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Abstract

In this paper we look at the effect of capital rules on a large banking system that
is connected through two main sources of systemic risk: correlated credit exposures
and interbank lending. We apply capital rules that are based on a combination
of individual bank characteristics and network interconnectivity measures based on
the interbank lending network. We also define a bailout strategy based on different
combinations of observable individual bank and network position measures. Both
capital rules and bailout strategies are formulated with the intention of minimizing
a measure of system wide losses. We use the German Credit Register, a data base
with information on all of the 1,764 active banking groups in Germany. These data
include all of banks’ bilateral exposures, both those between banks and firms, and
those among banks. Capital rules based on the so-called Opsahl centrality turn
out to dominate any other centrality measure tested, apart from those based on
total assets. Similarly, rules for the bailout fund are optimized based on network
centrality measures and bank asset size. Finally, we compare measures of the total
system loss across different types of capital allocation and sizes of the bailout fund.
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1 Introduction
“The difficult task before market participants, policymakers, and regulators
with systemic risk responsibilities such as the Federal Reserve is to find ways to
preserve the benefits of interconnectedness in financial markets while managing
the potentially harmful side effects.” Yellen (2013)

One of the obvious possible venues to avoid the “potentially harmful side effects” of
interconnectedness is to tax interconnectivity through a capital charge, or to bailout banks
based on their interconnectivity. This paper examines policies of mitigating the harmful
side effects of interconnectedness in the context of a model of interbank contagion that
gives a large weight to interconnectedness. Although the model is fairly classical in the
way it handles contagion, it uses a very rich dataset of credit exposures of a large private
domestic banking system, the fifth largest system in the world. What we find is that for
both capital requirements and bailout strategies, for all measures of interconnectedness
that we tried, the optimal rule that relies on bank asset size dominates any rule based on
interconnectivity.

We focus on two main sources of systemic risk: correlated credit exposures and inter-
bank connectivity. First, banks’ balance sheets can be simultaneously affected by macro
or industry shocks since the credit risk of their borrowers is correlated. Second, these
shocks can, on the one hand, trigger the default of certain financial institutions and, on
the other hand, capital of the entire system is eroded, making the system less stable.
The latter effect is modeled in the interbank market. Since banks are highly connected
through interbank exposures, we focus on those negative tail events in which correlated
losses of their portfolios trigger contagion in the interbank market. Our model comes
close to the framework proposed by Elsinger, Lehar, and Summer (2006) and Gauthier,
Lehar, and Souissi (2012), combining common credit losses with interbank network effects
and externalities in the form of asset fire sales . The aim of our paper is different. We
propose a tractable framework to re-allocate capital for large financial systems in order to
minimize contagion effects and costs of public bailout. We contrast two different capital
allocations: the benchmark case, in which we allocate capital based on the risks in in-
dividual banks’ portfolios, and new capital allocations based on some interbank network
metrics that capture the potential contagion risk of the entire system.

We use the credit register for the German banking system, an interbank network that
incorporates 1,764 different banking groups. The richness of our data set allows us to
explore the implications of both the joint credit risk and the interconnected direct claims
of the banking system. Because we utilize our access to the individual direct exposures of
a bank group to each firm, along with a respectable credit model for firm default, we can
derive the joint distribution functions of the likely shocks to the banks within the system.
In addition, we have the bilateral exposures within the banking system, so that we can
simulate the effect of the shocks as they work through the interbank network.

Thus, we combine correlated credit exposures, interbank contagion, and network anal-
ysis to develop rules that improve financial stability. In this sense, we propose two solu-
tions: first a capital re-allocation that accounts for systemic contributions in the interbank
market and second a bailout fund mechanism that can rescue certain financial institu-
tions based on their relative systemic importance. Both regimes are optimized via some
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interconnectedness measures calculated from the interbank network, with the intention of
making the financial system more robust.

The idea of tying capital charges to interbank exposures and interconnectedness to
improve the stability of the banking system, i.e. to minimize expected social costs (e.g.
arising from bailouts, growth effects, unemployment) is in the spirit of the regulatory
assessment methodology for systemically important financial institutions (SIFIs) proposed
by the Basel Committee on Banking Supervision (2011). In contrast to the latter, our
study determines an optimal rule based on several interconnectedness measures and the
size of total assets and compares the results under different capital allocations. One
advantage of our approach is that interbank network topology builds on real balance
sheet information of the German Large-Exposures Database, which covers around 99% of
the interbank transacted volume. This allows us to identify interbank contagion channels
and compute centrality measures accurately.

The second policy direction highlighted in this paper is estimating a proper mechanism
and the size of a bailout fund for the financial sector. We start in a benchmark case
where capital is allocated based on Value-at-Risk (VaR hereafter) at a security level that
would provide comparably high protection against bankruptcy if interconnectedness were
irrelevant. The basic idea of the bailout fund is to require less capital instead and to pool
the aggregate capital relief in the fund. In the benchmark case, banks are required to hold
capital equal to their VaR(α = 99.9%) while the requirement in presence of the bailout
fund is the VaR (α = 99%) only. The bailout fund uses its resources to rescue banks. The
mechanism of rescuing banks is based on an importance ranking of financial institutions.
Banks are ranked based on a trade-off rule between size and centrality measures. We
consider several sizes of the bailout fund and compare expected losses with the results
obtained from reallocation of capital using centrality measures.

We use a framework to assess the impact of different capital allocations on financial
stability. We integrate a sound credit risk engine (i.e. CreditMetrics) to generate corre-
lated shocks to credit exposures of the entire German banking system (1764 Monetary
financial institutions (MFIs) active in the interbank (IB) market). This engine gives us
the opportunity to focus on correlated tail events (endogenously determined by common
exposures to the real economy). Our credit risk engine is associated to previous work that
uses the CreditMetrics framework (see Bluhm, Overbeck, and Wagner (2003)). Based on
a multi-factor credit risk model, this framework helps us to deal with risk concentration
caused by large exposures to a single sector or correlated sectors. Even explicit common
credit exposures are precisely addressed. CreditMetrics helps us to generate scenarios
with large correlated losses across the entire banking system. These events are our main
focus since capital across financial institutions is eroded simultaneously and the banking
system becomes more prone to interbank contagion.

Moreover, we model interbank contagion based on Eisenberg and Noe (2001) and
extend it to include bankruptcy costs as in Elsinger et al. (2006). This feature allows
us to measure expected contagion losses and to observe the propagation process. To
empirically exemplify our framework, we use several sources of information: the German
central credit register (covering large loans), aggregated credit exposures (small loans),
balance sheet data (e.g. total assets), market data (e.g. to compute sector correlations
in the real economy or credit spreads), and data on rating transitions. The framework
can be applied in any country or group of countries where this type of information are
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available. The main advantage of this framework is that policymakers can deal with large
banking systems, making a regulation of systemic risk more tractable.

We focus on capital reallocations and try to minimize a target function with the scope
of improving financial stability. We used several target functions, including, total system
losses, second-round contagion effects (i.e. contagious defaults) or losses from fundamental
defaults (i.e. banks that default from real-economy portfolio losses). We report results
for total expected bankruptcy costs of defaulted banks. This measure of system losses
is especially interesting as it represents a deadweight social loss. We determine capital
allocations that improve the the stability of the financial system (as defined expected
bankruptcy costs) based on interconnectedness measures gained from the IB network
such as the degree, eigenvector and weighted eigenvector centrality, weighted betweenness,
Opsahl centrality, closeness or the clustering coefficient. Balance sheet information such
as total assets or total interbank assets and liabilities is applied in the same way as
interconnectedness measures.

We also implement a bailout fund mechanism that offers a fairly priced insurance
against the default of certain entities, however with priorities depending on a ranking
that builds on banks’ size and centrality in the IB market. We compare measures of
the total-system loss across different types of capital allocation and sizes of the bailout
fund. Our policy conclusions related to too-interconnected-to-fail versus too-big-to-fail
externalities suggest that the latter dominates the former in terms of expected system
losses.

