pi,t). This signal is given by

si,t = x∗ (Pi,t) + σϵ,i,tϵi,t,
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where ϵi,t follows a standard normal distribution.

Once the value of si,t is realized, the household chooses its log-demand x̃i,t (Pi,t)

to minimize the expected value of the mean squared error:
ˆ ∞

−∞
[z − x̃i,t (Pi,t)]

2 gi (z) dz,

where gi(z) is the posterior distribution for the rational log demand for good i.

The solution to this problem is to set x̃i,t equal to the mean of the posterior distri-

bution

x̃i,t = xi,t (Pi,t) .

The cognitive cost, Ii,t, associated with the choice of σ2
ϵ,i,t takes a form familiar from

the rational inattention literature (see, e.g., Maćkowiak et al. (2023))

Ii,t = κ ln

[
σ2

i,t−1 (Pi,t)

σ2
i,t (Pi,t)

]
, κ > 0,

where Ii,t is proportional to the average entropy reduction produced by the signal.

The optimal variance of the signal is as follows:

σ2
i,t (Pi,t) =

{
κ, if σ2

i,t−1 (Pi,t) > κ,
σ2

i,t−1 (Pi,t) , if σ2
i,t−1 (Pi,t) ≤ κ.

We make two assumptions. First, σ2
i,−1 (Pi) = σ2

c > κ, so households draw a signal

in the pre-period for all Pi,0. Second, σi,−1
(

Pi, P′
i
)
= 0 for all Pi ̸= P′

i , so households

believe that x∗i (Pi) is uninformative about x∗i (Pi,′) . This independence assumption

is important to keep System 1 simple. When the covariance σi,−1
(

Pi, P′
i
)

is not zero,

using System 1 requires the household to solve a complex inference problem that

combines signals obtained for different prices.

The posterior mean for xi,0 (Pi,0) is

xi,0 (Pi,0) = xi,−1 (Pi,0) + α [x∗ (Pi,0) + σϵϵi,0 − xi,−1 (Pi,0)] ,
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where

α ≡ 1 − κ

σ2
c

,

σϵ ≡
√

κ

α
.

The household does not draw signals for the optimal policy associated with prices

not observed in the pre-period. For these prices, the posterior distribution is equal

to the prior,

xi,0 (Pi) = xi,−1 (Pi) , Pi ̸= Pi,0.

Period t = 1 Given the signals drawn in the pre-period, the prior variance at t = 1

is

σ2
i,0 (Pi) =

{
σ2

c , if Pi ̸= Pi,0,
κ, if Pi = Pi,0.

If Pi,1 = Pi,0, households find themselves in a familiar situation and rely on System

1 to make decisions. If Pi,1 ̸= Pi,0, the situation is unfamiliar, and the household

activates System 2:

xi,1 (Pi,1) =

{
xi,0 (Pi,0) , if Pi,1 = Pi,0,
xi,0 (Pi,1) + α [x∗ (Pi,1) + σϵϵi,1 − xi,0 (Pi,1)] , if Pi,1 ̸= Pi,0.

As in Ilut and Valchev (2023), we assume that the mean of the prior coincides with

the fully rational value of x to ensure that our results are not generated by ex-ante

biases, xi,−1 (Pi) = x∗ (Pi). Under this assumption, we obtain

xi,1 (Pi,1) =

{
x∗ (Pi,0) + ασϵϵi,0, if Pi,1 = Pi,0,
x∗ (Pi,1) + ασϵϵi,1, if Pi,1 ̸= Pi,0.

Defining γ ≡ ασϵ and pi ≡ Pi/P, we can write the demand for good i as

ci = eγϵ̃i c∗i (ω) = eγϵ̃i p−θ
i C∗ (ω) , (6)

where

ϵ̃i ≡
{

ϵi,0, if Pi,1 = Pi,0,
ϵi,1, if Pi,1 ̸= Pi,0.
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2.2 Firms’ problem

The producers of the differentiated goods are monopolistically competitive and are

not subject to behavioral biases. Firm i produces yi units of good i using labor (ni)

according to the production function

yi = Ani. (7)

The government provides a labor subsidy at rate τ, which we discuss further below.

The firm makes pricing decisions before observing the current demand shock, ϵ′i.

Suppose that Pi,0 = P0 for all i. If the firm does not change the price, its relative

price is 1/π, where π ≡ P/P0. The resulting profits are

eγϵi,0

[(
1
π

)
− (1 − τ)

w
A

] (
1
π

)−θ

C∗ (ω) .

If the firm decides to change its price, its relative price is pi, and realized profits

depend on the demand shock. The firm’s expected profit is

E [eγz]
[

pi − (1 − τ)
w
A

]
p−θ

i C∗ (ω) ,

where z is a standard normal random variable. The optimal reset price is

p∗ =
θ

θ − 1
(1 − τ)

w
A

, (8)

so maximal expected profits given a price change are

E [eγz]
1
θ

[(
θ

θ − 1

)
(1 − τ)

w
A

]1−θ

C∗ (ω) .

There is a demand shock, ℓ, such that whenever ϵi,0 ≥ ℓ the firm chooses to keep its

price constant. The firm’s optimal pricing policy is

pi =

{
p∗, if ϵi,0 < ℓ,
P0
P ≡ 1

π , if ϵi,0 ≥ ℓ,
(9)
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and the value of ℓ is given by

ℓ =


1
2 γ + 1

γ ln
1
θ [(

θ
θ−1)(1−τ) w

A ]
1−θ[(

P0
P

)
−(1−τ) w

A

](
P0
P

)−θ , if 1
π > (1 − τ) w

A ,

∞, if 1
π ≤ (1 − τ) w

A .

If System 1 demand is higher than ℓ, the firm prefers keeping its nominal price con-

stant (and its relative price equal to pi,0) to changing prices and triggering System

2.

When the pre-period price is equal to the optimal price but ϵi < ℓ, the firm

changes the price by an infinitesimal amount to get a new demand draw.

