Demand learning and firm dynamics : evidence from exporters

N. BERMAN¹ V. REBEYROL² V. VICARD³

¹ IHEID (Geneva) & CEPR ² Toulouse School of Econ. ³ Banque de France

Compnet conference 'Enhancing competitiveness and fostering sustainable growth' June, 26th 2015

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Motivation

Key role of new firms in industry/aggregate dynamics

- Firms start small, few survive their first years...
- ...but the survivors grow fast.
- After a decade, new firms/markets account for more than half of French exports.

What are the determinants of firm dynamics? - A still open question

- Consistent with several theories : stochastic productivity growth, endogenous R&D investment, demand learning...
- Hard to separate out the role of a specific channel

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Conclusion

Motivation

Key role of new firms in industry/aggregate dynamics

- Firms start small, few survive their first years...
- ...but the survivors grow fast.
- After a decade, new firms/markets account for more than half of French exports.

What are the determinants of firm dynamics? - A still open question

- Consistent with several theories : stochastic productivity growth, endogenous R&D investment, demand learning...
- Hard to separate out the role of a specific channel

\rightarrow This paper : direct evidence that demand learning is an important driver of post-entry firm dynamics

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Our paper

- Derives the following core prediction from a standard trade model with Bayesian demand learning (Jovanovic, 1982) :
 - Younger firms update more their belief following a new demand signal

3

イロン 不同 とくほう イヨン

Our paper

- Derives the following core prediction from a standard trade model with Bayesian demand learning (Jovanovic, 1982) :
 - Younger firms update more their belief following a new demand signal
- 2 Proposes an empirical methodology which allows :
 - purging firm quantities and prices from market-specific conditions and supply-side dynamics;
 - identifying separately the firms' belief and the demand shocks.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Our paper

- Derives the following core prediction from a standard trade model with Bayesian demand learning (Jovanovic, 1982) :
 - Younger firms update more their belief following a new demand signal
- 2 Proposes an empirical methodology which allows :
 - purging firm quantities and prices from market-specific conditions and supply-side dynamics;
 - identifying separately the firms' belief and the demand shocks.
- 3 Tests this prediction using detailed data from the French customs

What we do

Our paper

- **1** Derives the following core prediction from a standard trade model with Bayesian demand learning (Jovanovic, 1982) :
 - Younger firms update more their belief following a new demand signal
- 2 Proposes an empirical methodology which allows :
 - purging firm quantities and prices from market-specific conditions and supply-side dynamics;
 - identifying separately the firms' belief and the demand shocks.
- 3 Tests this prediction using detailed data from the French customs
- 4 Considers the implications of the model for firm growth and survival

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Main results

- Strong support for the core prediction of learning model : updating is strong in the first years and declines over time.
- 2 Weakened learning process in more uncertain environments.
- Our model generates the decline in growth rates with age, conditional on size, observed in the data.
- (Firm survival is also consistent with our learning model.)

-

Main results

- Strong support for the core prediction of learning model : updating is strong in the first years and declines over time.
- 2 Weakened learning process in more uncertain environments.
- Our model generates the decline in growth rates with age, conditional on size, observed in the data.
- (Firm survival is also consistent with our learning model.)

Implications for

- Models of firm and industry dynamics
- The effect of uncertainty shocks on aggregate outcomes
- Policies supporting small firms

N. Berman, V. Rebeyrol, V. Vicard

(ロ) (同) (三) (三) (三) (○)

- Empirical literature on the dynamics of
 - Firms : Evans (1987), Dunne *et al.* (1989), Cabral and Mata (2003)...
 - Exporters : Eaton *et al.* (2007), Berthou and Vicard (2014), Bernard *et al.* (2014) .

Stylized facts

Identifi

Literature

- Empirical literature on the dynamics of
 - Firms : Evans (1987), Dunne *et al.* (1989), Cabral and Mata (2003)...
 - Exporters : Eaton *et al.* (2007), Berthou and Vicard (2014), Bernard *et al.* (2014) .
- Models of firm and exporter dynamics featuring
 - Learning : Jovanovic (1982), Albornoz *et al.* (2012), Eaton *et al.* (2014), Fernandes and Tang (2014), Timoshenko (2012)
 - Stochastic productivity growth : Hopenhayn (1992), Luttmer (2007, 2011), Arkolakis (2013).
 - Endogenous productivity variations : Constantini and Melitz (2007), Klette and Kortum (2004), Rossi-Hansberg and Wright (2007).