This study is related to several strands of the literature including applications of net-
work theory to economics, macro-prudential regulations and interbank contagion. Cont,
Moussa, and e Santos (2010) find that not only banks’ capitalization and interconnect-
edness are important for spreading contagion but also the vulnerability of neighbors.
Gauthier et al. (2012) use different holdings- based systemic risk measures (e.g. MES,
ΔCoVar, Shapley value) to reallocate capital in the banking system and to determine
macroprudential capital requirements. Using the Canadian credit register data for a sys-
tem of six banks, they rely on an “Eisenberg-Noe”type clearing mechanism extended to
incorporate asset fire sales externalities. In contrast to their paper, we reallocate capital
based on centrality measures extracted directly from the network topology of interbank
market. Webber and Willison (2011) assign systemic capital requirements optimizing over
the aggregated capital of the system. They find that systemic capital requirements are
directly related to bank size and interbank liabilities. Tarashev, Borio, and Tsatsaronis
(2010) claim that systemic importance is mainly driven by size and exposure to common
risk factors. In order to determine risk contributions they utilize the Shapley value. In
the context of network analysis, Battiston, Puliga, Kaushik, and Caldarelli (2012) pro-
pose a measure closely related to eigenvector centrality to assign the systemic relevance of
financial institutions based on their centrality in financial network. Similarly, Soramäki
and Cook (2012) try to identify systemically financial institutions in payment systems
by implementing an algorithm based on absorbing Markov chains. Employing simulation
techniques they show that the proposed centrality measure, SinkRank, highly correlates
with the disruption of the entire system. In contrast to the latter two studies, we find
that size (“Too-big-to-fail”) dominates centrality measures (“Too-interconnected-to-fail”)
obtained from the interbank network. This antithesis might arise from utilizing different
target functions in the optimization process.
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As the subprime crisis has shown, banks do not have to be large to contribute to
systemic risk, especially where banks are exposed to correlated risks (e.g. credit, liquid-
ity or funding risk) via portfolios and interbank interconnectedness. Assigning risks to
individual banks might be misleading. Some banks might appear healthy when viewed
as single entities but they could threaten financial stability when considered jointly. Gai
and Kapadia (2010) find that the level of connectivity negatively impacts the likelihood
of contagion. Anand, Gai, Kapadia, Brennan, and Willison (2013) extend their model to
include asset fire sale externalities and macroeconomic feedback on top of network struc-
tures, in order to stress-test financial systems. These studies illustrate the tipping point
at which the financial system breaks down based on the severity of macroeconomic shocks
that affect corporate probabilities of default or asset liquidity. Battiston, Gatti, Gallegati,
Greenwald, and Stiglitz (2012) show that interbank connectivity increases systemic risk,
mainly due to a higher contagion risk. Furthermore, Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2013) claim that financial network externalities cannot be internalized and thus,
in equilibrium, financial networks are inefficient. This creates incentives for regulators to
improve welfare by bailing out SIFIs.

The rest of this paper is structured as follows. In Section 2 we describe our methodol-
ogy and data sources briefly. Section 3 refers to our interconnectedness measures and the
network topology of German interbank market. In Section 4 we describe our risk engine
that generates common credit losses to banks’ portfolios. Section 5 gives an overview of
the contagion algorithm and Section 6 describes how capital is optimized. In Section 7 we
present our main results and in Section 8 we provide some robustness checks. Section 9
concludes.

2 Data and methodology

2.1 Methodology
Figure 10 in Appendix A offers an overview of our simulation. Our procedure can be
summarized in two stages, along with our initial condition.

In the initial state, we use each bank’s measured portfolio, which is composed of large
and small credit exposures (e.g. loans, credit lines, derivatives) to real economy and
interbank (IB) borrowers. On the liability side, banks hold capital, either set to VaR
(at α = 99.9%) in the benchmark case, or according to other capital allocations that
partly rely on network measures.1Depositors and other creditors are senior to interbank
creditors. We present in Figure 1 a standard individual bank balance sheet and the
benchmark capital representation based on the credit risk model explained in Section 4.

In the first stage, we simulate correlated exogenous shocks to all banks’ portfolios that
take the form of returns on individual large loans (where loans that are shared among
multiple lenders are accounted for) and aggregated small loans. Due to changes in value

1VaR at α = 99.9% is calculated for each individual bank from 1 Mn simulations. When we calculate
benchmark capital allocations, where contagion effects are ignored, the credit risk of German interbank
(IB) loans (as assets) are treated “in the traditional way”, similarly to large credit exposures to foreign
banks (Sector 17, Table 2). The PDs of German interbank loans banks are set to the mean PD of this
sector. In this way, there is a capital buffer to withstand potential losses from interbank defaults, however
determined in a way as if interbank loans were yet another ordinary subportfolio.
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of borrowers’ assets, their credit ratings migrate (or they default), and banks make profits
or losses on their investments in the real-economy sectors. At the end of this stage, in
case of portfolio losses, capital deteriorates and some banks experience negative capital,
and default. Thus, we are able to generate correlated losses that affect the capital of each
bank simultaneously.2

In the second stage, we model interbank contagion. We apply an extended version of
the fictitious contagion algorithm as introduced by Eisenberg and Noe (2001), augmented
with bankruptcy costs and fire sales. Fundamental bank defaults generate losses to other
interbank creditors and trigger some new defaults. Hence, bank defaults can induce
domino effects in the interbank market. We refer to new bank failures from this stage as
contagious defaults.

Finally, we repeat the previous stages for different capital allocations and for bailout
fund mechanisms. We discuss the optimization procedure in Section 6. Moreover, Sec-
tion 3 offers an overview of the interconnectedness measures calculated with the help of
network analysis and utilized in the optimization process. The bailout fund mechanism,
based on a set of assumptions, is detailed in Section 6.4.

2.2 Data sources
Our model builds on several data sources. In order to construct the interbank network, we
rely on the Large Exposures Database (LED) of the Deutsche Bundesbank. Furthermore,
we infer from the LED the portfolios of credit exposures (including loans, bond holdings,
credit lines, derivatives, etc.) to the real economy of each bank domiciled in Germany.
Since this data set is not enough to get the entire picture, since especially the smaller
German banks hold plenty of assets falling short the reporting threshold of 1.5 million
Euros for the LED, we use balance sheet data and the Borrower Statistics. Finally, we
rely on stock market indices to construct a sector correlation matrix and we utilize a
migration matrix for credit ratings from Standard and Poor’s. Rating dependent spreads
are taken from the Merill Lynch corporate spread indices.

2.2.1 Large Exposures Database (LED)

The Large Exposures Database represents the German central credit register.3 Banks
report exposures to a single borrower or a borrower unit (e.g., a banking group) which
have a notional exceeding a threshold of €1.5 Mn The definition of an exposure includes
bonds, loans or the market value of derivatives and off-balance sheet items.4In this paper,

2By incorporating credit migrations and correlated exposures, we differ from most of the literature on
interbank contagion that usually studies idiosyncratic bank defaults; see Upper (2011). Elsinger et al.
(2006) and Gauthier et al. (2012) are remarkable exceptions.

3Bundesbank labels this database as Gross- und Millionenkreditstatistik. A detailed description of the
database is given by Schmieder (2006).

4Loan exposures also have to be reported if they are larger than 10% of a bank’s total regulatory
capital. They are not contained in our dataset of large exposures but represent a very small amount
compared to the exposures that have to be reported when exceeding €1.5 Mn. Note that loans reported
to the LED but not being part of our set of large loans are captured in the Borrower Statistics though
and hence part of our sub-portfolios of “small loans”; see Section 2.2.2.
It is also important to notice that, while the data are quarterly, the loan volume trigger is not strictly

related to an effective date. Rather, a loan enters the database once its actual volume has met the criterion
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Figure 1: Individual bank balance sheet and benchmark capital

A
L

O
th
er

As
se
ts

In
te
rb
an
k

As
se
ts

Re
al
Ec
on

om
y

La
rg
e
Lo
an
s

Re
al
Ec
on

om
y

Sm
al
lL
oa
ns

Ca
pi
ta
l

In
te
rb
an
k

Li
ab
ili
tie

s

De
po

sit
s

O
th
er

Li
ab
ili
tie

s

Be
nc
hm

ar
k

Note: In order to obtain the benchmark capital which equals VaR (α = 99.9%), we use
a stylized bank balance sheet. The individual bank portfolio is composed of Large Loans
(LL) and Small Loans (SL) to the real economy sectors (this distinction is made for risk
modeling purposes). When we calculate the benchmark capital, interbank (IB) assets are
treated similarly to large credit exposures (LL) to foreign banks (Sector 17, Table 2).
German banks’ PDs are set to the mean PD of this sector. In this way, there is a capital
buffer to withstand potential losses from interbank defaults. “Other Assets” and “Other
Liabilities” are ignored in our model.
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we use the information available at the end of Q1 2011. The interbank market consists of
1764 active lenders. Including exposures to the real economy, they have in total around
400,000 credit exposures to more than 163,000 borrower units.5

Borrowers in the LED are assigned to 100 fine-grained sectors according to Deutsche
Bundesbank (2009). In order to calibrate our credit risk model, we aggregate them to
sectors that are more common in risk management (e.g. like those that fit with equity
indices, which are the standard source of information used to calibrate asset correlations
of the credit risk model). In our credit risk model, we use EUROSTOXX’s 19 industry
sectors (and later its corresponding equity indices). Table 2 lists risk management sectors
and the distribution characteristics of the PDs assigned to them. There are two additional
sectors (Households, including NGOs, and Public Sector) that are not linked to equity
indices.6 These 21 sectors represent the risk model (RM) sectors of our model.