Let

χ ≡ 1 − Φ (ℓ) (10)

denote the fraction of firms that change prices. Equation (5) implies the following

equilibrium relation between inflation, π, and the optimal reset price, p∗ = p∗ (π):

1 = χ (π)

(
1
π

)1−θ

+ [1 − χ (π)] [p∗ (π)]1−θ . (11)

This expression resembles the one for Calvo (1983) pricing with one important dif-

ference. Here, the probability of not changing prices, χ (π), is endogenous.

The following lemma characterizes the key properties of p∗ (π).

Lemma 1. For all π ≥ θ
θ−1 , p∗ (π) = 1.

See the Appendix for proof.

This lemma states that whenever inflation is higher than θ/(θ − 1), all firms wish

to reset their price. The reason is that otherwise, they would have negative profits.

When there is deflation, firms have an incentive to lower their price to sell a

higher quantity. But there are firms with a demand shock, ϵi,0, that is high enough to

induce them to keep their nominal price constant, even for high levels of deflation.

9



Lemma 1 implies that ℓ can be written as

ℓ (π) =

1
2 γ + 1

γ ln
1
θ [p

∗(π)]1−θ

[( 1
π )−(

θ−1
θ )p∗(π)]( 1

π )
−θ , if π < θ

θ−1 ,

∞, if π ≥ θ
θ−1 .

(12)

Lemma 4 in the Appendix shows that p∗ (π) is a well-defined function.

2.3 Government

The government uses monetary policy to control nominal expenditure. It also im-

plements a uniform ad valorem subsidy on labor costs at a rate τ, which is financed

with lump-sum taxes,
T
P

= τwN. (13)

We consider a simple form of monetary policy where the growth rate of money,

µ targets nominal expenditure under full rationality,

µ = π
C∗ (ω)

C0
, (14)

where C0 is normalized to 1. An alternative policy is to target realized nominal

expenditure. One drawback of this alternative is that the resulting equilibrium might

not be unique.

In the Appendix, we also consider a dynamic version of the model in which the

monetary authority follows a Taylor rule. We show that the resulting equilibrium is

unique and that our key results are robust to this alternative formulation.

2.4 Equilibrium

We define the equilibrium as follows.

Definition 1. An equilibrium is a set of prices, (p∗, π, w), allocations, (ci, yi, ni, Πi, N),

and policies, (τn, T ), such that, given productivity A and monetary policy µ, the following

are satisfied:
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1. Given ω, ci satisfies equation (6) and N is chosen to satisfy (2) with equality, where

C∗ (ω) and N∗ (ω) solve equations (3) (4), and P satisfies (5).

2. Given (A, τ, w, π),

Πi ≡
(

Pi − (1 − τ)
W
A

)
ci, (15)

firms produce yi units of output according to (7), and set prices according to (9).

3. Policies (τn, T ) are set to satisfy (13), and (14) holds.

4. The consumption and labor market clear:

yi = ci, (16)

ˆ 1

0
nidi = N. (17)

Equations (1) and (6) imply that

C = ∆u (π)C∗ (ω) , (18)

where

∆u (π) = {χ (π)E
[
eγ( θ−1

θ )z | z ≥ ℓ (π)
]
(π)θ−1 +

[1 − χ (π)]E
[
eγ( θ−1

θ )z
]
[p∗ (π)]1−θ

} θ
θ−1 ,

is a utility distortion arising from bounded rationality.

Equations (6), (7), (16), (17) and (18) imply that

C =
∆u (π)

∆c (π)
AN, (19)

where

∆c (π) = χ (π)E [eγz | z ≥ ℓ (π)] (π)θ + [1 − χ (π)]E [eγz] [p∗ (π)]−θ
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is a production distortion arising from both bounded rationality and price disper-

sion. The following Lemma shows that the first-best allocation is not attainable due

to cognitive costs.

Lemma 2. For any π, ∆u (π) < ∆c (π).

Proof. The result follows from the repeated application of Jensen’s inequality.

Using the property,

E [eaz | z ≥ z] = E [eaz]
1 − Φ (z − a)

1 − Φ (z)
,

and defining δu and δ (π) as

δu (π) ≡ 1 − Φ
(
ℓ (π)− γ

(
θ − 1

θ

))
, (20)

δ (π) ≡ 1 − Φ (ℓ (π)− γ) , (21)

we obtain,

E
[
eγ( θ−1

θ )z | z ≥ ℓ (π)
]
= E

[
eγ( θ−1

θ )z
] δu (π)

χ (π)
.

E [eγz | z ≥ ℓ (π)] = E [eγz]
δ (π)

χ (π)
.

The distortions ∆u (π) and ∆c (π) can be simplified as

∆u (π) =
{

E
[
eγ( θ−1

θ )z
]} θ

θ−1
{

δu (π)πθ−1 + [1 − χ (π)] [p∗ (π)]1−θ
} θ

θ−1 , (22)

and

∆c (π) = E [eγz]
{

δ (π)πθ + [1 − χ (π)] [p∗ (π)]−θ
}

. (23)

The government’s budget constraint, (13), and the definition of nominal profits, (15),

imply that ´ 1
0 Πidi − T

P
=

ˆ 1

0

(
pi −

w
A

)
cidi.
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Using equation (8) to substitute w and the boundedly rational demands (6) to sub-

stitute ci, we obtain ´ 1
0 Πidi − T

P
= [1 − ϑ (π)]C∗ (ω) , (24)

where

1 − ϑ (π) ≡
ˆ 1

0

[
pi −

(
θ − 1

θ

)
1

1 − τ
p∗
]

p−θ
i di.

Using equation (24) to substitute profits net of taxes in (4), and using (3) to substitute

N∗ (ω), we obtain an expression for C∗ (ω),

C∗ (ω) =


[(

θ−1
θ

) (
1

1−τ

)
p∗ (π)

]1+η

[ϑ (π)]η


1

σ+η

A
1+η
σ+η (25)

Equation (25) describes the aggregate consumption that a fully rational household

would choose. Using (18) and (14), we obtain the equations

C (π) = ∆u (π)


[(

θ−1
θ

) (
1

1−τ

)
p∗ (π)

]1+η

[ϑ (π)]η


1

σ+η

A
1+η
σ+η (26)

and

µ = π
C (π)

∆u (π)
. (27)

Together with equation (11) and the definitions (10), (12), and (20)-(23), these equa-

tions characterize the equilibrium aggregate consumption C (π) and inflation π.

