# Financial indicators and density forecasts for US output and inflation

### Piergiorgio Alessandri\* and Haroon Mumtaz§

# \*Banca d'Italia and $^{\$}$ Queen Mary, University of London. The presentation does not reflect the official views of Banca d'Italia.

### CLOSING CONFERENCE OF THE MARS NETWORK EUROPEAN CENTRAL BANK 23 JUNE 2014

#### Questions

- Are financial indicators useful in forecasting output and inflation?
- Does the answer depend on what kind of **events** the forecaster is interested in predicting? (central case/bad scenarios)
- Does the answer depend on what kind of **models** the forecaster relies on? (linear/nonlinear)
- Was the Great Recession predictable on the basis of real-time financial information?

#### Answers and conjectures

- Yes (with qualifications)
- Yes: financial info is particularly useful in predicting "tail outcomes" and recessions.
- Yes: nonlinear models are better because they account for changes in the size and impact of financial shocks.
- In the second second

We cast the analysis as a density prediction problem:

$$m(y_t, f_t; \theta) \rightarrow pdf_t(y_{t+k})$$

where

- *m* is an econometric model
- $y_t$  is a macroeconomic variable (industrial production, inflation).
- $f_t$  is a financial indicator (*Financial Condition Index*).

The focus is on (i) role of  $f_t$  and (ii) comparison between linear VARs and Threshold VARs (calm/crisis periods).

- $f_t$  improves the quality of the predictive densities.
- ② TAR generates better densities than VAR
- **③** TAR could have anticipated (up to a point...) the Great Recession.

Broader implications:

• Predictive distributions are useful to study the finance-macro nexus

- $f_t$  improves the quality of the predictive densities.
- ② TAR generates better densities than VAR
- **③** TAR could have anticipated (up to a point...) the Great Recession.

Broader implications:

- Predictive distributions are useful to study the finance-macro nexus
- Non-linearities matter and can be used in forecasting

- Forecasting with financial indicators: Stock-Watson (2003, 2012), Gilchrist-Yankov-Zakrajšek (2009, 2012); Ng-Wright (2013), ... Emphasis on point forecasts and linear models.
- 2 **Density forecasting in macro:** eg. Clark (2011). No specific analysis of the role of financial factors.
- 3 **Early warnings:** Borio-Lowe (2002), Barro-Ursua (2009), Lo Duca-Peltonen (2011). Low frequency data and arbitrary definition of "crises".

#### This paper

Contributes to (2); proposes density forecasting as a generalisation of (1) and a link between (1) and (3)

- 4 **GE models with financial shocks** (Gertler-Kiyotaki 2010; Jermann-Quadrini 2012; Kiyotaki-Moore 2012; Liu-Wang-Zha 2013; ...); and with occasionally binding credit constraints (Bianchi 2012; Bianchi-Mendoza 2011; Guerrieri-Iacoviello 2013).
- 5 Empirical models with financial thresholds (McCallum 1991; Balke 2004; Guerrieri-lacoviello 2013). Emphasis on impulse-response analysis.

Bottomline: financial shocks matter, and may have different implications in good and bad (credit-constrained) times.

#### This paper

Studies the nonlinearity modelled in (4) and documented in (5) from a forecasting perspective (see toy PE model in the paper )

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

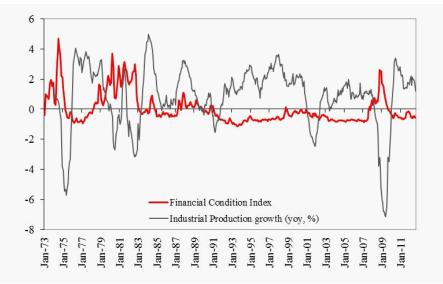
US data, March 1973 – August 2012.

- $y_t$ : Industrial Production growth
- $\pi_t$ : CPI inflation
- $r_t$ : Fed Funds rate
- $f_t$ : Financial Conditions Index

FCI is a dynamic factor constructed from an unbalanced panel of 100 mixed-frequency indicators of financial activity (Brave & Butters 2012; Chicago Fed):

- Real time
- Very broad coverage: money, debt and equity markets, financial sector leverage, ....