The information regarding borrowers’ PDs is included as well in LED. We report
several quantiles, the mean and variance of the sector-specific PD distributions in Table 2.
Since only Internal-Ratings-Based (IRB) banks report this kind of information, we draw
random PDs from the empirical sector-specific distributions for the subset of borrowers
without reported PDs.

2.2.2 Borrower and balance sheet statistics

While LED is an unique database, the threshold of €1.5 Mn of notional is a substantial
restriction. Although large loans build the majority of money lent by German banks, the
portfolios of most German banks would not be well represented by them. That does not
come as a surprise if one takes into account that the German banking system is dominated
(in numbers) by rather small S&L and cooperative banks. Many banks hold only few large
loans while they are, of course, much better diversified. For 2/3 of banks the LED covers
less than 54% of the total exposures. We need to augment the LED by information on
smaller loans.

Bundesbank’s borrower statistics (BS) dataset reports lending to German borrowers
by each bank on a quarterly basis. Focusing on the calculation of money supply, it reports
only those loans made by banks and branches situated in Germany; e.g. a loan originated
in London office of Deutsche Bank would not enter the BS, even if the borrower is German.
Corporate lending is structured in eight main industries: agriculture, basic resources
and utilities, manufacturing, construction, wholesale and retail trade, transportation,
financial intermediation and insurance, and services. Manufacturing and services are
further divided into nine and eight sub-sectors, respectively. Loans to households and
non-profit organizations are also reported in the BS database.7

at some time throughout the quarter. Furthermore, the definition of credit triggering the obligation to
report large loans is broad: besides on-balance sheet loans, the database conveys bond holdings as well
as off-balance sheet debt that may arise from open trading positions, for instance. We use total exposure
of one entity to another. Master data of borrowers contains its nationality as well as assignments to
borrower units, when applicable, which is a proxy for joint liability of borrowers. We have no information
regarding collateral in this dataset.

5Each lender is considered at aggregated level (i.e. as “Konzern”). At single entity level there are
more than 4.000 different lending entities reporting data.

6We consider exposures to the public sector to be risk-free (and hence exclude them from our risk
engine) since the federal government ultimately guarantees for all public bodies in Germany. See Section 4.

7A financial institution has to submit BS forms if it is an monetary financial institution (MFI), which
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While lending is disaggregated into various sectors, the level of aggregation is higher
than in LED, and sectors are different from the sectors in the risk model. Yet, there
is a unique mapping from the many LED sectors to the ones of the borrower statistics
(BS) sectors. We use this mapping and the one from the LED sectors to the risk model
(RM) sectors to establish a compound mapping from BS to RM sectors. They are based
on relative weights gained from the LED that are assumed also to hold for small loans.
Detailed information on the mapping is available on request.

In addition to borrower statistics, we also use some figures from the monthly balance
sheet statistics that is also reported to Bundesbank. These sheets contain lending to
domestic insurances, households, non-profit entities, social security funds, and so-called
“other financial services” companies. Lending to foreign entities is given by a total figure
that covers all lending to non-bank companies and households. The same applies to
domestic and foreign bond holdings which, if large enough, are also included in LED.

2.2.3 Market data

The credit ratings migration matrix is presented in Table 5 and is provided by S&P. Market
credit spreads are derived from a daily time series of Merill Lynch option-adjusted euro
spreads covering all maturities, from April 1999 to June 2011. Correlations are computed
based on EUROSTOXX weekly returns of the European sector indices for the period
April 2006 - March 2011 covering most of the recent financial crisis.8

3 Interbank network
Economic literature related to network analysis has exploded since the beginning of the
financial crisis in 2007, with many papers discussing the network properties of interbank
exposures throughout the world. For example, focusing on centrality and connectivity
measures of the financial network, Minoiu and Reyes (2011) analyze the dynamics of the
global banking interconnectedness over a period of three decades. Financial networks are
defined by a set of nodes (financial institutions) that are linked through direct edges that
represent bilateral exposures between them. Focusing on the German interbank market
Craig and von Peter (2010) find that a core-periphery model can be well fitted to the
German interbank system. Core banks are a subset of all intermediaries (those banks
that act as a lender and as a borrower in the interbank market) that share the property
of a complete sub-network (there exist links between any two members of the subset).
According to their findings, the German interbank market exhibits a tiered structure. As
they empirically show, this kind of structure is highly persistent (stable) over time. Sachs
(2010) concludes that the distribution of interbank exposures plays a crucial role for the
stability of financial networks. She randomly generates interbank liabilities matrices and
investigates contagion effects in different setups. She finds support for the “knife-edge” or

does not necessarily coincide with being obliged to report to LED. There is one state-owned bank with
substantial lending that is exempt from reporting BS data by German law. Backed by a government
guarantee, we consider this bank neutral to interbank contagion.

8We present market credit spreads together with the sector correlation matrix in Table 4 in Ap-
pendix A.
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tipping-point feature (as mentioned by Haldane (2009)), the non-monotonic completeness
property of highly interconnected networks.

3.1 The German interbank market
In Q1 2011, there were 1921 MFIs in Germany, holding a total balance sheet of €8233
Bn9. The German banking system is composed of three major types of MFIs: 282 com-
mercial banks (including four big banks and 110 branches of foreign banks) that hold
approximately 36% of total assets, 439 saving banks (including 10 Landesbanken) that
hold roughly 30% of system’s assets and 1140 credit cooperatives (including 2 regional
institutions) that hold around 12%. Other banks (i.e. mortgage banks, building and loan
associations and special purpose vehicles) are in total 60 MFIs and represent approx. 21%
of system’s balance sheet.

Our interbank (IB) network consists of 1764 active banks (i.e. aggregated banking
groups). These banks are actively lending and/or borrowing in the interbank market.
They hold total assets worth €7791 Bn, from which 77% represent large loans and 23%
small loans.

Table 1 presents the descriptive statistics of the main characteristics and network
measures of the German banks utilized in our analysis.10

The average size of an bank individual IB exposure is around €1 Bn. As figures show,
there are few very large total IB exposures, since the mean is between quantiles 90th and
95th, making the distribution highly skewed. Similar properties are observed for total
assets, large loans and out degrees, sustaining the idea of a tiered system with few large
banks that act as interbank broker-dealers connecting other financial institutions (see
Craig and von Peter (2010)).11

3.2 Centrality measures
In order to assign the interconnectedness relevance/importance to each bank of the system
we rely on several centrality characteristics . The descriptive statistics of our centrality
measures are summarized in Table 1. The information content of an interbank network
is best summarized by a matrix X in which each cell xij corresponds to the liability
amount of bank i to bank j. As each positive entry represents an edge in the graph of
interbank lending, an edge goes from the borrowing to the lending node. Furthermore,
the adjacency matrix (A) is just a mapping of matrix X, in which aij = 1 if xij > 0,
and aij = 0 otherwise. In our case, the network is directed, and our matrix is weighted,
meaning that we use the full information regarding an interbank relationship, not only
its existence. We do not net bilateral exposures. Our network has a density of 0.7%

9According to Deutsche Bundesbank’s Monthly Report (March 2011).
10In Section 8, we discuss in detail the properties of interbank liabilities’ distribution and compare

them over time. Moreover, we provide a discussion over the dynamics of network measures.
11One aspect that needs to be mentioned here is that the observed interbank network is not the complete

picture, since interbank liabilities of German banks raised outside Germany are not reported to LED. For
example, LED does not capture a loan made by Goldman Sachs to Deutsche Bank in London. This aspect
might bias downwards exposures and centrality measures of big German banks that might borrow/lend
outside the German interbank market.