Literature

- Empirical literature on the dynamics of
 - Firms : Evans (1987), Dunne *et al.* (1989), Cabral and Mata (2003)...
 - Exporters : Eaton *et al.* (2007), Berthou and Vicard (2014), Bernard *et al.* (2014) .
- Models of firm and exporter dynamics featuring
 - Learning : Jovanovic (1982), Albornoz *et al.* (2012), Eaton *et al.* (2014), Fernandes and Tang (2014), Timoshenko (2012)
 - Stochastic productivity growth : Hopenhayn (1992), Luttmer (2007, 2011), Arkolakis (2013).
 - Endogenous productivity variations : Constantini and Melitz (2007), Klette and Kortum (2004), Rossi-Hansberg and Wright (2007).
- Methodology : Foster *et al.* (2008, 2013), Li (2014)
- Active vs. passive learning : Pakes and Ericson (1998).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

1 Introduction

- 2 Exporter dynamics : some stylized facts
- **3** Model and main prediction
- **4** Identification
- **5** Baseline results
- 6 Growth and survival

7 Conclusion

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Introduction

Stylized facts

Model

Identification

Baseline Results

Growth

Growth and survival

Conclusion

Exporter dynamics : some stylized facts

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

3

・ロト ・回ト ・ヨト ・ヨト

Data from the French customs

- $\rightarrow\,$ Quasi-exhaustive coverage of French exporters
- $\rightarrow\,$ Values and quantities
- $\rightarrow\,$ Disaggregated by firm, 6 digit product, destination country and year
- \rightarrow Around 100,000 firms selling more than 4,000 products to 180 destination countries
- \rightarrow Period 1994-2005 (focus on 1996-2005)

= nar

イロン 不同 とくほう イヨン

Conclusion

Decomposition of the dynamics of French exports

$\ensuremath{\mathrm{TABLE}}$: Shares in end-of-period French aggregate exports

	Average yoy 1996/2005	Overall 1996/2005
New firms	2.4%	26.2%
Initial size	-	16.5%
Growth since entry	-	9.7%
New product-destination	9.9%	27.3%
Initial size	-	16.1%
Growth since entry	-	11.3%
Incumbent firm-product-destination	87.7%	46.5%
Total	100%	100%

Note : sample of HS6 fixed over time. Source : French Customs.

3

Supply vs demand side dynamics

Post-entry sales growth is primarily due to firm-market-specific factors (i.e. firm-destination-product) :

- Regressing firm-market sales growth on market-time FE, $R^2 = 0.12$
- Adding firm-product-time dummies (supply side factors), $R^2 = 0.44$
- The rest is firm-market-time specific...
- ... and largely related to firm learning : $R^2 = 0.87$ when our estimate of firms beliefs is included

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Introduction Stylized facts Model Identification Baseline Results Growth and survival Conclusion

Growth declines with age, conditional on size...

Coefficients obtained from of a regression of the log change of firm sales (resp. variance of firms' sales within cohorts of firms on a product-destination market and exit) on age bins, firm size and year and sector dummies (omitted category : age of seven years or more).

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

-

イロト イポト イヨト イヨト

Model

Conclusion

...as does the volatility

Coefficients obtained from of a regression of the log change of firm sales (resp. variance of firms' sales within cohorts of firms on a product-destination market and exit) on age bins, firm size and year and sector dummies (omitted category : age of seven years or more).

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

-

・ロト ・四ト ・ヨト ・ヨト

Introduction

Stylized facts Model

Identification

Baseline Results

ts Gro

Growth and survival

Conclusion

A simple model of firm age and growth

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

・ロン ・四 と ・ ヨ と ・ ヨ と

Notations. Index firm by i, destination by j, product by k and time t

Firm-market specific demand. $q_{ijkt} = e^{a_{ijkt}} \rho_{ijkt}^{-\sigma_k} \frac{\mu_k Y_{jt}}{\rho_{jikt}^{1-\sigma_k}}$

 σ_k is the elasticity of substitution, Y_{jt} is total expenditure, P_{jkt} the ideal price index

 a_{ijkt} is a demand parameter with $a_{ijkt} = \overline{a_{ijk}} + \varepsilon_{ijkt}$, and ε_{ijkt} a white noise

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Production-side assumptions.

(i) Quantity decision made before demand observed in each market(ii) Productivity is *ikt*-specific (does not vary across destination)

Per-period profits. $\pi_{ijkt} = q_{ijkt}p_{ijkt} - \frac{w_{it}}{\varphi_{ikt}}q_{ijkt} - F_{ijk}$

with F_{ijk} a per-period fixed cost, φ_{ikt} productivity, w_{it} the wage rate

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Model

Learning

Learning. $a_{ijkt} = \overline{a_{ijk}} + \varepsilon_{ijkt}$, firms uncertain about $\overline{a_{ijk}}$

Prior beliefs $\sim N(\theta_0, \sigma_0^2)$ before observing any signal a_{ijkt} , and $\varepsilon_{ijkt} \sim N(0, \sigma_{\varepsilon}^2)$ (known)

Bayesian learning. Posteriors' beliefs about $\overline{a_{ijk}}$ after t signals :

$$\begin{split} \widetilde{\theta}_t &= \theta_0 \frac{\frac{1}{\sigma_0^2}}{\frac{1}{\sigma_0^2} + \frac{t}{\sigma_\epsilon^2}} + \overline{a}_t \frac{\frac{t}{\sigma_\epsilon^2}}{\frac{1}{\sigma_0^2} + \frac{t}{\sigma_\epsilon^2}} \qquad \widetilde{\sigma}_t^2 = \frac{1}{\frac{1}{\sigma_0^2} + \frac{t}{\sigma_\epsilon^2}} \end{split}$$
 with $\overline{a}_t &= \left(\frac{1}{t} \sum_t a_{ijkt}\right)$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Model