# Financial Condition Index



- 一司

Data

### Models

- Simulating and evaluating distributions
- Results
- Conclusions

$$Y_{t} = c + \sum_{j=1}^{P} B_{j} Y_{t-j} + \Omega^{1/2} e_{t}, \quad e_{t} \sim N(0, I)$$
(1)

We set P = 13 and study two specifications

• 
$$VAR^{\S}$$
:  $Y_t = (y_t, \pi_t, r_t)$ 

• VAR: 
$$Y_t = (y_t, \pi_t, r_t, f_t)$$

Natural conjugate prior (N, IW) as in e.g. Banbura-Giannone-Reichlin (JAE, 2010). All variables are treated as independent AR(1) processes:  $Y_t = c + \Gamma Y_{t-1} + \Sigma e_t$ , where  $\Gamma$  and  $\Sigma$  are diagonal.

$$Y_t = c_{S_t} + \sum_{j=1}^{P} B_{S_t,j} Y_{t-j} + \Omega_{S_t}^{1/2} e_t, \quad e_t \sim N(0, I)$$
(2)

$$\begin{array}{ll} S_t &=& \{0,1\} \\ S_t &=& 1 \Longleftrightarrow f_{t-d} \leq f^* \end{array} \tag{3}$$

where  $Y_t = (y_t, \pi_t, r_t, f_t)$ . Note  $f_t$  drives the transitions across regimes.

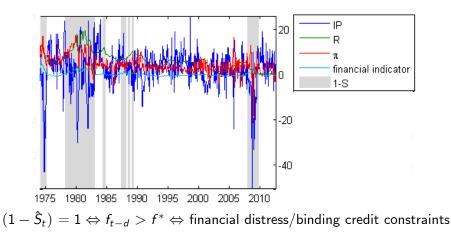
Symmetric natural conjugate prior for the two regimes, as in the VAR. Agnostic prior for  $(f^*, d)$ :

$$f^* \sim N\left(\frac{\Sigma_t f_t}{T}, \bar{k}\right)$$
$$d \sim U\{1, ..., 13\}$$

- Bayesian approach
- All priors are *deliberately* uninformative and a-theoretical.
- VAR posterior is known analytically (Banbura et al., 2010).
- TAR posterior can be simulated by Gibbs sampling (Chen-Lee, 1995)
- For each estimation we use 20,000 Gibbs sampling draws and discard the first 15,000

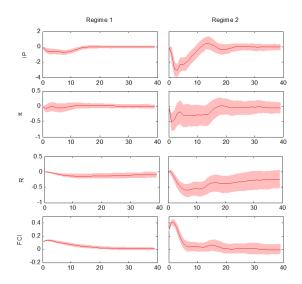
# Estimation results (1)

Financial regimes in US history



# Estimation results (2)

The impact of a one-standard-deviation financial shock



Alessandri & Mumtaz

Density forecasts with financial information

23.6.2014 16 / 43

- Data
- Models

## • Simulating and evaluating distributions

- Results
- Conclusions

Collect a model's parameters into  $\Theta_t$ . The *k*-periods ahead predictive density is:

$$p(Y_{t+k}|Y_t) = \int p(Y_{t+K}|Y_t, \Theta_{t+k}) p(\Theta_{t+k}|Y_t, \Theta_t) p(\Theta_t|Y_t) d\Theta$$

To simulate the PD:

- **(**) draw  $\Theta_t$  from the time-*t* estimate of the posterior (3rd term)
- Isimulate forward any time-varying parameters (2nd term)
- **3** use  $\Theta_{t+k}$  to simulate paths for  $Y_{t+k}$  (1st term).

Implementation and evaluation

Implementation:

- Recursive, starting from 1973.03-1983.04 sample
- At each step, the models are simulated up to 12 months ahead.
- This gives 354 density forecasts  $p_t^m(Y_{t+k})$  per model *m*.

Evaluation:

- Calibration diagnostics (skipped for brevity)
- Log-scores:  $LS_t^m = \log p_t^m(Y_{t+k}^o)$
- LS high  $\iff$  model m attaches high likelihood ex-ante to the actual data  $Y^o_{t+k}$

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

•  $f_t$  yields large improvements in LS for most variables and horizons.

- $f_t$  yields large improvements in LS for most variables and horizons.
- For industrial production, the improvement is huge around the Great Recession.

- $f_t$  yields large improvements in LS for most variables and horizons.
- For industrial production, the improvement is huge around the Great Recession.
- TAR produces much better distributions than the linear VARs (higher LS).

- $f_t$  yields large improvements in LS for most variables and horizons.
- For industrial production, the improvement is huge around the Great Recession.
- TAR produces much better distributions than the linear VARs (higher LS).
- It also produces noisier central forecasts (higher RMSE). So which model should a central bank use?