10



Ta
bl
e
1:

In
te
rb
an

k
(I
B)

m
ar
ke
t
an

d
ne
tw

or
k
pr
op

er
tie

s

Q
ua

nt
ile

s
m
ea
n

st
d
de

v
5%

10
%

25
%

50
%

75
%

90
%

95
%

To
ta
lI
B

A
ss
et
s*

75
91

13
,0
89

35
,5
53

10
0,
45
0

31
0,
62
4

86
8,
29
9

1,
64
7,
66
6

99
0,
43
3

7,
90
6,
56
5

To
ta
lI
B

Li
ab

ili
tie

s*
26
40

6,
05
3

19
,6
79

61
,4
50

18
0,
77
1

52
7,
46
0

1,
21
2,
81
1

99
0,
43
3

7,
78
2,
30
9

To
ta
lA

ss
et
s*

37
,7
98

63
,6
13

16
0,
74
1

45
0,
20
0

1,
29
0,
69
8

3,
41
2,
95
3

7,
21
1,
60
8

4,
41
6,
92
0

37
,9
38
,4
74

To
ta
lL

ar
ge

Lo
an

s*
87
19

17
,2
93

60
,6
92

20
8,
47
5

67
5,
19
9

2,
05
4,
84
0

4,
20
8,
32
3

3,
42
4,
44
5

30
,2
21
,3
63

To
ta
lS

m
al
lL

oa
ns
*

89
06

34
,9
32

85
,7
41

21
7,
51
6

55
0,
85
5

1,
28
7,
39
0

2,
25
3,
14
9

99
2,
47
5

8,
74
8,
75
7

O
ut

D
eg
re
e

1
1

1
2

4
9,
1

16
13

82
In

D
eg
re
e

1
1

4
9

14
19

25
13

37
To

ta
lD

eg
re
e

2
3

5
11

18
27

38
26

11
1

O
ps
ah

lC
en
tr
al
ity

51
.5

80
.6

16
5.
8

34
5.
9

79
1.
6

20
71
.2

40
90

33
42

24
,0
20

Ei
ge
nv

ec
to
r
C
en
tr
al
ity

0.
00
00
03

0.
00
00
19

0.
00
00
78

0.
00
02
64

0.
00
10
92

0.
00
40
27

0.
00
97
42

0.
00
39
23

0.
02
34
91

W
ei
gh

te
d
Be

tw
ee
nn

es
s

0
0

0
0

0
40
1.
5

62
25
.8

10
,4
91

82
,9
95

W
ei
gh

te
d
Ei
ge
nv

ec
to
r

0.
00
00
04

0.
00
00
12

0,
00
00
42

0,
00
01
42

0.
00
06
11

0.
00
22
17

0.
00
48
39

0.
00
31
48

0.
02
36
07

C
lo
se
ne
ss

C
en
tr
al
ity

25
3.
2

32
8.
8

34
7.
8

39
1.
8

39
3,
6

41
1.
5

42
7.
4

37
1.
22

69
.1
3

C
lu
st
er
in
g
C
oe
ffi
ci
en
t

0
0

0
0.
00
93
7

0.
04
16
6

0.
12
32
8

0.
16
66
7

0.
03
79

0.
06
77

N
o
of

ob
s

88
17
6

44
1

88
2

13
23

15
87

16
75

17
64

17
64

N
um

be
r
of

ba
nk

s
17
64
**

N
um

be
r
of

lin
ks

22
,7
52

N
ot
e:

*
in

th
ou

sa
nd

€
;*

*
no

of
ba

nk
s
ac
tiv

e
in

th
e
in
te
rb
an

k
m
ar
ke
t.

D
at
a
po

in
t:

20
11

Q
1

11



given that it includes 1764 nodes and 22,752 links.12 This sparsity is typical for interbank
networks (see for example Soramäki, Bech, Arnolda, Glass, and Beyeler, 2007).

As outlined by Newman (2010), the notion of centrality is associated with several
metrics. In economics the most-used measures are: out degree (the number of links that
originate from each node) and in degree (the number of links that end at each node), the
strength (the aggregated sum of interbank exposures), betweenness centrality (the inverse
of the number of shortest paths13 that pass through a certain node), Eigenvector centrality
(centrality of a node given by the importance of its neighbors) or clustering coefficient
(how tightly connected is a node to its neighbors). The strength of a link is defined by the
size (volume) of exposure and the direction (ingoing or outgoing) shows whether money
has been lent/borrowed (i.e. out degree refers to borrowing relationships and in degree to
lending ones).14

Out Degree is one of the basic indicators and it is defined as the total number of direct
interbank creditors that a bank borrows from:

ki =
N∑
j

aij (1)

Similarly, we can count the number of lending relationships from i to j (in degree).
Since is a directed graph, we distinguish in our network analysis between out degrees and
in degrees, referring to borrowing and lending.. Degree is the sum of out degree and in
degree. In economic terms, for example in case of a bank default, a certain number (the
out degree) of nodes will suffer losses in the interbank market.

Given that our matrix is weighted, we are able to compute each node’s strength, that
is its total amount borrowed from other banks:

si =
N∑
j

xij (2)

The strength of a node is represented in Table 1 as total IB liabilities. Similarly, we
construct the strength of the interbank assets.

The degree distribution shows a tiered interbank structure. A few nodes are connected
to many banks. For example, 20 banks (around 1%) lend to more than 100 banks each.
On the borrowing side, 30 banks have a liability to at least 100 banks. These banks are
part of the core of the network as defined by Craig and von Peter (2010). In terms of
strength of interbank borrowing, 158 banks have a total IB borrowed amount in excess
of €1 Bn while only 27 banks have total interbank liabilities in excess of €10 Bn. On the
assets side, 103 banks lend more than €1 Bn and 25 financial institutions have German
interbank assets in excess of €10 Bn.

12The density of a network is the ratio of the number of existing connections divided by the total number
of possible links. In our case of a directed network, the total number of possible links is 1764 × 1763 =
3, 109, 932

13A path from node A to B is a consecutive sequence of edges starting from A and ending in B. Its
length is the number of edges involved. The (directed) distance between A and B is the minimum length
of all paths between them.

14For a detailed description of centrality measures related to interbank markets see Gabrieli (2011) and
Minoiu and Reyes (2011).
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Opsahl, Agneessens, and Skvoretz (2010) introduce a novel centrality measure that we
label Opsahl centrality. This measure combines the out degree (eq. 1) with the borrowing
strength (total IB liabilities, eq. 2) of each node, using a tuning parameter ϕ:15

OCi = k
(1−ϕ)
i × sϕi (3)

The intuition of a node with high Opsahl centrality is that, in the event of default, this
node is able to infect many other banks with high severity. This translates into a higher
probability of contagion (conditional on the node’s default) compared with other nodes.
We discuss these network measures of centrality further in an appendix.

4 Credit risk model
Our credit risk engine is a one-period model, and all parameters are calibrated to a 1-year
time span. In order to model credit risk, we utilize lending information from two data
sources at different levels of aggregation: large loans and small loans. These loans are
given to the “real economy”. Since borrowers of large loans are explicitly known, along
with various parameters such as the loan volume, probability of default and sector, we
can model their credit risk with high precision. When simulating defaults and migrations
of individual borrowers, we can even account for the fact that loans given by different
banks to the same borrower should migrate or default simultaneously.