Learning

Learning. $a_{ijkt} = \overline{a_{ijk}} + \varepsilon_{ijkt}$, firms uncertain about $\overline{a_{ijk}}$

Prior beliefs $\sim N(\theta_0, \sigma_0^2)$ before observing any signal a_{ijkt} , and $\varepsilon_{ijkt} \sim N(0, \sigma_{\varepsilon}^2)$ (known)

Bayesian learning. Posteriors' beliefs about $\overline{a_{ijk}}$ after t signals :

$$\widetilde{\theta}_t = \theta_0 \frac{\frac{1}{\sigma_0^2}}{\frac{1}{\sigma_0^2} + \frac{t}{\sigma_\epsilon^2}} + \overline{a}_t \frac{\frac{t}{\sigma_\epsilon^2}}{\frac{1}{\sigma_0^2} + \frac{t}{\sigma_\epsilon^2}} \qquad \widetilde{\sigma}_t^2 = \frac{1}{\frac{1}{\sigma_0^2} + \frac{t}{\sigma_\epsilon^2}}$$

with $\overline{a}_t = \left(\frac{1}{t}\sum_t a_{ijkt}\right)$

Recursive formulation $\Delta \tilde{\theta}_t = g_t \left(a_{ijkt} - \tilde{\theta}_{t-1} \right)$ with $g_t = \frac{1}{\frac{\sigma_t^2}{\sigma_t^2} + t}$

 \rightarrow Firms revise their expectations when $a_{ijkt} \neq \tilde{\theta}_{t-1}$, especially when they are "young"

Optimal quantities and prices.

$$q_{ijkt}^{*} = \underbrace{\left(\frac{\sigma_{k}}{\sigma_{k}-1}\frac{w_{it}}{\varphi_{ikt}}\right)^{-\sigma_{k}}}_{C_{ikt}^{q}}\underbrace{\left(\frac{\mu_{k}Y_{jt}}{P_{jkt}^{1-\sigma_{k}}}\right)}_{C_{jkt}^{q}}\underbrace{\mathsf{E}_{t-1}\left[e^{\frac{s_{ijkt}}{\sigma_{k}}}\right]^{\sigma_{k}}}_{Z_{ijkt}^{q}}$$
$$p_{ijkt}^{*} = \underbrace{\left(\frac{\sigma_{k}}{\sigma_{k}-1}\frac{w_{it}}{\varphi_{ikt}}\right)}_{C_{jkt}^{q}}\underbrace{e^{\frac{s_{ijkt}}{\sigma_{k}}}\mathsf{E}_{t-1}\left[e^{\frac{s_{ijkt}}{\sigma_{k}}}\right]^{-1}}_{Z_{ijkt}^{q}}$$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

And we can show that :

$$\Delta \ln \mathsf{E}_t \left[e^{\frac{s_{ijkt+1}}{\sigma_k}} \right] = \frac{1}{\sigma_k} \left(\Delta \widetilde{\theta}_t + \frac{\widetilde{\sigma}_t^2 - \widetilde{\sigma}_{t-1}^2}{2\sigma_k} \right)$$

Prediction # 1 (updating) : A new signal a_{ijkt} leads to a larger updating of the belief, the younger the firm is.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ─ 臣 ─ のへ(?)

Introduction

Stylized facts

Model

Identification

Baseline Results

Growth and survival

Conclusion

Identification strategy

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Introduction

Stylized facts Model

Identification

Baseline Results

Grow

Growth and survival

Conclusion

Identification strategy

- $1/\ensuremath{\,\mbox{we}}$ purge sales from supply-side and market-specific factors
- $2/\ensuremath{\,\mbox{we}}$ separate demand shocks from beliefs

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Identification strategy

1/ we purge sales from supply-side and market-specific factors

$$\begin{aligned} \ln q_{ijkt} &= \mathbf{F} \mathbf{E}_{ikt} + \mathbf{F} \mathbf{E}_{jkt} + \varepsilon^{q}_{ijkt} \\ \ln p_{ijkt} &= \mathbf{F} \mathbf{E}_{ikt} + \varepsilon^{p}_{ijkt} \end{aligned}$$

Which yields :

$$\begin{split} \varepsilon_{ijkt}^{q} &= \ln Z_{ijkt}^{q} = \sigma_{k} \ln \mathsf{E}_{t-1} \left[e^{\frac{a_{ijkt}}{\sigma_{k}}} \right] \\ \varepsilon_{ijkt}^{p} &= \ln Z_{ijkt}^{p} = \frac{1}{\sigma_{k}} a_{ijkt} - \ln \mathsf{E}_{t-1} \left[e^{\frac{a_{ijkt}}{\sigma_{k}}} \right] \end{split}$$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Identification strategy