3 Rockets and Feathers

We now study the impact of cost shocks and show that our model is consistent with

the rockets and feathers phenomenon: prices rise quickly when costs increase but

fall slowly when costs fall.
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We establish our results by doing comparative statics for two productivity levels:

A = 1 + υ and A = 1/(1 + υ), where υ > 0. Log inflation responds symmetrically

to cost shocks in the economy with fully rational households since π f = 1/C f .

To study the response of our economy, we set 1 − τ = (θ − 1)/θ and the growth

rate of nominal expenditure, µ, to one.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Cost shock, ( )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

| ln
|

Response of the Absolute Value of Log Inflation, |ln |

Cost Decrease
Cost Increase

Figure 1: The impact of cost shocks on the absolute value of the logarithm of inflation

A cost increase (a productivity fall from A = 1 to A = 1/(1 + υ)) generates

inflation, while a cost decrease (a productivity rise from A = 1 to A = 1 + υ) creates

deflation. To compare the response of prices to these two types of shocks, we plot

14



in Figure 1 the absolute value of the logarithm of gross inflation as a function of the

magnitude of the shocks, υ. The orange and blue lines correspond to a cost increase

and decrease, respectively. In a fully rational model, these two lines coincide. In

absolute value, inflation’s response is the same for positive and negative cost shocks.

This symmetry is preserved in our model for infinitesimal cost shocks. However,

for larger cost shocks, prices respond more to cost increases than declines. When

costs rise significantly in our model, all firms increase prices to avoid losses, so costs

and prices rise together. When costs fall, the firms that benefit from favorable de-

mand have an incentive to keep their prices constant so that households do not re-

optimize their purchase decisions. So, on average, prices decline by less than costs.

For cost shocks higher than 43 percent, all firms change their prices. However,

for cost shocks lower than -43 percent, some firms do not lower their prices. As

the absolute value of the cost shock increases, the orange and blue lines in Figure 1

eventually converge.

The following proposition shows the main theoretical result for a configuration

of parameters that makes the equilibrium analytically tractable.

Proposition 1. Suppose σ = 1 and η = 0. Let π∗ (A) be the equilibrium level of inflation

associated with productivity A. There is υ such that if υ ≥ υ,

− ln [π∗ (1 + υ)] < ln
[

π∗
(

1
1 + υ

)]
.

See the Appendix for proof.

This proposition implies that for large enough shocks, the percentage response of

inflation is higher than the percentage response of deflation to cost shocks with the

same absolute value.
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4 Optimal Monetary Policy

We now characterize the optimal values for the labor subsidy rate, τ, and the growth

rate of nominal expenditure, π. We assume that the government has the ability to

implement any desired inflation level.

Social welfare is given by

W (τ, π) =
[C (τ, π)]1−σ − 1

1 − σ
− [N (τ, π)]1+η

1 + η
− κ [1 − χ (π)] ln

(
σ2

c
κ

)
,

where given an inflation level π and a labor subsidy τ, the equilibrium allocations

are

C (τ, π) = ∆u (π)


[(

θ−1
θ

) (
1

1−τ

)
p∗ (π)

]1+η

[ϑ (τ, π)]η


1

σ+η

A
1+η
σ+η , (28)

and

C (τ, π) =
∆u (π)

∆c (π)
AN (τ, π) . (29)

We can choose τ to satisfy equation (28). The fraction of sticky firms χ (π) does

not depend on τ. Therefore, the problem of choosing τ given π can be rewritten as

max
C1−σ

1 − σ
− N1+η

1 + η
s.t. C ≤ ∆u (π)

∆c (π)
AN.

Lemma 3. Given π, the optimal labor subsidy rate τ (π) solves

∆u (π)


[(

θ−1
θ

) (
1

1−τ(π)

)
p∗ (π)

]1+η

[ϑ (τ (π) , π)]η


1

σ+η

=

[
∆u (π)

∆c (π)

] 1+η
σ+η

,

and consumption and labor are

Copt (π) =

[
∆u (π)

∆c (π)
A
] 1+η

σ+η

,

Nopt (π) =

[
∆u (π)

∆c (π)
A
] 1−σ

σ+η

.
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We now discuss some properties of the optimal inflation rate, π.

Proposition 2 (Price stability is better than high inflation). Let Ws be the welfare level

attained when gross inflation, π ≥ θ
θ−1 . There is a value σ2

c such that when the household’s

prior uncertainty about the optimal consumption is higher than σ2
c (σ2

c ≥ σ2
c ), price stability

is better than high inflation, W (1) > Ws.

See the Appendix for proof.

The intuition for this proposition is as follows. Recall that when households opt

to gather information regarding the optimal consumption policy, they reduce their

uncertainty to κ. When the prior uncertainty is high, this reduction involves signif-

icant cognitive effort that the households deem justified in times of high inflation.

When inflation is zero, only a few firms adjust their pricing, so households incur

low cognitive costs. Because of these low costs, social welfare is higher than when

inflation is high.

Proposition 3 (Price stability is not optimal). There is a value of π < 1 such that

W (π) > W (1).

See the Appendix for proof.

The intuition for this result is as follows. When average inflation is zero, firms ex-

periencing high demand due to household decision errors do not change their prices.

Other firms slightly increase or decrease their prices to draw a new demand shock.

As a result, sizeable behavioral mistakes become ingrained, leading households to

select a highly suboptimal consumption basket. Moving away from zero inflation

mitigates this inefficiency by improving consumption choices.

Why is deflation locally better than inflation? The logic is as follows. Due to

cognitive costs, households do not choose the optimal value of ci. Instead, they

consume an amount of good i that is proportional to the optimal value. The planner

would like to reduce the consumption of goods supplied by firms that have sticky
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prices, since these firms received large demand shocks that drive consumption far

away from the optimum. When inflation is positive, the relative price of the goods

produced by firms with sticky prices falls, inducing households to consume more

of these goods and exacerbating the impact of behavioral biases. In contrast, when

inflation is negative, the relative price of the goods produced by firms with sticky

prices rises. As a result, the consumption of these goods falls, mitigating the impact

of behavioral biases.