We cannot keep this level of precision for small loans because we only know their
exposures as a lump-sum to each sector. Accordingly, we simulate their credit risk on
portfolio level.16

4.1 Large loans
In modeling credit portfolio risk we closely follow the ideas of CreditMetrics.17 We start
with a vector Y ∼ N (0, Σ) of systematic latent factors. Each component of Y corresponds
to the systematic part of credit risk in one of the risk modeling (RM) sectors. The random
vector is normalized such that the covariance matrix Σ is actually a correlation matrix
(see Table 4a). In line with industry practice, we estimate correlations from co-movements
of stock indices.18 For each borrower k in RM sector j, the systematic factor Yj assigned
to the sector is coupled with an independent idiosyncratic factor Zj,k ∼ N (0, 1). Thus,
the stylized asset return of borrower (j, k) can be written as:

Xj,k = √ρYj +
√

1− ρZj,k.
15In our analysis we set ϕ = 0.5, leading to the geometric mean between strength and degree.
16The parameters of our model are presented in Table 3 in Appendix A.
17For a detailed description of this model see Gupton, Finger, and Bhatia (1997).
18Our correlation estimate is based on weekly time series of 19 EUROSTOXX industry indices from

April 2006 to March 2011. The European focus of the time series is a compromise between a suffi-
ciently large number of index constituents and the actual exposure of the banks in our sample, which is
concentrated on German borrowers but also partly European wide.
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The so-called intra-sector asset correlation ρ is common to all sectors.19 The latent factor
Xj,k is mapped into rating migrations via a threshold model. We use 16 S&P rating
classes including notches AAA, AA+, AA,. . . ,B–, plus the aggregated “junk” class CCC–
C. Moreover, we treat the default state as a further rating (D) and relabel ratings as
numbers from 1 (AAA) to 18 (default). Let R0 denote the initial rating of a borrower and
R1 the rating one period later. A borrower migrates from R0 to rating state R1 whenever

X ∈ [θ(R0, R1), θ(R0, R1 − 1)] ,

where θ is a matrix of thresholds associated with migrations between any two ratings.
For given migration probabilities p(R0, R1) from R0 to R1, the thresholds are chosen in a
way such that20

P (θ(R0, R1) < Xj,k ≤ θ(R0, R1 − 1)) = p(R0, R1),

which is achieved by formally setting θ (R0, 18) = −∞, θ (R0, 0) = +∞ and calculating

θ (R0, R1) = Φ−1

 ∑
R>R1

p (R0, R)
 , 1 ≤ R0, R1 ≤ 17.

The present value of each non-defaulted loan depends on notional value, rating, loan
rate, and time to maturity. In this section we ignore the notional value and focus on D,
the discount factor. A loan is assumed to pay an annual loan rate C until maturity T , at
which all principal is due. We set T equal to a uniform value of 4 years, which is the digit
closest to the mean maturity of 3.66 estimated from the borrower statistics.21 Payments
are discounted at a continuous rate rf +s (R) where rf is the default-free interest rate and
s(R) is the rating-specific credit spread; see Table 4b. The term structure of spreads is flat.
We ignore the risk related to the default-free interest rate and set rf = 2% throughout.
The discount factor for a non-defaulted, R-rated loan at time t is

D (C,R, t, T ) ≡
T∑

u=t+1

(
C + I{u=T}

)
e−(rf +s(R))(u−t). (4)

If the loan is not in default at time 1, it is assumed to have just paid a coupon C. The
remaining future cash flows are priced according to (4), depending on the rating at time
t = 1, so that the loan is worth C +D (C,R1, 1, T ). If the loan has defaulted at time 1, it
is worth (1 + C) (1− LGD), where LGD is an independent random variable drawn from
a beta distribution with expectation 0.39 and standard deviation 0.34.22 This means, the

19This could be relaxed but would require the inclusion of other data sources. In the simulations we
use a value of 0.20, which is very close to a value reported by Zeng and Zhang (2001). It is the average
over their sub-sample of firms with the lowest number of missing observations.

20In our model we use the 1981–2010 average one-year transition matrix for a global set of corporates
from Standard and Poor’s (2011).

21The borrower statistics report exposures in three maturity buckets. Exposure-weighted averages of
maturities indicate only small maturity differences between BS sectors. If we wanted to preserve them,
the differences would shrink even more in the averaging process involved in the mapping from BS sectors
to RM sectors. By setting the maturity to 4 years we simplify loan pricing substantially, mainly since
calculating sub-annual migration probabilities is avoided.

22Here we have chosen values reported by Davydenko and Franks (2008), who investigate LGDs of loans
to German corporates, similar to Grunert and Weber (2009), who find a very similar standard deviation
of 0.36 and a somewhat lower mean of 0.275.
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same relative loss is incurred on loan rates and principal. The spreads are set such that
each loan is priced at par at time 0:

C (R0) ≡ erf +s(R0) − 1, D (C (R0) , R0, 0, T ) = 1.

Each loan generates a return equal to

ret (R0, R1) = −1 +
D (C (R0) , R1, 1, T ) + C (R0) if R1 < 18

(1 + C (R0)) (1− LGD) if R1 = 18
,

which has an expected value of

Eret (R0, R1) = −1 +
∑

R1<18
p(R0, R1) [D (C (R0) , R1, 1, T ) + C (R0)]

+p (R0, 18) (1 + C (R0)) (1− ELGD) .

Besides secure interest, the expected return incorporates credit risk premia that markets
require in excess of the compensation for expected losses. We assume that the same
premia are required by banks and calibrate them to market spreads, followed by slight
manipulations to achieve monotonicity in ratings.23

Having specified migrations and revaluation on a single-loan basis, we return to the
portfolio perspective. Assuming that k in (j, k) runs through all sector-j loans of all
banks, we denote by Rj,k

1 the rating of loan (j, k), which is the image of asset return Xj,k

at time 1. If bank i has given a (large) loan to borrower (j, k), the variable LLi,j,k denotes
the notional exposure; otherwise, it is zero. Then, the euro return on the large loans of
bank i is

retlarge,i =
∑
j,k

LLi,j,kret
(
Rj,k

0 , Rj,k
1

)
.

This model does not only account for common exposures of banks to the same sector
but also to individual borrowers. If several banks lend to the same borrower, which may
concern a large exposure, they are simultaneously hit by its default or rating migration.

4.2 Small loans
As previously described, for each bank we have further information on the exposure to
loans that fall short of the €1.5 Mn reporting threshold of the credit register. However, we
know the exposures only as a sum for each RM sector so that we are forced to model its
risk portfolio-wise. However, as portfolios of small total volume tend to be less diversified
than larger ones, we steer the amount of idiosyncratic risk adding to the systematic risk
of each sector’s sub-portfolio by its volume.

23Market spreads are derived from a daily time series of Merill Lynch euro corporate spreads covering
all maturities, from April 1999 to June 2011. The codes are ER10, ER20, ER30, ER40, HE10, HE20, and
HE30. Spreads should rise monotonically for deteriorating credit. We observe that the premium does rise
in general but has some humps and troughs between BB and CCC. We smooth them out as they might
have substantial impact on bank profitability but lack economic reason. To do so, we fit Ereturn (R0) by
a parabola, which turns out to be monotonous, and calibrate spreads afterwards to make the expected
returns fit the parabola perfectly. Spread adjustments have a magnitude of 7bp for A– and better, and
57bp for BBB+ and worse. Final credit spreads are presented in Table 4b.
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In this section, we sketch the setup only; details are found in Appendix C. We consider
the portfolio of a bank’s loans belonging to one sector; they are commonly driven by that
sector’s systematic factor Yj, besides idiosyncratic risk. If we knew all individual exposures
and all initial ratings, we could just run the same risk model as for the large loans.
It is central to notice that the individual returns in portfolio j would be independent,
conditional on Yj. Hence, if the exposures were extremely granular, the corresponding
returns would get very close to a deterministic function of Yj, according to the conditional
law of large numbers.24 We do not go that far since small portfolios will not be very
granular; instead, we utilize the central limit theorem for conditional measures, which
allows us to preserve an appropriate level of idiosyncratic risk. Once Yj is known, the
total of losses on an increasing number of loans converges to a (conditionally!) normal
random variable. This conditional randomness accounts for the presence of idiosyncratic
risk in the portfolio. Correspondingly, our simulation of losses for small loans involves
two steps. First, we draw the systematic factor Yj. Second, we draw a normal random
variable, however with mean and variance being functions of Yj that match the moments
of the exact Yj-conditional distribution. The Yj-dependency of the moments is crucial
to preserve important features of the exact portfolio distribution, especially its skewness.
Also, it preserves the correlation between the losses of different banks in their sector-j
portfolios.