2/ we separate demand shocks from beliefs

Model

Regress ε_{ijkt}^{p} on ε_{ijkt}^{q} for each product k :

$$\left(\frac{1}{\sigma_k}a_{ijkt} - \ln \mathsf{E}_{t-1}\left[e^{\frac{a_{ijkt}}{\sigma_k}}\right]\right) = \beta\left(\sigma_k \ln \mathsf{E}_{t-1}\left[e^{\frac{a_{ijkt}}{\sigma_k}}\right]\right) + v_{ijkt}$$

Which yields

$$\widehat{eta} = -rac{1}{\sigma_k} \quad ext{and} \quad \widehat{v}_{ijkt} = rac{1}{\sigma_k} a_{ijkt}$$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Introduction

Stylized facts

Model

Identification

Baseline Results

Growth and survival

Conclusion

Baseline results

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Descriptive statistics

	Obs.	Mean	S.D.	Q1	Median	Q3
In q _{ijkt}	6472999	5.28	3.05	3.04	5.06	7.27
In p _{ijkt}	6472999	3.03	1.87	1.82	3.00	4.19
$\Delta \varepsilon_{iikt}^{q}$	2726474	0.03	1.37	-0.74	0.02	0.80
$\Delta \varepsilon_{iikt}^{p}$	2726474	0.00	0.68	-0.24	0.00	0.24
v _{ijkt}	2726474	0.00	0.58	-0.25	0.00	0.24
σ_k	2675182	11.15	8.07	5.81	8.10	13.94
Age ¹ _{ijkt}	2726474	3.48	1.78	2	3	4

Source : Authors computations from French Customs data.

Definitions of market-specific firm age : Age_{*ijkt*} is the nbr of consecutive years of export (i.e. reset after 1 year of exit)

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Descriptive statistics

	Obs.	Mean	S.D.	Q1	Median	Q3
In q _{ijkt}	6472999	5.28	3.05	3.04	5.06	7.27
In p _{ijkt}	6472999	3.03	1.87	1.82	3.00	4.19
$\Delta \varepsilon_{iikt}^{q}$	2726474	0.03	1.37	-0.74	0.02	0.80
$\Delta \varepsilon_{iikt}^{p}$	2726474	0.00	0.68	-0.24	0.00	0.24
 Vijkt	2726474	0.00	0.58	-0.25	0.00	0.24
σ_k	2675182	11.15	8.07	5.81	8.10	13.94
Age ¹ _{ijkt}	2726474	3.48	1.78	2	3	4

Source : Authors computations from French Customs data.

 \rightarrow Estimate of σ_k in the range of existing studies (using very different methodologies and data – Broda and Weinstein, 2006, Romalis, 2007)

 $\rightarrow \sigma_k$ smaller for differentiated goods than for referenced priced and homogeneous goods (medians : 8.6/9.9/13.9)

-

Prediction # 1 (updating) : A new signal a_{ijkt} leads to a larger updating of the belief, the younger the firm is.

We want to estimate :

$$\Delta \varepsilon_{ijkt}^{q} = \sum_{g=2}^{G} \alpha_{g} (\hat{v}_{ijk,t-1} \times \mathsf{AGE}_{ijkt}^{g}) + \sum_{g=1}^{G} \beta_{g} \mathsf{AGE}_{ijkt}^{g} + u_{ijkt}$$

where AGE_{ijkt}^{g} are *firm-product-destination* specific age dummies, with g = 2, ...7+.

We expect the $\alpha_g > 0$ and decreasing with age g.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Model

Prediction 1 : results

$\ensuremath{\mathrm{TABLE}}$: Prediction 1 : demand shocks and beliefs updating

	(1)	(2)	(3)
Dep. var.		$\Delta \varepsilon_{ijkt}^{q}$	
Age definition	# yea	rs since last	t entry
	(reset a	after 1 year	of exit)
Ŷ	0.075ª	0.109 ^a	0.109 ^a
	(0.002)	(0.004)	(0.004)
Age		-0.040ª	-0.040ª
		(0.000)	(0.000)
~ ·			
v×Age		-0.009ª	-0.009ª
		(0.001)	(0.001)
Observations	2726474	2726474	2726474

Robust standard errors in parentheses (bootstrapped in columns (3)).

^c significant at 10%; ^b significant at 5%; ^a significant at 1%.

Model

Conclusion

Prediction 1 : results

 $\mathbf{F}\mathbf{IGURE}$: Firms' belief updating following a demand shock

This figure depicts the estimated coefficients of Table 2, column (4), together with 90% confidence intervals. Grey areas represent 90% confidence intervals.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Prediction 1 : extensions

1 Learning and market uncertainty :

- a signal is less informative when market uncertainty is larger.
- market uncertainty measured by stock-market index volatility, exchange rate volatility or the s.d. of (log) imports by importer and product.
- **2 Learning and forgetting :** two ways to study the learning process of exporters
 - use alternative age definitions : • •
 - directly study beliefs updating after re-entries : do firms update less their beliefs when they re-enter?

