The Macroeconomics of Liquidity in Financial Intermediation^a

Davide Porcellacchia¹, Kevin Sheedy²

 1^{st} July 2024

¹European Central Bank, ²London School of Economics

^aThis paper represents our own views, not necessarily those of the European Central Bank or Eurosystem.

Introduction

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Introduction

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage, demand liquid assets, pay spread on deposits/bank debt.
- 2. Amplification and propagation of shocks through spread dynamics.

Introduction

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage, demand liquid assets, pay spread on deposits/bank debt.
- 2. Amplification and propagation of shocks through spread dynamics.

Macroeconomic effects of government-supplied liquid assets (e.g., reserves)?

- It reduces banks' run risk \implies supports lending.
- How and how much liquidity should be supplied?

Motivating evidence Expansions and recessions

Bank-funding spreads positively correlated with liquidity premium. (daily US data)

- Bank-funding spread = 3M LIBOR 3M GC repo rate.
- Liquidity premium = 3M GC repo rate 3M T-Bill rate.

Literature

Macro-banking: Gertler and Kiyotaki (2010), Gertler and Karadi (2011), Brunnermeier and Sannikov (2014), Gertler, Kiyotaki, and Prestipino (2020), Fernández-Villaverde et al. (2023), Amador and Bianchi (2024).

 \rightarrow different friction.

Banking theory: Diamond and Dybvig (1983), Goldstein and Pauzner (2005).

 \rightarrow in general equilibrium.

Demand for reserves/liquid assets: Poole (1968), Drechsler et al. (2018), Bianchi and Bigio (2022), d'Avernas and Vandeweyer (forthcoming), Li (forthcoming).

 $\rightarrow\,$ different micro-foundation.

Roadmap

- 1. Coordination game among bank creditors.
 - \implies no-run condition.

- 2. Macro model
 - RBC: firms, households, and government.
 - Banks.

- 3. Calibration and quantitative exercise.
- 4. Empirical evidence.

In each period,

- 1. banks with net worth N choose:
 - liquidity ratio m,
 - capital ratio n.
- 2. Households choose whether or not to hold the deposits.

Because of illiquid-asset liquidation cost $1 - \lambda$, bank is bankrupt if too few households hold deposits.

In each period,

- 1. banks with net worth N choose:
 - liquidity ratio m,
 - capital ratio n.
- 2. Households choose whether or not to hold the deposits.

Because of illiquid-asset liquidation cost $1 - \lambda$, bank is bankrupt if too few households hold deposits.

Coordination friction: departure from common knowledge about bank fundamentals.

In each period,

- 1. banks with net worth N choose:
 - liquidity ratio m,
 - capital ratio n.
- 2. Households choose whether or not to hold the deposits.

Because of illiquid-asset liquidation cost $1 - \lambda$, bank is bankrupt if too few households hold deposits.

Coordination friction: departure from common knowledge about bank fundamentals.

No-run condition:

$$\underbrace{j-\rho}_{\text{Funding spread}} \geq \underbrace{\theta}_{\text{LGD}} \underbrace{\left(\frac{1-n}{\lambda+(1-\lambda)m}-1\right)}_{\text{Bank fragility}}$$
(1)

Illustrate with RBC model, but can also embed in full NK DSGE model.

Agents:

- 1. Households save in bank debt, supply labour and consume.
- 2. Competitive firms rent physical capital from banks and hire labour.
- 3. Government supplies liquid assets (government bonds) with lump-sum taxes/transfers.

Assets:

- 1. Physical capital with return r.
- 2. Bank debt with return *j*.
- 3. Liquid assets with return *i*.
- ρ is $MRS_{t,t+1}$

Bank behaviour

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Key trade-off: Return vs funding spread.

Bank behaviour

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Key trade-off: Return vs funding spread.

Liquidity demand:

$$\underbrace{j-\rho}_{\text{funding spread}} = \theta^{1/2} \underbrace{(\rho-i)}_{\substack{\text{liquidity}\\ \text{premium}}}^{1/2}.$$
 (2)

Credit supply:

$$\underbrace{r-i}_{\text{credit spread}} = 4(1-\lambda) \left[\frac{1}{2} \theta^{1/2} + \frac{1}{2} \underbrace{(\rho-i)}_{\text{liquidity}} \right]^2.$$
(3)

Increase in supply of liquid assets Calibration

Capital-destruction shock

9/19

Empirical test

Model:

$$\mathsf{FS}_t = \alpha + \beta \, \mathsf{LP}_t + \epsilon_t \tag{4}$$

• Theory implies $\beta > 0$.

Empirical test

Model:

$$\mathsf{FS}_t = \alpha + \beta \, \mathsf{LP}_t + \epsilon_t$$

• Theory implies $\beta > 0$.

Empirical strategy:

- Controls:
 - lags (11 variables for 80 periods),
 - time dummies,
 - linear trend.
- Outstanding US Treasuries as instrument:
 - Relevant [Krishnamurthy and Li (2004)].
 - Predetermined at daily frequency \implies valid.