To sharpen our intuition, it is helpful to compare the price distortions that emerge

in our economy with those in a model with Calvo (1983) sticky prices. Consider a

version of our model in which the threshold value of the shock above which firms

keep their prices constant, ℓ, is fixed. We adopt this setup because we are interested

in studying the behavior of inflation around zero, and locally, ℓ is constant. In this

economy, the firms that change prices are the same for inflation and deflation rates

with the same absolute value.

Figure 2 compares the production distortion, ∆c, in this version of our model

with that in an analogous model with Calvo pricing. In the Calvo economy, there is

no selection–all firms have the same likelihood of changing prices. Consequently, as

depicted in Figure 2, the production distortion reaches its lowest point when prices

are stable (πp = 1). In contrast, in the version of our economy with constant ℓ, the

production distortions are minimized when the rate of inflation is negative (πp < 1).

The reason is the selection effect. Firms with large demand shocks do not change

their prices, resulting in high production distortions under price stability.

5 Conclusion

This paper studies a model where households make decisions according to a dual

process framework. This framework gives rise to a new kind of price rigidity that

emerges from the interaction between consumers and monopolistic suppliers. There
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Figure 2: Production distortions as a function of the rate of inflation in a model with
Calvo pricing and a version of our economy with ℓ constant
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is a range of cost shocks for which some producers refrain from adjusting prices so

that households do not reassess their purchasing decisions.

Our model explains the intriguing ”rockets and feathers” phenomenon: prices

rise quickly when costs increase but fall slowly when costs fall. The model is also

consistent with an important empirical regularity documented by Ilut et al. (2020):

firms that receive a high demand realization are less likely to change their prices.

Unlike in other cashless economies with sticky prices, price stability is not opti-

mal in our model.

We predict that the advent of Artificial Intelligence will make the strategic ex-

ploitation of the type of consumer behavioral biases present in our model more

prevalent.
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6 Appendix

This appendix contains the proofs of our three propositions and a characterization

of the properties of the price distribution generated by the model.

6.1 Proof of lemma 1

Proof. Let

v (p, p∗) ≡
[

p −
(

θ − 1
θ

)
p∗
]

p−θ,

v∗ (π) ≡ v (p∗ (π) , p∗ (π)) ,

and

v (π) ≡ v
(

1
π

, p∗ (π)

)
.

Whenever v (π) > 0, we can write

ℓ (π) ≡ ln
{

E [eγz]
v∗ (π)

v (π)

}
.

We first show that for all π ≥ θ
θ−1 , v (π) < 0. Suppose that this property does not

hold, i.e. π ≥ θ
θ−1 but v (π) > 0. Then

v (π) > 0 ⇐⇒
[

p −
(

θ − 1
θ

)
p∗
]

p−θ ⇐⇒ p∗ (π) < 1,

which implies that

[p∗ (π)]1−θ > 1.

From equation (11),

πθ−1 =
1 − [1 − χ (π)] [p∗ (π)]1−θ

χ (π)
.

Therefore

πθ−1 =
1 − [1 − χ (π)] [p∗ (π)]1−θ

χ (π)
< 1.
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This inequality contradicts the initial assumption that π ≥ θ
θ−1 > 1. Therefore

v (π) ≤ 0, and ℓ (π) = ∞ for all π ≥ θ
θ−1 . In addition, χ = 0, and equation (11)

implies

p∗ (π) = 1.

6.2 Lemmas regarding p∗ (π)

This section shows additional lemmas regarding p∗ (π). The following lemma shows

that p∗ (π) is well-defined for π < θ
θ−1 . Let

f (π, p∗) = χ (π, p∗)
(

1
π

)1−θ

+ [1 − χ (π, p∗)] (p∗)1−θ

and

χ (π, p∗) ≡ 1 − Φ [ℓ (π, p∗)] ,

where

ℓ (π, p∗) ≡


1
γ ln

{
E [eγz]

v(p∗,p∗)
v( 1

π ,p∗)

}
, if v

(
1
π , p∗

)
> 0,

∞, if v
(

1
π , p∗

)
≤ 0.

We now show that the equation

f (π, p∗) = 1,

has a unique solution p∗ (π) for any π < θ
θ−1 .

Lemma 4. For π < θ
θ−1 , f (π, p∗) = 1 has a unique solution for p∗ that involves v (π, p∗) >

0.

Proof. For fixed π < θ
θ−1 , we have that if

1
π

≤
(

θ − 1
θ

)
p∗ ⇐⇒ p∗ ≥

(
θ

θ − 1

)
1
π

> 1,
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then ℓ (π, p∗) = ∞, and

f (π, p∗) = χ (π, p∗)
(

1
π

)1−θ

+ [1 − χ (π, p∗)] (p∗)1−θ

= (p∗)1−θ < 1.

On the other hand, as p∗ → 0,

v
(

1
π

, p∗
)
≡
[

1
π
−
(

θ − 1
θ

)
p∗
] (

1
π

)−θ

→
(

1
π

)1−θ

,

and

v (p∗, p∗) =
1
θ

[(
θ

θ − 1

)
p∗
]1−θ

→ ∞,

which means again that ℓ (π, p∗) → ∞, and therefore

f (π, p∗) → ∞.

All that is left to be done is to show that f (π, p∗) is strictly decreasing for p∗ ∈(
0,
(

θ
θ−1

)
1
π

)
, in which case we are assured there is a unique solution in this region.

We have

eγℓ(π,p∗) = E [eγz]
v (p∗, p∗)

v
(

1
π , p∗

) ⇐⇒ γℓ (π, p∗) = ln (E [eγz])+ ln [v (p∗, p∗)]− ln
[

v
(

1
π

, p∗
)]

.

and

dv (p∗, p∗)
dp∗

= (1 − θ)
1
θ

[(
θ

θ − 1

)]1−θ

(p∗)1−θ 1
p∗

= − (θ − 1) v (p∗, p∗)
1
p∗

,

and

vp∗

(
1
π

, p∗
)
= −

(
θ − 1

θ

)(
1
π

)−θ

,
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so

γℓp∗ (π, p∗) = − (θ − 1)
1
p∗

+

(
θ−1

θ

) (
1
π

)−θ

[
1
π −

(
θ−1

θ

)
p∗
] (

1
π

)−θ

= (θ − 1)

 p∗ − 1
π[

1
π −

(
θ−1

θ

)
p∗
]

p∗

 .