イロト 不得 とくほ とくほ とうほう

Introduction

Learning and market uncertainty

$\ensuremath{\operatorname{Figure}}$: Uncertainty and belief updating

This figure is obtained from estimating the specification of column (4) of Table 2 on two sub-samples defined according to the sample median of the uncertainty measure. The market-specific uncertainty measure used here. The figure plots the coefficients of the \hat{v}_{ijkt} variable for each are category.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Learning and forgetting

Do firms update less their beliefs when they re-enter?

 \rightarrow Compare the responsiveness to demand shocks of firms which re-enter after x years to first time entrants.

$$\Delta \varepsilon_{ijkt}^{q} = \theta_1 \widehat{v}_{ijk,t-1} + \sum_{g=2}^{6} \alpha_h (\widehat{v}_{ijk,t-1} \times \mathsf{GAP}_{ijkt}^h) + \sum_{g=1}^{G} \beta_h \mathsf{GAP}_{ijkt}^h + \mathsf{FE}_{ijk} + u_{ijkt}$$

where GAP_{ijkt}^{h} are dummies for re-entries on a market by number of years since last exit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Learning and forgetting

Do firms update less their beliefs when they re-enter?

 \rightarrow Compare the responsiveness to demand shocks of firms which re-enter after x years to first time entrants.

$$\Delta \varepsilon_{ijkt}^{q} = \theta_1 \widehat{v}_{ijk,t-1} + \sum_{g=2}^{6} \alpha_h (\widehat{v}_{ijk,t-1} \times \mathsf{GAP}_{ijkt}^h) + \sum_{g=1}^{G} \beta_h \mathsf{GAP}_{ijkt}^h + \mathsf{FE}_{ijk} + u_{ijkt}$$

where GAP_{ijkt}^{h} are dummies for re-entries on a market by number of years since last exit.

Dep. var. : Gap (years of exit)	1	2	Δε 3	q ijkt 4	5	6
$\widehat{\mathbf{v}} imes Gap$	-0.079 ^a	-0.023	0.000	-0.011	0.177	0.452
	(0.022)	(0.036)	(0.053)	(0.093)	(0.153)	(0.280)

Robust standard errors in parentheses. ^C significant at 10%; ^b significant at 5%; ^a significant at 1%.

Prediction1 : Robustness

We perform three main types of robustness exercises :

Modelling hypotheses

- Constant demand parameter
- Fixed quantities
- CES assumption
- 2 Measurement issues
 - Definition of a product
 - Extra-EU

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Introduction

Stylized facts

Model

Identification

Baseline Results

Growth and survival

Conclusion

Firm growth and survival

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Growth rates.

Younger firms grow faster in our model because they i) display larger *unconditional* growth rates and ii) have more volatile growth rates together with exit rates that are non increasing with age.

$$\Delta \ln Z_{ijk,t+1}^{q} = \sigma_{k} \Delta \ln \mathsf{E}_{t} \left[e^{\frac{ijkt+1}{\sigma_{k}}} \right]$$

$$\Delta \ln Z_{ijk,t+1}^{p} = \frac{1}{\sigma_{k}} \Delta a_{ijkt+1} - \Delta \ln \mathsf{E}_{t} \left[e^{\frac{ijkt+1}{\sigma_{k}}} \right]$$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Introduction

Stylized facts

Model

Identification

Conclusion

Firm growth

TABLE : Dynamics of quantity and prices

	Dep. var. Age definition	(1) ε_{i}^{c} (r	(2) _{ikt} # years sind eset after 1	(3) E last entry year of exi	, (4) , , , , , , , , , , , , , , , , , , ,			
	Age _{ijkt}	0.103 ^a (0.001)		-0.008 ^a (0.001)				
	$Age_{ijkt} = 3$		0.264 ^a (0.003)		-0.022ª (0.001)			
	$Age_{ijkt} = 4$		0.348ª (0.005)		-0.030ª (0.002)			
	$Age_{ijkt} = 5$		0.410 ^a (0.006)		-0.032ª (0.002)			
	$Age_{ijkt} = 6$		0.460ª (0.008)		-0.035ª (0.003)			
	Age _{ijkt} = 7+		0.546 ^a (0.009)		-0.040ª (0.004)			
	Observations	6472999	6472999	6472999	6472999			
Standard errors clust	ered by firm	in pare	ntheses.	^c signifi	cant at	10% ; ^b	significa	ant at
	E0	/	· · ·	. 10/	Image: A matrix and a matrix	► < <u> </u>	A 🕨 🔺 🚍 🤈	· E

5%; ^a significant at 1%.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

- 2

Introduction Stylized facts Model Identification Baseline Results Growth and survival Conclusion Firm growth

Prediction # 2a (growth rate) : The expected absolute value of growth rates of Z_{ijkt}^q and Z_{ijkt}^p decrease with firm age.