An exact fit of moments is not achievable for us as it would require knowledge about
individual exposures and ratings of the small loans, but an approximate fit can be achieved
based on the portfolio’s Hirschman-Herfindahl Index (HHI) of exposures. As we also do
not explicitly know the portfolio HHI, we employ an additional large sample of small loans
provided by a German commercial bank, to estimate the relationship between portfolio
size and HHI. The estimate is sector specific. It provides us with a forecast of the actual
HHI based on the portfolio’s size and the sector. The forecast is the second input to
the function that gives us Yj-conditional variances of the (conditionally normal) portfolio
losses. Details are described in Section C.1.

This modeling step ends up with a (euro) return on each bank’s small loans, denoted
by retsmall,i (see eq. 13).

5 Modeling contagion
As introduced in Section 2, we differentiate between fundamental defaults and contagious
defaults (see Elsinger et al. (2006) or Cont et al. (2010), for instance). Fundamental
defaults are related to losses from the credit risk of “real economy” exposures, while
contagious defaults are related to the interbank credit portfolio (German only). 25

Moreover, we construct an interbank clearing mechanism based on the standard as-
sumptions of interbank contagion (see e.g.Upper, 2011): First, banks have limited lia-
bility. Next, interbank liabilities are senior to equity but junior to non-bank liabilities
(e.g. deposits). Losses related to bank defaults are proportionally shared among inter-

24This idea is the basis of asymptotic credit risk models. The model behind Basel II is an example of
this class.

25Foreign bank exposures are included in Sector 17 of the “real economy” portfolio, since we have to
exclude them from the interbank network. Loans made by foreign banks to German financial entities are
not reported to LED.
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bank creditors, based on the share of their exposure to total interbank liabilities of the
defaulted bank. In other words, its interbank creditors suffer the same loss-given-default.
26 Finally, non-bank assets of a defaulted bank are liquidated at a certain discount. This
extra loss is referred to as fire sales and is captured by bankruptcy costs , defined below.
The clearing mechanism closely follows Eisenberg and Noe (2001) and the extension by
Elsinger et al. (2006) to bankruptcy costs. It is described in detail in an appendix.

5.1 Losses and bankruptcy costs
In our analysis, we are particularly interested in bankruptcy costs since they represent
a dead-weight loss to the economy. We model them as the sum of two parts. the first
one is a function of bank’s total assets, because there is empirical evidence for a posi-
tive relationship between size and bankruptcy costs of financial institutions; see Altman
(1984).

The second part incorporates fire sales and their effect on the value of the defaulted
bank’s assets. For their definition, recall that each bank makes a return on its large and
small loans. We switch the sign and define losses

Lreal
i ≡ − (retlarge,i + retsmall,i) , (5)

highlighting that we deal here with losses related to the real economy. If a loss exceeds
the bank’s capital Ki, it defaults for fundamental reasons, and the bank’s creditors suffer
a loss the extent of which equals max

(
0, Lreal

i −Ki

)
. Note that this is a loss before

bankruptcy costs and contagion. In the whole economy, the fundamental losses add up
to

Lreal ≡
∑
i

max
(
0, Lreal

i −Ki

)
It is this total fundamental loss in the system by which we want to proxy lump-sum effects
of fire sales. The larger Lreal, the more assets will the creditors of defaulted banks try
to sell quickly, which puts asset prices under pressure. We proxy this effect by a system-
wide relative loss ratio λ being monotonic in Lreal. In total, if bank i defaults, we define
bankruptcy costs as the sum of two parts related to total assets and fire sales:

BCi ≡ φ
(
TotalAssetsi − Lreal

i

)
+ λ

(
Lreal

)
max

(
0, Lreal

i

)
(6)

We consider φ the proportion of assets lost due to litigation and other legal costs. In our
analysis we set φ = 5%.27 It is rather for convenience than for economic reasons that
we set the monotonic function λ equal to the cumulative distribution function of Lreal.
Given this choice, the more severe total fundamental losses in the system are, the closer
λ gets to 1.28

26We do not have any information related to collateral or the seniority of claims.
27Our results remain robust also for other values φ ∈ {1%, 3%, 10%}. Alessandri, Gai, Kapadia, Mora,

and Puhr (2009) and Webber and Willison (2011) use contagious bankruptcy costs as a function of total
assets, and set φ to 10%. Given the second term of our bankruptcy costs function that incorporates fire
sales effects, we reach at a stochastic function with values between 5% and 15% of total assets.

28We acknowledge that real-world bankruptcy costs would probably be sensitive to the amount of
interbank credit losses, which we ignore. This simplification, however, allows us to calculate potential
bankruptcy costs before we know which bank exactly will default through contagion, so that we do not
have to update bankruptcy costs in the contagion algorithm. If we did, it would be extremely difficult to
preserve proportional loss sharing in the Eisenberg-Noe allocation.
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6 Optimization
This paper compares losses in the system, according to some loss measure and subject
to different capital and bailout rules. The comparison allows us to minimize the loss
measure. However, an optimal bailout or capital rule is not the sole focus of this paper.
There are two reasons for this.

First, the loss functions that would be optimized are only few of many that could
be the optimal outputs of the system. We discuss different target functions (i.e. system
losses) in Section 6.2. Our emphasis is on how the different loss functions interact with
the different capital or bailout rules, to provide insights into how the rules work, i.e..

Second, the rules themselves are subject to a variety of restrictions. These include
the fact that the rules must be simple and easily computed from observable characteris-
tics, and they should preferably be smooth to avoid cliff effects. Simplicity is important
not just because of computational concerns. Simple formal rules are necessary to limit
discretion on the ultimate outcome of capital rules. Too many model and estimation pa-
rameters set strong incentives for banks to lobby for a design in their particular interest.
While this is not special to potential systemic risk charges, it is clear that those banks
who will most likely be confronted with increased capital requirements are the ones with
the most influence on politics. Vice versa, simplicity can also help to avoid arbitrary
punitive restrictions imposed upon individual banks. In this sense, the paper cannot offer
deliberately fancy first-best solutions for capital requirements.

In our analysis we keep the total amount of capital in the system constant; otherwise,
optimization would be simple but silly: more capital for all, ideally 100% equity funding
for banks. As a consequence, when we require some banks to hold more capital, we
are willing to accept that others may hold less capital as in the benchmark case. Taken
literally, there would be no lower limit to capital except zero. However, we also believe that
there should be some minimum capital requirement that applies to all banks for reasons
of political feasibility, irrespectively of their role in the financial network. Implementing
a uniform maximum default probability for all banks might be one choice.

Finally, there are also technical reasons for simplicity. Each evaluation step in the
optimization requires a computationally expensive full-fledged simulation of the financial
system. We therefore restrict ourselves to an optimization over one parameter, focusing
on whether the various network measures analyzed are able to capture aspects actually
relevant for total system losses at all.

6.1 Capital allocations
In this subsection, we introduce a range of simple capital rules over which we minimize
the total system loss. The range represents intermediate steps between two extremes.

One extreme is our benchmark case, by which we understand capital requirements in
the spirit of Basel II, i.e., a system focused on a bank’s portfolio risk (and not on network
structure). For our analysis we require banks to hold capital equal to its portfolio VaR
on a high security level α = 99.9%, in line with the level used in Basel II rules for the
banking book. There is one specialty of this VaR, however. In line with Basel II again,
the benchmark capital requirement treats interbank loans just as other loans. For the
determination of bank i’s benchmark capital Kα,i (and only for this exercise), each bank’s
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German interbank loans (on the asset side) are merged with loans to foreign banks into
portfolio sector 17 where they contribute to losses just as other loans.29 In the whole
system, total required capital adds up to TKα ≡

∑
i
Kα,i.

The other extreme has one thing in common with the benchmark case: total required
capital in the system must be the same. On bank level, required capital consists of two
components in this case. One is given by a comparably low amount Kmin,i derived under
a “mild” rule, which we set to the portfolio VaR on a moderate security level of 0.99,
again treating interbank loans as ordinary loans. This limits bank PDs to values around
1%, which could be a politically acceptable level.30 The other component is allocated by
means of a centrality measure. Given Centralityi to be one of the measures introduced
in Section 3.2, the simple idea is to allocate the system-wide hypothetical capital relief
from the “mild” capital rule proportionally to the centrality measure:

Kcentr,i ≡ Kmin,i + (TKα − TKmin) Centralityi∑
iCentralityi

, (7)

where TKmin ≡
∑
iKmin,i. Having defined the two extremes Kα and Kcentr(now under-

stood as vectors) , the range of regimes we optimize over is given by the straight line
between them, which automatically keeps total required capital constant and guarantees
that bank individual capital is always positive, since both extremes are so:31

K̃ (β) ≡ βKα + (1− β)Kcentr, 0 ≤ β ≤ 1.