Therefore, we have

fp∗ (π, p∗) = χp∗ (π, p∗)
(

1
π

)1−θ

− χp∗ (π, p∗) (p∗)1−θ − (θ − 1) [1 − χ (π, p∗)] (p∗)−θ

= −ϕ [ℓ (π, p∗)]
γ

(θ − 1)

 p∗ − 1
π[

1
π −

(
θ−1

θ

)
p∗
]

p∗

 [( 1
π

)1−θ

− (p∗)1−θ

]
−

− (θ − 1) [1 − χ (π, p∗)] (p∗)−θ .

But

p∗ − 1
π

,

and (
1
π

)1−θ

− (p∗)1−θ ,

have the same sign. Therefore fp∗ (π, p∗) < 0, which completes the proof.

Lemma 5. For π < θ
θ−1 , the function p∗ (π) has elasticity

p∗′ (π)

p∗ (π)
π =

χ (π)
(

1
π

)1−θ
− Ω (π)

Ω (π) + [1 − χ (π)] [p∗ (π)]1−θ
,

where

Ω (π) ≡ ϕ [ℓ (π)]

γ

[
p∗ (π)− 1

π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

}
1
π −

(
θ−1

θ

)
p∗ (π)

> 0,
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and ℓ (π) has semi-elasticity

ℓ′ (π)π =
1
γ
(θ − 1)

 p∗ (π)− 1
π

1
π −

(
θ−1

θ

)
p∗ (π)

 [ 1

Ω (π) + [1 − χ (π)] [p∗ (π)]1−θ

]
.

Proof. The proof follows from the total differentiation of (11).

Lemma 6. The function p∗ has the following properties:

1. p∗ (1) = 1;

2. If π > 1, p∗ (π) > 1;

3. If π < 1, p∗ (π) < 1.

Proof. These properties follow directly from equation (11).

Lemma 7. ℓ (π) is minimized at π = 1, with ℓ (1) = 1
2 γ. Therefore, χ (π) and δ (π) are

maximized at 1.

Proof. The proof follows from the fact that sign [ℓ′ (π)] = sign
[

p∗ (π)− 1
π

]
from

Lemma 5 and the properties described in Lemma 6.

Lemma 8. p∗′ (π) has exactly one maximum in
(

1, θ
θ−1

)
and exactly one minimum in

(0, 1).

Proof. At any extremum,

Ω (π) = χ (π)

(
1
π

)1−θ

.

Now

Ω (π) =
ϕ [ℓ (π)]

γ

[
p∗ (π)− 1

π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

}
1
π −

(
θ−1

θ

)
p∗ (π)

,
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so

ϕ [ℓ (π)]

γ

[
p∗ (π)− 1

π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

}
1
π −

(
θ−1

θ

)
p∗ (π)

= χ (π)

(
1
π

)1−θ

⇐⇒ E [z | z ≥ ℓ (π)]

γ
=

1
π −

(
θ−1

θ

)
p∗ (π)[

p∗ (π)− 1
π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

} ( 1
π

)1−θ

. (30)

Consider the function

g (a) = E [z | z ≥ a] =
ϕ (a)

1 − Φ (a)
.

The first derivative is

g′ (a) =
−aϕ (a) [1 − Φ (a)]− ϕ (a) [−ϕ (a)]

[1 − Φ (a)]2

=
−aϕ (a)

1 − Φ (a)
+ E [z | z ≥ a]2

= −aE [z | z ≥ a] + E [z | z ≥ a]2

= {E [z | z ≥ a]− a}E [z | z ≥ a] > 0,

so g (a) is an increasing function.

Consider the region π ∈
[
1, θ

θ−1

]
. As we have shown before, ℓ (π) is strictly

increasing in this region. Therefore

E [z | z ≥ ℓ (π)]

γ

is strictly increasing in π. Moreover,

lim
a→∞

ϕ (a)
1 − Φ (a)

= lim
a→∞

−aϕ (a)
−ϕ (a)

= ∞.

Now, let’s look at

h (π) ≡
1
π −

(
θ−1

θ

)
p∗ (π)[

p∗ (π)− 1
π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

} ( 1
π

)1−θ

.
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As π → 1, the numerator is clearly finite and positive, whereas the denominator

goes to zero, so limπ→1+ h (π) = ∞. As π → θ
θ−1 , h (π) → 0. it follows that there

must be at least one value of π in this region that solves equation 30.

Suppose that we can show that at any solution for π ∈
[
1, θ

θ−1

]
, h′ (π) < 0. It

would then follow that there is exactly one solution. Suppose there are two solutions.

By continuity, there must be another solution in between. But then, the derivative

has to be positive at that solution, which is a contradiction.

Note that h (π) has to be strictly positive in
(

1, θ
θ−1

)
. So we can take logs and

differentiate to obtain

h′ (π)

h (π)
=

[(
1
π

)1−θ
]′

(
1
π

)1−θ
+

− 1
π2

1
π −

(
θ−1

θ

)
p∗ (π)

−
1

π2

p∗ (π)− 1
π

−

[(
1
π

)1−θ
]′

(
1
π

)1−θ
− [p∗ (π)]1−θ

= − (θ − 1)
(

1
π

)2−θ


[p∗ (π)]1−θ(

1
π

)1−θ
[(

1
π

)1−θ
− [p∗ (π)]1−θ

]
−

− 1
π2

 1
θ p∗ (π)[

1
π −

(
θ−1

θ

)
p∗ (π)

] [
p∗ (π)− 1

π

]
 .

which must be strictly negative in this region. The argument is exactly the same for

π ∈
(

0, θ
θ−1

)
.

We have shown that p∗′ (π) has exactly one extremum in
(

1, θ
θ−1

)
and exactly

one extremum in (0, π).