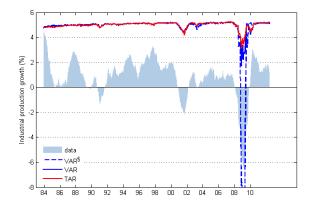
# Results (1) Point vs density forecasting

Average Root Mean Square Errors and Log-Scores

|      |       | RMSE   |        |        |        | LS      |         |         |         |
|------|-------|--------|--------|--------|--------|---------|---------|---------|---------|
|      |       | 1M     | 3M     | 6M     | 12M    | 1M      | 3M      | 6M      | 12M     |
| VAR§ | у     | 5.604  | 6.465  | 6.804  | 7.019  | -3.674  | -3.338  | -3.418  | -3.948  |
|      | r     | 0.167* | 0.357  | 0.598  | 0.985  | -0.675  | -1.380  | -1.754  | -2.118  |
|      | $\pi$ | 2.078  | 2.607* | 2.812* | 3.077* | -2.584  | -2.658  | -2.266  | -2.137  |
|      | f     | -      | -      | -      | -      | -       | -       | -       | -       |
| VAR  | у     | 5.446* | 6.166* | 6.558* | 6.912* | -3.553  | -3.156  | -3.032  | -2.964  |
|      | r     | 0.177  | 0.365  | 0.602  | 0.989  | -0.645  | -1.357  | -1.723  | -2.101  |
|      | $\pi$ | 2.067* | 2.620  | 2.839  | 3.115  | -2.583  | -2.550  | -2.339  | -2.171  |
|      | f     | 0.102* | 0.197  | 0.289  | 0.386  | 0.135   | -0.649  | -0.957  | -1.130  |
| TAR  | у     | 5.491  | 6.187  | 6.594  | 6.934  | -3.491* | -3.152* | -3.005* | -2.885* |
|      | r     | 0.167  | 0.338* | 0.555* | 0.943* | 0.022*  | -0.778* | -1.364* | -1.999* |
|      | $\pi$ | 2.115  | 2.667  | 2.864  | 3.116  | -2.503* | -2.415* | -2.195* | -2.080* |
|      | f     | 0.104  | 0.190* | 0.271* | 0.367* | 0.496*  | -0.122* | -0.431* | -0.717* |

\* denotes best model for each criterion/variable/horizon

# Results (2) Log-scores LS for 12M-ahead industrial production growth



- $VAR^{\$}$  is hopeless around the Great Recession
- Recessions are generally hard to predict
- TAR beats VAR around the Great Recession

Alessandri & Mumtaz

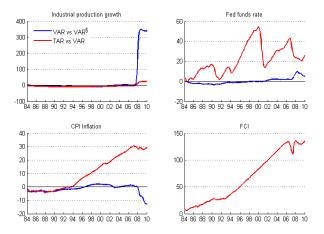
Density forecasts with financial information

23.6.2014 23 / 43

# Results (3) Bayes factors

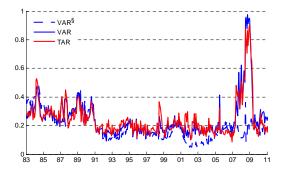
Which model should be deemed to be the best as of time t?

Cumulative log predictive Bayes factor:  $\Sigma \log (LS^{m_1}/LS^{m_2})$ 



# Results (4) Predictive densities and early warnings Is the signal strong enough to trigger policy actions?

Ex-ante recession probability:  $prob_t^m \left( \sum_{h=1}^{12} y_{t+h} < \mathbf{0} \right)$ 

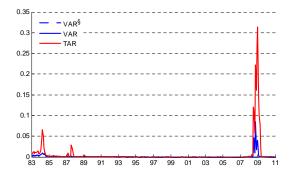


VAR/TAR virtually identical: all that matters is the presence of FCI

Alessandri & Mumtaz

# Results (4) Predictive densities and early warnings Is the signal strong enough to trigger policy actions?

Ex-ante "great recession" probability:  $prob_t^m (\Sigma_{h=1}^{12} y_{t+h} < -20\%)$ 



TAR anticipates a more severe downturn.

• Data: "excess bond premium" (Gilchrist and Zakrajšek, 2012) instead of Financial Condition Index.

 $\rightarrow$  Similar qualitative results.

- Models: rolling VAR, Markov-switching VAR with transition probabilities that depend on FCI.
  - $\rightarrow$  Both dominated by TAR.

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.

- Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.
- Financial indicators yield large improvements in distributions across most variables/horizons.

- Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.
- Financial indicators yield large improvements in distributions across most variables/horizons.
- Non-linearities matter: TAR gives better density forecasts than a VAR. (But it may loose on RMSE – no model is perfect. So think about forecaster's risk preferences.)

- Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.
- Financial indicators yield large improvements in distributions across most variables/horizons.
- Non-linearities matter: TAR gives better density forecasts than a VAR. (But it may loose on RMSE – no model is perfect. So think about forecaster's risk preferences.)
- Great Recession: essentially unpredictable, but less so for a TAR with finance-driven regimes.

- Work out distributional implications of credit constraints in a (more) general equilibrium model.
- Think formally about risk preferences and model selection.
- Refine priors on good/bad regimes
- More robustness (sample, prior hyperparameters, ...)

### Thanks!