(4)

Empirical test

Model:

$$\mathsf{FS}_t = \alpha + \beta \, \mathsf{LP}_t + \epsilon_t$$

• Theory implies $\beta > 0$.

Empirical strategy:

• Controls:

- lags (11 variables for 80 periods),
- time dummies,
- linear trend.
- Outstanding US Treasuries as instrument:
 - Relevant [Krishnamurthy and Li (2004)].
 - Predetermined at daily frequency \implies valid.

Lic	quidity premium	0.99** (0.45)	
La Ti	gs me dummies	Ŷ	
Lir	near trend	Ý	
R-	squared	97%	
Oł	oservations	4077	
1^{st}	-stage F statistic	15	
Vote 1	: Heteroskedasticity-	cons. SEs.	
Vote 2	2: Fund. spr. = 3M I	_IBOR - 3M repor	ate.
.iq. pr	em. = 3M repo rate	- 3M T-bill rate.	10/19

(4)

Funding spread

Conclusion

Macro model + bank fragility.

Coordination game among bank creditors:

- 1. Fragility is costly because funding costs \uparrow .
- 2. Leverage \downarrow and liquidity $\uparrow \implies$ fragility \downarrow .

Conclusion

Macro model + bank fragility.

Coordination game among bank creditors:

- 1. Fragility is costly because funding costs $\uparrow.$
- 2. Leverage \downarrow and liquidity $\uparrow \implies$ fragility $\downarrow.$

Macro model:

- 1. Demand for liquid assets.
- 2. Amplification and propagation of shocks via spreads.
 - Capital-destruction shock \implies GDP \downarrow by 40% more and more persistently.
- 3. Liquidity supports bank lending and economic activity.
 - Liquidity shock that reduces liquidity premium by 15 bps \implies GDP \uparrow by 0.2%.

Conclusion

Macro model + bank fragility.

Coordination game among bank creditors:

- 1. Fragility is costly because funding costs $\uparrow.$
- 2. Leverage \downarrow and liquidity $\uparrow \implies$ fragility $\downarrow.$

Macro model:

- 1. Demand for liquid assets.
- 2. Amplification and propagation of shocks via spreads.
 - Capital-destruction shock \implies GDP \downarrow by 40% more and more persistently.
- 3. Liquidity supports bank lending and economic activity.
 - Liquidity shock that reduces liquidity premium by 15 bps \implies GDP \uparrow by 0.2%.

Empirical evidence shows supply of liquidity reduces bank-funding spread.

Appendix: Expansions and recessions Back

12/19

Calibration: targets and parameters Back

• A model period is three months. • Data 1991–2008.

			Description	Notation	Value
Description	Notation	Value	Bank-asset liquidity relative to T-bill	s λ	0.681
Real Treasury Bill rate	i	1.5%/4	Loss given bank default	θ	4.4%/4
		0.40/ /4	Minimum dividend distribution	γ	8.4%/4
Real return on bank equity	q	8.4%/4	Subjective discount factor	β	$(0.984)^{1/4}$
Credit spread	r — i	2.2%/4		1	()
		,	Elasticity of intertemporal substitution	on σ	1
Liquidity premium	ho - i	0.28%/4	Frisch elasticity of labour supply	ψ	3
Bank capital ratio	п	8.8%	Capital elasticity of output	α	1/3

Depreciation rate

7.5%/4

δ

One-off 5% capital destruction shock Back

14/19

Appendix: Auction timing **Back**

Appendix: Autocorrelation of identified error Interview

16/19

Appendix: Alternative specifications (Back

Funding spread	IV	IV	IV
Liquidity premium	1.0**	0.31***	1.28***
	(0.48)	(0.04)	(0.06)
Lags	Υ	Ν	Ν
Time dummies	Ν	Y	Ν
Linear trend	Y	Y	Y
R-squared	96%	57%	17%
Observations	4077	4157	4157
1 st -stage F statistic	13	1560	1823

- Note 1: Outstanding US Treasuries as external instrument.
- Note 2: Heteroskedasticity-consistent standard errors in parentheses.
- *Note 3*: Funding spread = 3M LIBOR 3M repo rate. Liquidity premium = 3M repo rate 3M T-bill rate.

Appendix: Lag selection – Robustness Back

18/19

Funding spread	OLS	OLS	OLS	OLS
Liquidity premium	0.75***	0.40***	-0.30***	-0.30***
	(0.06)	(0.04)	(0.06)	(0.06)
Lags	Ν	Ν	Y	Y
Time dummies	Ν	Y	Ν	Y
Linear trend	Υ	Y	Υ	Y
R-squared	23%	57%	99%	99%
Observations	4157	4157	4077	4077

Note 1: Heteroskedasticity-consistent standard errors in parentheses.

Note 2: Funding spread = 3M LIBOR - 3M repo rate. Liquidity premium = 3M repo rate - 3M T-bill rate.