We estimate :

$$\left|\Delta \varepsilon_{ijkt}^{X}\right| = \alpha^{X} + \beta^{X} \times \mathsf{AGE}_{ijkt} + u_{ijkt} \qquad \forall X = \{q, p\}$$

and we expect $\beta^X < 0$, and $|\beta^q| > |\beta^p|$.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Introduction

Model

Prediction 2a : results

(1)	(2)	(3)	(4)
<u></u> дс	ijkt # vears sind	ce last entr	ijkt v
(r	eset after 1	year of exi	, t)
-0.040 ^a		-0.024 ^a	
(0.000)		(0.000)	
	-0.076 ^a		-0.053ª
	(0.001)		(0.001)
	-0.119 ^a		-0.079 ^a
	(0.002)		(0.001)
	-0.152ª		-0.096ª
	(0.002)		(0.001)
	-0.184ª		-0.109 ^a
	(0.002)		(0.001)
	-0.216 ^a		-0.129 ^a
	(0.002)		(0.001)
2795979	2795979	2795979	2795979
	(1) -0.040 ³ (0.000) 2795979	(1) (2) $\Delta \varepsilon^{q}_{ijkt}$ # years sind (reset after 1 -0.040 ³ (0.000) -0.076 ³ (0.001) -0.119 ³ (0.002) -0.152 ³ (0.002) -0.184 ³ (0.002) -0.216 ³ (0.002) 2795979 2795979	(1) (2) (3) $\Delta \varepsilon^{q}_{ijkt}$ $\Delta \varepsilon$ # years since last entry (reset after 1 year of exi -0.040 ² -0.024 ² (0.000) (0.000) -0.076 ² (0.001) -0.119 ² (0.002) -0.152 ² (0.002) -0.152 ² (0.002) -0.184 ² (0.002) -0.216 ³ (0.002) 2795979 2795979 2795979

Robust standard errors in parentheses. ^c significant at 10%; ^b significant at 5%; ^a significant at 1%.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction Stylized facts Model Identification Baseline Results Growth and survival Conclusion Firm growth

Prediction # 2b (variance of growth rate) : The within cohort variance of growth rates of Z_{ijkt}^{q} and Z_{ijkt}^{p} decrease with cohort age.

We estimate :

$$\mathsf{Var}\left(\Delta \varepsilon_{ijkt}^{X}\right) = \delta^{X} \times \mathsf{AGE}_{cjkt} + \mathbf{FE}_{cjk} + u_{ijkt} \qquad \forall X = \{q, p\}$$

where \mathbf{FE}_{cik} represent cohort fixed effects; we expect $\delta^X < 0$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ─ 臣 ─ のへ(?)

Model

Prediction 2b : results

_	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. var.		Var	$(\Delta \varepsilon^{q}_{ijkt})$			Var	$(\Delta \varepsilon_{ijkt}^{p})$	
Age definition		# years si	nce last er	ntry	# years since last entry			
	(reset after 1 year of exit)			(reset after	1 year of	exit)	
Sample		All		Permanent		All		Permanent
				exporters ¹				exporters¹
A	0.067ª		0.0603	0.0423	0.022ª		0.0203	0.0143
Agecjkt	-0.007		-0.000	-0.043	(0.001)		-0.029	-0.014
	(0.001)		(0.001)	(0.001)	(0.001)		(0.001)	(0.001)
$Age_{cikt} = 3$		-0.130ª				-0.072ª		
O CJAL		(0.003)				(0.002)		
		()				()		
$Age_{cjkt} = 4$		-0.208ª				-0.108 ^a		
		(0.004)				(0.002)		
$Age_{cjkt} = 5$		-0.271*				-0.134ª		
		(0.005)				(0.003)		
Δσο		0.31/1ª				0 153ª		
$Age_{cjkt} = 0$		(0.006)				(0.003)		
		(0.000)				(0.003)		
$Age_{cikt} = 7+$		-0.375ª				-0.184 ^a		
		(0.006)				(0.003)		
# observations			0.007ª	0.015ª			0.003ª	0.003 ^c
			(0.001)	(0.004)			(0.000)	(0.002)
Observations	598821	598821	598821	262849	598821	598821	598821	262849
Cohort FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Standard errors clustered by cohort in parentheses. Cohort FE included in all estimations. c significant at 10%, b significant at 5%; c N. Berman, V. Rebeyrol, V. Vicard N. Berman, V. Rebeyrol, V. Vicard

Model

Conclusion

Firm survival : predictions

We have :

$$\mathsf{E}_{t-1}\left[\pi_{ijkt}\right] = \frac{C_{ikt}^{S}C_{jkt}^{S}}{\sigma_{k}} e^{\left(\widetilde{\theta}_{t-1} + \frac{\widetilde{\sigma}_{t-1}^{2} + \sigma_{e}^{2}}{2\sigma_{k}}\right)} - F_{ijk}$$

Note $A_{ijkt} = C_{ikt}^{S} C_{jkt}^{S}$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Firm survival : predictions

We have :

$$\mathsf{E}_{t-1}\left[\pi_{ijkt}\right] = \frac{C_{ikt}^{S} C_{jkt}^{S}}{\sigma_{k}} e^{\left(\tilde{\theta}_{t-1} + \frac{\tilde{\sigma}_{t-1}^{2} + \sigma_{\varepsilon}^{2}}{2\sigma_{k}}\right)} - F_{ijk}$$

Note $A_{ijkt} = C_{ikt}^{S} C_{jkt}^{S}$

Assuming that Aijkt follows a Markov process we can show that :

Prediction # 3 (firm exit) : Given A_{ijkt} and t (firm age) (i) the probability to exit decreases with $\tilde{\theta}_{t-1}$ (ii) negative demand shocks should trigger less exit for older firms.