Lemma 5 implies that p∗′ (1) > 0. Since at π = θ
θ−1 , p∗ (π) = 1 and the derivative

is continuous if there were a minimum in
(

1, θ
θ−1

)
there would also have to be a

maximum, contradicting the assumption that there is only one extremum. The same

argument holds for π ∈ (0, 1).
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6.3 Proof of Proposition 1

Proof. Set σ = 1 and η = 0. The equilibrium conditions become

C (π) = ∆u (π) p∗ (π) A (31)

and

1 = π
C (π)

∆u (π)
. (32)

Substituting C (π) yields the equilibrium condition

1
A

= e [π∗ (A)] , (33)

where

e (π) ≡ πp∗ (π) .

It is evident that e (π) → 0 as π → 0 and e (π) → ∞ as π → ∞. Therefore, a solution

to (33) exists. Moreover,

e′ (π)

e (π)
π = 1 +

p∗′ (π)

p∗ (π)
π =

1

Ω (π) + [1 − χ (π)] [p∗ (π)]1−θ
,

where the last equality follows from (5). Therefore e (π) is strictly increasing in π. It

follows that the solution to (33) is unique, and that π∗′ (A) < 0.

Consider a shock υ such that

π∗
(

1
1 + υ

)
=

θ

θ − 1
.

Substituting in (33) we get

1 + υ =
θ

θ − 1
.

Now consider cost shocks 1 + υ ≥ θ
θ−1 . We want to show that π∗ (1 + υ) > 1

1+υ .

Since e (π) is strictly increasing, we simply need to show that e
(

1
1+υ

)
< 1

1+υ . Now

g
(

1
1 + υ

)
<

1
1 + υ

⇐⇒ p∗
(

1
1 + υ

)
< 1.
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But since 1 + υ ≥ θ
θ−1 , 1

1+υ ≤ 1. By Lemma 6, p∗
(

1
1+υ

)
< 1.

There are rockets and feathers when the increase in cost is such that all firms

raise prices ( 1
1+υ < θ−1

θ ). The reason is that for a symmetric fall in costs, some firms

with favorable demand still keep their prices constant. Since e (·) is continuous,

π∗ (A) is also continuous. This property implies that even when the cost rise does

not induce all firms to increase prices, there are values of υ that produce rockets and

feathers.

6.4 Proof of Proposition 2

Proof. Let
∆u (π)

∆c (π)
≡ ζ (π)

At any π ≥ θ
θ−1 , ζ (π) = ζs, a constant that is independent from π. Therefore

C (π) = Cs and N (π) = Ns are also independent from inflation. We can write

C (1) =
[

ζ (1)
ζs

] 1+η
σ+η

Cs,

and

N (1) =
[

ζ (1)
ζs

] 1−σ
σ+η

Ns.

Substituting C (1) and N (1) in W (1) we get

W (1)−Ws =


[

ζ (1)
ζs

] (1+η)(1−σ)
η+σ

− 1


[

C1−σ
s − 1
1 − σ

− N1+υ
s

1 + υ

]
+

[
ζ(1)
ζs

]1−σ
− 1

1 − σ
+ κχ (1) ln

(
σ2

c
κ

)
.

As σ2
c → ∞, the first two terms go to a finite number. The third term goes to

infinity. Therefore there must be σ2
c such that σ2

c ≥ σ2
c implies that W (1) −Ws >

0.
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6.5 Proof of Proposition 3

Proof. Let

Ã (π) ≡ ζ (π) A.

For any π,

W ′ (π) = Ã (π)
(1+η)(1−σ)

σ+η −1 Ã′ (π) + κ ln
(

σ2
c

κ

)
χ′ (π) .

At π = 1, ℓ′ (π) = 0, so χ′ (1) = δ′u (1) = δ′ (1) = 0. Since Ã (π) = Aζ (π),

W ′ (1) ∝ ζ̂ (1) ,

where ζ̂ (π) ≡ d ln ζ(π)
d ln(π)

.

At π = 1,

ζ̂ (1) = θ

[
δu (1)− χ (1)

δu (1) + 1 − χ (1)
− δ (1)− χ (1)

δ (1) + 1 − χ (1)

]
.

Since δu = 1 − Φ
[
ℓ−

(
θ−1

θ

)
γ
]

and δ = 1 − Φ (ℓ− γ), δu (1) < δ (1). Therefore

ζ̂ (1) < 0 and W ′ (1) < 0.

7 Price Distribution

We now describe the equilibrium relation between the optimal relative reset price,

f (π), and the inflation rate. For analytical convenience, we measure inflation with

the price index for an economy with fully rational households, which we denote by

π.

Figure 3 illustrates the properties described in lemmas 1, 6, and 8. The intuition

for the behavior of the reset price is as follows. When inflation is sufficiently high,

nominal marginal costs are such that the profit margin at the old price is negative.

As a result, all producers reset their prices, and therefore the relative reset price is

equal to one.
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Figure 3: Reset relative price as a function of the inflation rate
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As gross inflation goes to zero (and inflation goes to -100 percent), the real price

charged by sticky firms, P0
P = 1

π goes to infinity. In this case, almost no firm has

a demand shock ϵi that makes it worthwhile to keep a real revenue near zero. In

the limit, all producers reset their prices, again implying that the relative reset price

must equal one.

When gross inflation is equal to one, the definition of P implies that the reset

price is also equal to one regardless of the fraction of sticky firms:

1 = χ (π)πθ−1 + [1 − χ (π)] [p∗ (π)]1−θ

which implies that

p∗(1) = 1.

In this case, the old price is equal to the nominal reset price, P∗, since p∗ (π) = 1

implies that P∗ = P = P0. Therefore, firms with ϵi,0 ≥ ℓ (1) keep their price, and

firms with ϵi,0 < ℓ (1) change their price by an infinitesimal amount to induce the

household to draw a new signal.

Figure 4 shows that the minimum demand shock that makes it worthwhile for

firms to keep their price is minimized at π = 1. The old price maximizes the rational

component of demand, so it takes a relatively small demand shock to induce firms

to keep their price. This fact implies that the fraction of firms with sticky prices and

high demand is large around π = 1.