The parameter β is subject to optimization.
In general, the approach is not limited to one centrality measure. We could define

multiple centrality based “extreme” (or better corner) regimes that build together with the
benchmark allocation a set of M capital vectors and optimize over a (now M -dimesional)
vector β under the restrictions ∑j βj = 1 and 0 ≤ βj ≤ 1 for all j. This procedure is
numerically expensive and not yet carried out. Clearly, re-allocating capital implies that
some banks will have to hold more capital (implying lower PDs) and some less (higher
PDs) than in the benchmark case. This might be politically undesirable, requiring a
modification of our approach. For example, regulators could agree on a total amount of
additional capital to be held in the system, compared to TKα, that would be allocated
using centrality based rules.

In this section we have dealt with capital requirements only. To assess their conse-
quences on actual systemic risk, we also have to specify in which way banks intend to

29Default probabilities for these loans are taken from the Large Exposure Database in the same way
as for loans to the real economy.

30Actual bank PDs after contagion can be below or above 1 percent, depending on whether defaults
in a risk model where interbank loans are directly driven by systematic factors, are more frequent than
in presence of contagion (but without direct impact of systematic factors). However, the probability of
fundamental losses cannot exceed 1 percent; see Section 5.1. (In principle, they could, but this would
require a – counterfactual – hedging effect between interbank and normal corporate loans.)

31We could also intermediate between the two extremes in other ways, e.g. by flooring at Kmin and ap-
propriate subsequent rescaling, to keep total capital constant. However, we would expect more interesting
results from a (yet outstanding) optimization over linear combinations of multiple centrality measures,
than of such kind of modification. In addition, our approach has the advantage that is is differentiable
in β rather than Lipschitz continuous only, as it would be the case with flooring.
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obey the requirements. In practice, banks hold a buffer on top of required capital. Oth-
erwise, they could easily get into “regulatory distress” , which would regularly lead to
a replacement of most board members, for instance. We abstract from this buffer and
assume banks to hold exactly the amount of capital they are required to hold.

6.2 Target function(s)
In the optimization process we try to minimize a measure of system losses (i.e. the target
function). The mechanism of contagion proposed by us has several sets of agents, each of
whom suffers separate kinds of losses. There are many conflicting arguments which agents’
losses the regulator should particularly be interested in, for instance those of depositors
(as a proxy for “the public” that is likely to be the party that ultimately bails banks out)
or even those of bank equity holders (who are at risk while offering a valuable service to
the real economy). While all of them may be relevant, our primary target function are the
expected bankruptcy costs, which is just the sum of the bankruptcy costs of the defaulted
banks:

EBC = E
∑
i

BCiDi , (8)

where Di is the default indicator of bank i, as set in (??); for the definition of BCi see (6).
Expected bankruptcy costs are a total social deadweight loss that does not include the
initial portfolio loss due to the initial shock. While this is a compelling measure of social
loss, there are distributional reasons that it might not be the only measure of interest.

6.3 Testing separate capital allocations
Setting the capital allocations as a function of a rule based upon network topology, other
measure variables, and a minimum capital requirement for all banks was straightforward
and computed on network measures presented in Table 1.In our analysis minimum capital
is set at the VaR (α = 99%) where interbank loans are treated as ordinary loans. It
(imperfectly) implements a cap of 1% on bank PDs. The difference between benchmark
capital (i.e. VaR(α = 99.9%)) and minimum capital (i.e. VaR(α = 99%)) is then pooled
and divided based on a capital allocation rule. In each capital allocation rule, given the
centrality measure chosen and given a coefficient, β, we calculate required capital for each
bank, which is assumed to be actually held by banks. Typically in our simulations the
total amount of capital held by the banks is assumed constant, and divided between the
banks according to the rule,β. Then, as described above, we simulate a large sample
of losses to “real-economy” bank portfolios; and for each capital allocation we simulate
interbank contagion. This gives, for each allocation, a sample of after-contagion losses
from which the target function (total expected bankruptcy costs) and further measures
are calculated. For each centrality measure, we perform a simple grid search over β to
minimize the target function.

6.4 Bailout fund mechanism
Our second direction to improve the stability of a financial system is developing the
concept of a bailout fund mechanism. The fund acts a lender of last resort, covering
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credit losses resulting from losses on loans to the “real economy” and recapitalizing the
bank (with an amount related to its interbank assets). In our proposed policy tool, the
bailout fund obtains resources directly from banks. Banks receive a capital relief compared
to the benchmark case, and these resources are pooled in a bailout fund. The purpose of
the bailout mechanism is to provide policymakers with a simplified framework for deciding
whom to rescue – or not – in case of distress.The bailout fund implements some basic
ad-hoc rules, which could be relaxed or extended and be subject to further optimization:

(i) The bailout fund has limited resources;

(ii) it saves banks based on a ranking obtained from a centrality-based index and other
measured bank characteristics; and

(iii) it utilizes funds to rescue and recapitalize banks before interbank contagion takes
place.

We now develop the concept of the bailout fund in three steps.
First, and similarly to capital re-allocation as defined in Section 6.1, we choose a

parameter β ∈ [0, 1] which now, however, defines a direct tradeoff between a centrality
measure and capital in the benchmark case. We compute an index for each financial
institution as a β-weighted average of two variables, which are transformed such that
they are in a comparable range. More formally, we set

indexi = β × log (V aRα,i)
maxi (log (V aRα,i))

+ (1− β)× Centralityi
maxi (Centralityi)

. (9)

This index is then mapped into a ranking ranki, where low values determine high indices.
As the second step, we define the mechanics of how the fund is used. When a bank

is to be saved by the bailout fund, not only the creditors are satisfied but the bank is
also recapitalized with a buffer equal to a fixed percentageε of total interbank assets.
This buffer helps the bank to sustain further losses on its interbank assets generated by
contagious defaults.

If we took our model literally, we would let the bailout fund rescue banks in the order
down the rank and stop when the fund is exhausted. This would – formally! – be possible
since in our model fundamental losses emerge at the same time; right after they have
become known, the regulator could look at them collectively and decide on whom to
rescue based on previous knowledge AND the combination of losses.

We think this picture is too ideal. Rather, we expect fundamental losses to appear
during some non-negligible period of time, and to do so in an exogenous, random sequence
the regulator has no influence on. We also think that the regulator must react to a
critical fundamental loss immediately. This means, while the regulator can make the
rescue decision about a certain bank depend on anything known in advance and anything
up to the time of the loss, the decision must not depend on the fundamental losses of
those banks who default later, even if it would be better to put the money there. In other
words, we assume that there an implicit time order in which fundamental losses appear,
and that the regulator may condition its decisions on the past and presence, but not on
the future.

To keep things simple enough, the regulator makes a plan in advance how much exactly
each bank would get from the fund, given it is needed and given the fund still has reserves.
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The planned amount to be given to a bank is defined by a function that jointly depends
on the rank, the fundamental losses Lreal

i , and interbank lending AIB
i . For simplicity, we

separate the function into two factors, one of which depends on the index only.

bailplan
i ≡ I{ranki≤C} × I{Lreal

i >Ki}
(
Lreal
i −Ki + εAIB

i

)
.

In words, the plan targets at a full bailout, plus capital endowment at some percentage
ε of interbank assets, if the bank belongs to the C most “important” banks, according
to the index measure. If a bank is not “important” enough, it gets no subsidy and goes
bankrupt. Other rules are possible. For instance, one could remove the strict cutoff at C
and make the relative buffer size ε depend on the rank. Doing so would eliminate the cliff
behavior at the threshold C and possibly mitigate adverse incentives to banks.

In each simulation, after generation of the fundamental losses we draw a random
ordering among the banks who have fundamentally defaulted. This is our proxy for the
random sequence of loss occurrences. The regulator goes down this ordering and transfers
money according to the plan, until the fund is exhausted. Such a strategy could also be
implemented if there was an explicit timeline, under the condition that the regulator must
decide between bailout and bankruptcy immediately.