Intuition :

$$\widetilde{\theta}_{t-1} = \left(\frac{\widetilde{\sigma}_{t-1}^2}{\sigma_{\epsilon}^2}\right) \mathbf{a}_{ijkt-1} + \left(1 - \frac{\widetilde{\sigma}_{t-1}^2}{\sigma_{\epsilon}^2}\right) \widetilde{\theta}_{t-2}$$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Results

Estimate the following probabilistic model :

 $\begin{aligned} \mathsf{Pr}(S_{ijkt} > 0 | S_{ijk,t-1} = 1) &= 1 \text{ if } \alpha_1 \mathsf{AGE}_{ijkt-1} + \alpha_2 \widehat{v}_{ijk,t} + \alpha_3 \varepsilon_{ijkt-1}^q + \mathsf{FE} + u_{ijkt} > 0 \\ &= 0 \text{ otherwise.} \end{aligned}$

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Results

Estimate the following probabilistic model :

 $\Pr(S_{ijkt} > 0 | S_{ijk,t-1} = 1) = 1 \text{ if } \alpha_1 \mathsf{AGE}_{ijkt-1} + \alpha_2 \widehat{v}_{ijk,t} + \alpha_3 \varepsilon_{iikt-1}^q + \mathsf{FE} + u_{ijkt} > 0$ 0 otherwise =

	(1)	(2)	(3)	(4)	(5)		
Dep. var.	$Pr(S_{ijkt} > 0 S_{ijk,t-1} = 1)$						
Age definition	# years since last entry						
		(reset a	after 1 year	of exit)			
$Belief_{t-1}$	-0.041ª		-0.041ª		-0.041ª		
	(0.000)		(0.000)		(0.000)		
Age_{t-1}	-0.034ª	-0.045ª	-0.033ª	-0.045ª	-0.033ª		
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
Ŷ		-0.028ª	-0.031ª	-0.030ª	-0 042ª		
•1-1		(0.000)	(0.000)	(0,000)	(0.000)		
		(0.000)	(0.000)	(0.000)	(0.000)		
$\hat{v}_{t-1} \times Age_{t-1}$				0.001ª	0.004ª		
				(0.000)	(0.000)		
				()	()		
Observations	8786242	8786242	8786242	8786242	8786242		
			1				

Robust standard errors in parentheses. ^C significant at 10%; ^b significant at 5%; ^a significant at 1%.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - つへぐ

Introduction

Stylized facts

Model

Identification

Baseline Results

Growth and survival

Conclusion

Conclusion

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

- Strong support for a simple model of passive demand learning in the spirit of Jovanovic (1982)
- The model generate the well documented age dependance of firms' growth (and variance) conditional on size.
- Implications for the modelling of firm dynamics and for firms' responses to shocks
- Current work : quantification
- Future work : entry decisions and informational spillovers

Introduction

Stylized facts

Model

Identification

Baseline Results

Growth and survival

Conclusion

Appendix

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

Conclusion

Alternative age definitions : results

Model

Back

Dep. var. Age definition	(1) # yea (reset	(2) $\Delta \varepsilon^q_{ijkt}$ rs since last after 2 year	(3) t entry rs exit)	(4) # years e	(5) $\Delta arepsilon_{ijkt}^q$ xporting sind	(6) ce first entry
Ŷ	0.075 ^a (0.002)	0.106 ^a (0.004)	0.106ª (0.004)	0.075 ^a (0.002)	0.101 ^a (0.004)	0.101 ^a (0.004)
Age		-0.036ª (0.000)	-0.036ª (0.000)		-0.034ª (0.000)	-0.034 ^a (0.000)
Observations	2726474	2726474	2726474	2726474	2726474	2726474

Robust standard errors in parentheses (bootstrapped in columns (3) and (7)). ^c significant at 10%; ^b significant at 5%; ^a significant at

1%.

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□ → ◆□ → ◆三 → ▲□ → ◆○ ◆

Robustness : CES assumption

Relaxing the CES assumption generate variables mark-ups which has two implications :

1 Prices depend on market-specific conditions : easy to solve

- **2** Optimal quantities depend on beliefs about demand and markups : ε_{ijkt}^{q} and ε_{ijkt}^{p} confound demand factors and firms markups.
 - Could bias the results either way...
 - But most likely against us : can be checked by controlling for (market-specific) firm size in estimations