We now explore the non-monotonicity of the reset price with respect to the rate of

inflation implicit in lemma 6. This non-monotonicity reflects the interplay between

the intensive and extensive margins of price adjustment. Using the definition of P,

1 = χ (π) (π)θ−1 + [1 − χ (π)] [p∗ (π)]1−θ ,

we obtain another expression for the elasticity p̂∗ (π) ≡ p∗′(π)
p(π)

π:

p̂∗ (π) = p∗ (π) + φ (π) χ̂ (π) ,
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where

p∗ (π) ≡
[

χ (π)

1 − χ (π)

] [ 1
π

p∗ (π)

]1−θ

> 0,

φ (π) ≡
(

1
θ − 1

) [
χ (π)

1 − χ (π)

]{(
1
π

)1−θ

− [p∗ (π)]1−θ

}
,

and

χ̂ (π) ≡ χ′ (π)

χ (π)
π.

It is easy to show that φ (π) > 0 when π > 1 and φ (π) < 0 when π < 1.

The first term of f̂ (π), f (π), relates to the intensive margin of price adjustment,

and the second term, φ (π) χ̂ (π), to the extensive margin.

Along the intensive margin, there is a positive relation between the relative reset

price and inflation (p∗ (π) > 0). If inflation is high, sticky firms charge a low rel-

ative price. In equilibrium, flexible firms must charge a high relative price so that

Ei

[
p1−θ

i

]
= 1.

Along the extensive margin, there is a negative relation between the relative reset

price and inflation (φ (π) χ̂ (π) < 0). If inflation is high, the fraction of sticky firms

is low (χ̂ (π) < 0) because fewer demand shocks make keeping a low nominal price

with high nominal marginal costs worthwhile. Flexible firms must charge a smaller

relative price so that in equilibrium Ei

[
p1−θ

i

]
= 1.

It turns out that there is a gross inflation level π > 1 such that if π > π, the effect

of the extensive margin dominates and p̂∗ (π) < 0.

The dynamics of deflation are analogous to those of inflation. As inflation be-

comes more negative, the firms that change prices reduce these prices by more (the

intensive margin). But, since more firms change prices (the extensive margin), prices

do not have to fall by much to ensure that the harmonic mean of the relative prices

is one. Again, there is an inflation level π such that if π < π, p∗ (π) > p∗ (π).
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7.1 Taylor Rule

To analyze the response of inflation to cost shocks under a Taylor rule, we consider

a deterministic infinite-period version of the model. Time is indexed by t = 0, 1, . . .,

with t = 0 still defined as the pre-period in which System 1 demands are defined.

To simplify, we assume that the household is fully rational from t = 2 onwards.

In each period t, utility from consumption and labor is

Ut =
C1−σ

t − 1
1 − σ

− N1+η
t

1 + η
,

where

Ct =

(ˆ 1

0
c

θ−1
θ

i,t di

) θ
θ−1

.

In each period t, the household invests in nominal government bonds, Dt+1, at

price 1/Rt, where Rt is the nominal interest rate. The flow-of-funds constraint is

ˆ 1

0
Pi,tci,tdi +

Dt+1

Rt
≤ WtNt +

ˆ 1

0
Πi,tdi + Dt − Tt.

As in the main text, production of good i is conducted by a monopolistically

competitive firm with the following production function

yi,t = Atni,t.

The flow-of-funds constraint of the government is

Dt + τn,tWtNt =
Dt+1

Rt
+ Tt.

The monetary authority sets interest rates according to the Taylor rule

Rt =
1
β

π
ϕ
t , ϕ > 1.

We define an equilibrium in this economy as follows.
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Definition 2. An equilibrium is a sequence of prices {Wt, Pi,t}∞
t=1, allocations, {ci,t, Nt, Dt+1, Πi,t}∞

t=1,

and policies {τn,t, Tt, Rt}∞
t=1 such that, given P0 and the productivity sequence {At}∞

t=1,

1. For t ≥ 2, {ci,t, Nt, Dt+1}∞
t=2 maximize

∞

∑
t=2

βt−2Ut

subject to the flow-of-funds constraints and a transversality condition.

2. For t = 1,

ci,1 = eγϵ̃i,1 p−θ
i,1 C∗

1 ,

ϵ̃i,1 =

{
ϵi,0, if Pi,1 = P0

ϵi,1, if Pi,1 ̸= P0
,

ϵi,t ∼ N (0, 1) ,

D2 = D∗
2 ,

and N1 is chosen to satisfy the flow-of-funds constraint in period 1. C∗
1 and D∗

2 are the

period-1 aggregate consumption and savings plans for period one that maximize
∞

∑
t=1

βt−1Ut

subject to the flow-of-funds constraints and a transversality condition.

3. In each period t, firms choose Pi,t, ni,t and yi,t to maximize expected profits Et [Πi,t]

subject to yi,t = Atni,t and yi,t = ci,t.

4. Policies satisfy the flow-of-funds constraints

Dt + τn,tWtNt =
Dt+1

Rt
+ Tt,

and the nominal interest rate satisfies

Rt =
1
β

π
ϕ
t ,

where πt ≡ Pt
Pt−1

.
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5. The labor market clears:
´ 1

0 ni,tdi = Nt.

Condition 1 states that the household is fully rational from period two onwards.

Condition 2 states that in period one, consumption of the differentiated goods solve

the bounded rationality problem in the main text, nominal government savings are

rationally chosen, and labor is chosen to satisfy the budget constraint. Condition

3 incorporates the fact that because the household is rational from period two on-

wards, and prices are not rigid, the problem of the firm is static.

We consider the equilibrium associated with ad valorem subsidies satisfying

1 − τn,t =
θ − 1

θ
, t ≥ 1

and a productivity sequence

At = 1, t ≥ 2.

Equilibrium For t ≥ 2 From period two onwards, consumption and labor satisfy

the conditions

ci,t = p−θ
i,t Ct, t ≥ 2,

Cσ
t Nη

t = wt, t ≥ 2,

1
β

(
Ct+1

Ct

)σ

= Rt. t ≥ 2.

The price level is given by

P1−θ
t =

ˆ 1

0
P1−θ

i,t di.

Since the consumer is fully rational and 1 − τn,t = θ−1
θ , it follows that all firms set

the nominal price to

Pi,t =
Wt

At
,

which implies that pi,t ≡ Pi,t/Pt = 1 and wt ≡ Wt
Pt

= At = 1. It follows that

ci,t = Ct = Nt = 1.
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Since the government sets the nominal interest rate according to an interest rate

rule with a zero inflation target, it uniquely implements the sequence

πt = 1, t ≥ 2.