Robustness : CES assumption

▶ Back

	(1)	(2)	(3)	(4)	(5)	(6)			
Dep. var.		$\Delta \varepsilon_{ijkt}^{q}$							
Age definition		# years since last entry							
		(r	eset after 1	year of exi	t)				
Robustness	Controllin	g for FE _{jkt}		Controllin	g for FE _{jkt}				
	in p	rices		in prices	and size				
			Size	jk,t-1	Size _{ij}	k, t/t-1			
v	0.159"		0.095"		0.075"				
	(0.005)		(0.005)		(0.005)				
Are	-0 041°		-0.013*		-0 044*				
ABC	(0.000)		(0.000)		(0.000)				
	(0.000)		(0.000)		(0.000)				
$\hat{v} \times Age$	-0.008*		-0.009*		-0.013ª				
-	(0.001)		(0.001)		(0.001)				
$\hat{v} \times Age = 2$		0.160ª		0.088ª		0.065*			
		(0.003)		(0.004)		(0.004)			
<u></u>		0.1103		0.0408		0.0124			
$V \times Age = 3$		0.118"		0.048		0.013-			
		(0.004)		(0.006)		(0.000)			
$\hat{v} \times Age = 7 +$		0.108*		0.033*		-0.014 ^c			
		(0.007)		(0.008)		(0.008)			
Size _{t-1}			-0.082ª	-0.081*	0.010*	0.011*			
			(0.000)	(0.000)	(0.000)	(0.000)			
A			0.0143	0.0153	0.0103	0.0103			
$v \times \text{Size}_{t-1}$			(0.001)	(0.015"	(0.001)	(0.001)			
			(0.001)	(0.001)	(0.001)	(0.001)			
Observations	2739927	2739927	2739927	2739927	2739927	2739927			

Robust standard errors in parentheses. Size_t_1 is the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in product *k*, destination *j* in year and the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in the log of the total quantity exported by firm *i* in the log of the log of

Demand learning and firm dyn1; and Size: it + 1 is the average quantity exported by firm i in market ik between t and Berman, V. Rebeyrol, V. Vicard

Robustness : Fixed quantities

We assumed that quantities are fixed ex-ante. Now focus on destinations and sectors with **high adjustment costs** (i.e. for which the assumption is more likely to be satisfied)

Complex goods (Nunn, 2007)

2 Large time-to-ship (Berman et al., 2013)

-

Robustness : High adjustment costs

→ Back

Dep. var. Sample	(1)	(2) Δε Comple	(3) ^q _{ijkt} × goods	(4)	(5)	(6) Δa Large tin	(7) g _{ijkt} ne-to-ship	(8)
Ŷ	0.091 ^a (0.004)	0.138ª (0.008)	0.138 ^a (0.008)		0.162 ^a (0.004)	0.231ª (0.008)	0.231ª (0.008)	
Age		-0.038ª (0.001)	-0.038 ^a (0.001)			-0.035° (0.001)	-0.035° (0.001)	
$\widehat{v} \times Age$		-0.013 ^a (0.002)	-0.013 ^a (0.002)			-0.022ª (0.002)	-0.022 ^a (0.002)	
$\hat{v} \times Age= 2$				0.126 ^a (0.006)				0.198 ^a (0.005)
$\hat{v} \times Age=3$				0.079 ^a (0.008)				0.145° (0.008)
$\hat{v} \times Age = 4$				0.066 ^a (0.011)				0.134° (0.010)
$\hat{v} \times Age = 5$				0.072 ^a (0.013)				0.096 ^a (0.013)
$\hat{v} \times Age = 6$				0.044 ^a (0.016)				0.097 ^a (0.017)
$\widehat{v}{\times}Age{=7}{+}$				0.050 ^a (0.014)				0.093 ^a (0.016)
Observations	582450	582450	582450	582450	546586	546586	546586	546586

Robust standard errors in parentheses (bootstrapped in columns (3) and (7)).

Demand learning and firm dynamics

Robustness : Active vs passive learning

Can we ensure that our results can be interpreted as *passive* learning?

- 1 Active learning unlikely given fixed effects included
- Price behavior not in line with consumer accumulation models (Foster *et al.*, 2013)
- 3 Perform a test proposed by Eriscon and Pakes (1998)
 - Regress current belief on immediate past beliefs and initial beliefs
 Passive learning : initial beliefs should matter throughout the firm's life

Demand learning and firm dynamics

N. Berman, V. Rebeyrol, V. Vicard

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Robustness : Active vs passive learning

▶ Back

	(1)	(2)	(3)	(4)	(5)	(6)
Dep. var.	Belief _{ijkt}					
Age definition	# years since last entry (reset after 1 year of exit)					
Age	3	4	5	6	7	8
Belief _{ijk,t-1}	0.511ª	0.559	0.601ª	0.618ª	0.633ª	0.648ª
	(0.005)	(0.005)	(0.004)	(0.004)	(0.004)	(0.004)
Poliof	0.1503	0 1212	0 1053	0.0013	0 0023	0.0703
Dellel ijk,0	0.150	0.131	0.105	0.091	0.065	0.072
	(0.005)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Observations	59425	59425	59425	59425	59425	59425

Robust standard errors in parentheses. ^c significant at 10%; ^b significant at 5%; ^a significant at 1%.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Demand learning and firm dynamics