Firms’ Problem At t = 1 The problem of the firms in period 1 is identical to that

described in the main text. Therefore

pi,1 =

{
p∗1 , if ϵi,0 ≥ ℓ
1

π1
, if ϵi,0 < ℓ

,

where

p∗1 ≡ w1

A1

and

ℓ ≡

E [eγz]
1
θ (p∗1)

1−θ(
1

π1
− θ−1

θ p∗1
)(

1
π1

)−θ , 1
π1

> θ−1
θ p∗1

∞, 1
π1

≤ θ−1
θ p∗1

.

Using

P1−θ
1 =

ˆ 1

0
P1−θ

i,1 di

It follows that p∗1 can be implicitly defined as the same function of inflation used in

the main text, i.e., p∗1 = p∗1 (π1).

Household’s Problem at t = 1 As before, to obtain the boundedly rational de-

mands in period 1, we need to characterize the rational plans in that period. From

the point of view of period 1, the conditions that characterize the solution to the

utility-maximization problem include

c∗i,t = p−θ
i,1 C∗

t ,

(C∗
t )

σ (N∗
t )

η = wt,
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1
β

(
C∗

t+1
C∗

t

)σ

=
Rt

πt+1
,

∞

∑
t=1

Q1,tPtC∗
t =

∞

∑
t=1

Q1,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D1,

Qk,t ≡
{

1 , if t = k
∏t−1

τ=k
1

Rτ
, if t > k

,

It is convenient to also consider the equations

∞

∑
t=2

Q2,tPtC∗
t =

∞

∑
t=2

Q2,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D∗

2

P1C∗
1 +

D∗
2

R1
= W1N∗

1 +

ˆ 1

0
Πi,1di + D1 − T1.

Plugging the equilibrium variables in the utility-maximization problem of period 1,

we conclude that the rational plans in period 1 satisfy

C∗
t = C∗

2 , t ≥ 2,

N∗
t = N∗

2 , t ≥ 2,

(C∗
2 )

σ (N∗
2 )

η = 1.

Combining the intertemporal household and government budget constraints from

period two onwards,

∞

∑
t=2

Q2,tPtC∗
t =

∞

∑
t=2

Q2,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D∗

2

⇐⇒
∞

∑
t=2

Q2,tPtC∗
t =

∞

∑
t=2

Q2,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − τn,tWtNt

]
− D2 + D∗

2

⇐⇒ 1
1 − β

C∗
2 =

1
1 − β

N∗
2 +

D∗
2 − D2

P2
.

From condition 2 in the equilibrium definition, D2 = D∗
2 and therefore

C∗
2 = N∗

2 .
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Combining with the intratemporal condition for consumption and labor in period 2,

C∗
2 = N∗

2 = 1.

Using the intertemporal budget constraint for period 1,

∞

∑
t=1

Q1,tPtC∗
t =

∞

∑
t=1

Q1,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D1

⇐⇒ P1C∗
1 +

1
R1

1
1 − β

P1C∗
2 = W1N∗

1 +
1

R1

1
1 − β

P1N∗
2 +

ˆ 1

0
(Pi,1ci,1 − W1ni,1) di

⇐⇒ C∗
1 = w1N∗

1 +

ˆ 1

0

(
pi,1 −

w1

A1

)
ci,1di.

Since

ci,1 = eγϵ̃i,1 p−θ
i,1 C∗

1 ,

We obtain the same expression for rational consumption in period 1:

C∗
1 (π1) =

{
[A1p∗1 (π1)]

1+η

[ϑ (π1)]
η

} 1
σ+η

.

Equilibrium Conditions in Period 1 Using the fact that C∗
2 = 1, the Euler equation

in period 1 implies
1
β

[
1

C∗
1 (π1)

]σ

= R1.

Combining with the Taylor rule, we obtain the two equilibrium conditions

C∗
1 (π1) =

{
[A1p∗1 (π1)]

1+η

[ϑ (π1)]
η

} 1
σ+η

,

and

C∗
1 (π1) = π

− ϕ
σ

1 .
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Rockets and Feathers Consider again productivity levels

A1,H = 1 + υ

and

A1,L =
1

1 + υ
,

with υ > 0. Let π1,L (υ) be the equilibrium inflation associated with a shock of size

υ that increases costs, and π1,H (υ) the equilibrium inflation associated with a shock

of size υ that decreases costs. We can now show an analogous rockets and feathers

proposition.

Proposition 4 (Rockets and Feathers With Taylor Rule). Suppose σ = 1 and η = 0. If

ϕ > 1, there is υ such that if υ ≥ υ,

|ln π1,L (υ)| > |ln π1,H (υ)| .

Proof. With σ = 1 and η = 1, we get

C∗
1 (π1) = A1p∗1 (π1)

from the intratemporal conditions and

C∗
1 (π1) = π

−ϕ
1

from the Euler equation. Combining the two, the equilibrium condition for inflation

is
1

A1
= p∗1 (π1)π

ϕ
1 .

Let eTaylor (π1) ≡ p∗1 (π1)π
ϕ
1 . If ϕ > 1, it is still true that eTaylor is strictly increasing

in inflation, since

eTaylor (π1) = e (π1)π
ϕ−1
1 .

As in proposition 1, e (π1) is strictly increasing. When ϕ > 1, so is eTaylor (π1). There-

fore, the equilibrium is unique, and inflation decreases in A1.
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As before, there is a value of υ such that π1,L = θ
θ−1 and p∗1 (π1,L) = 1:

1 + υ =

(
θ

θ − 1

)ϕ

.

To show that for this υ, |ln π1,L (υ)| > |ln π1,H (υ)|, we need only to show that

eTaylor

(
θ − 1

θ

)
<

(
θ − 1

θ

)ϕ

.

Substituting,

p∗1 (π1,H (υ))

(
θ − 1

θ

)ϕ

<

(
θ − 1

θ

)ϕ

⇐⇒ p∗1 (π1,H (υ)) < 1.

This inequality holds, since θ−1
θ < 1, in the region where p∗1 < 1. This statement

completes the proof.
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