We now implement rule (i) formally. Denote the fund’s initial endowment by resources
and assume there are ND fundamentally defaulted banks. The integer valued function
fdidx (k), k = 1, . . . , ND, runs through the indices of the defaulted banks in a random or-
der; this order is drawn in each simulation and depends on nothing but ND. The amount
actually transferred to the banks is defined recursively. Below, the variable bailcumk

denotes cumulative payments; the payment to bank i is denoted by baili.

bailcum0 ≡ 0;
bailfdidx(k) ≡ min

{
bailplan

fdidx(k), resources− bailcumk−1
}
, k = 1, . . . , ND

bailcumk ≡ bailcumk−1 + bailfdidx(k), k = 1, . . . , ND
baili ≡ 0 for all other banks.

As the third step, it remains to choose the resources of the bailout fund. As in
definition (7) of centrality based capital rules, there is a minimum required capital Kmin,i
under the “mild” rule, but this now remains the ultimate required capital, unlike in
Section 6.1. Compared to the benchmark case, banks get a (now actual) capital relief
summing up to TKα−TKmin over the whole system. A fraction η∈ [0, 1] of it defines the
reserves of the bailout fund:

resources = η (TKα − TKmin) .
The parameters β and η define a set of possible bailout rules, which can be used to
determine the optimal one.

While banks hold less capital than in the benchmark case (or with centrality based
capital), the nice feature of the fund is that it works in a targeted way. It is able to inject
fresh capital into those banks after it is known that their fundamental losses have exceeded
their capital. If calibrated well, the bailout fund will thereforedominate a comparable
capital allocation mechanism, on average, (assuming total systemic capital equals the
fund’s resources) because capital allocation takes place before losses are known, whereas
the bailout requirement utilizes extra information.
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7 Results
In this section we present our framework in both policy directions discussed above: first,
Section 6.1 outlines our results for capital re-allocations using centrality measures and,
second, Section 7.2 presents an application of the bailout fund mechanism.

7.1 Capital allocations
Our main results from capital re-allocation exercise are depicted in Figure 2. As defined
in Equation 8, the target function that we compare across centrality measures and within
one measure is the total expected bankruptcy cost. Our benchmark allocation (based only
on VaR) is represented by the point where β = 1. Indeed, some centrality measures help
to improve the stability of the banking system in terms of expected total losses. Among
them are Total Assets (TA), Opsahl centrality, IB Liabilities, Out Degrees, Weighted
and non-weighted Eigenvector centrality. In contrast, capital allocations based on Clus-
tering Coefficient, Closeness, Weighted Betweenness, In Degrees and IB Assets have a
higher expected loss than in the benchmark allocation for any β < 1. Opsahl Centrality
(Equation 3) dominates any other network measures, apart from Total Assets.

By setting a weight of 70% on the difference between initial capital allocation (VaR
(α = 99.9%)) and minimum capital (VaR(α = 99%)) and the rest according to Opsahl
Centrality, we obtain an improvement of around 20% of expected bankruptcy costs, from
€1211 Mn to €977 Mn. The allocation based on TA beats any network based measure,
improving the expected loss by almost 40%, reducing it from €1211 Mn to €730 Mn.32

Figure 3a and 3b present expected loss functions under the best-performing centrality
measures: Opsahl Centrality and Total Assets. In the case of Opsahl centrality (Fig-
ure 3a), on the one hand, expected bankruptcy costs of fundamental defaults are always
above the benchmark case and, on the other hand, losses from contagion reach a minimum
when β = 0.4 . This allocation does not coincide with the best allocation in terms of
total expected bankruptcy costs (β = 0.7) . The non-linearity observed in the case of Op-
sahl Centrality is similar to other centrality measures (e.g. Weighted Eigenvector, Total
Liabilities, or Out Degrees). In contrast, TA allocations (Figure 3b) have a monotonic
effect on total expected bankruptcy costs. Although varying the weight between full TA
allocation and the benchmark case has virtually no impact on expected bankruptcy costs
from fundamental defaults, it has a strong mitigating effect on expected bankruptcy costs
from contagion. In this case, the best allocation is β = 0, meaning all weight on TA,
apart from the minimum capital (Kmin) that was set based on the VaR at a low quantile,
e.g. α = 99%.

Figures 4a and 4b are histograms of all banks’ default probabilities before and after
contagion based on three allocation rules: the benchmark case (VaR based capital33), the
best allocation based on the combination between VaR capital and Total Assets (TA)
(β = 0), and the best allocation based on the combination between VaR measure and
Opsahl centrality (β = 0.7). On the one hand, results depicted in Figure 4a show that the

32Since bankruptcy costs (BC) are directly linked to TA (eq. 6), this might be one factor that explains
the good performance of TA in minimizing system losses.

33Recall that the VaR used for capital is not identical with the actual loss quantile in the model that
includes contagion, be it before or after contagion; see Section 6.1. If it were, the histogram for the
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Figure 2: A comparison of different capital allocations across network measures

Note: On Y-axis is represented the size of Total Expected System Loss (as measured by
Equation 8) from all defaults (both fundamental and contagious) under different capital
allocations. On X-axis, β represents the weight on VaR (whereas (1-β) represents the
weight on centrality measure).

best TA-based allocation gives a distribution of fundamental defaults (before contagion)
with longer and fatter tail than in the case based only on VaR. This is not surprising
as the PD before contagion is limited to 0.1% by construction (cf. footnote 30); any
exceedance is caused by simulation noise. The best allocation based on Opsahl Centrality
is something in between. There are less banks with a PD very close to 0 than in the case of
benchmark allocation (VaR), but PDs of several banks increase relative to the benchmark
case. On the other hand, the PDs observed in Figure 4b after interbank contagion show
a completely different picture. Best allocations based on TA and Opsahl perform much
better in terms of the overall distribution of bank PDs than in the benchmark case.

Figure 4b can also be used as a validation of the “traditional” way the risk of interbank
loans, that is, by treating them as in the benchmark case; cf. Section 6.1. There they
are part of an ordinary industry sector and driven by a common systematic factor. This
treatment is very much in line with the approach taken in the Basel III framework. The
bank PDs sampled in Figure 4b are default probabilities from the model including conta-
gion. If the bank individual loss distributions generated under the “traditional” treatment
were a perfect proxy of the ones after contagion, we should observe the histogram of PDs
in the “VaR” case to be strongly concentrated around 0.001. Instead, the PDs are widely
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Figure 3: Expected bankruptcy costs: All defaults, fundamental defaults and contagious
defaults

(a) Capital allocations under rules based on Opsahl
Centrality

(b) Capital allocations under rules based on Total As-
sets

Note: On Y-axis is represented the size of Expected System Loss (as measured by Equa-
tion 8) from fundamental, contagious defaults, and all defaults under different capital
allocations. On X-axis, β represents the weight on VaR (α = 99.9%), whereas (1-β)
represents the weight on centrality measure.

distributed and even on average approximately as doubly as high as possibly concluded
from the label “99.9-percent-VaR”. While the link to the Basel framework is rather of
methodological nature, our analysis clearly documents that interbank loans are special
and that correlating their defaults by Gaussian common factors may easily fail to capture
the true risk. As there are, however, also good reasons to remain with rather simple
“traditional” models, as those behind the Basel rules, our modeling framework lends itself
to a validation of the capital rules for interbank credit. This exercise is beyond the scope
of this paper.

Figure 5a is based on 20,000 simulations in each of which at least one bank has
gone bankrupt. Each observation represents a bank for which we count the number of
fundamental defaults (x-axis) and the total number of defaults including contagion (y-
axis). In the case of the VaR based benchmark allocation, the relationship is clearly non-
linear. Most banks, although their fundamental PD is effectively limited to 0.1 percent,
experience much higher rates of default due to contagion. Suggested (but not proven)
by the graph, there seems to be a set of some 30 events where the system fully breaks
down, leading to a default of most banks, irrespectively of their default propensity for
fundamental reasons.

In contrast, when using Opsahl Centrality, some banks have a higher probability of
default that can be close to 0.5% in some cases before contagion and 0.7% after contagion,
but there is now a different relationship between fundamental and contagious defaults.
First, a significant group of banks is now found on the diagonal; they default with –
partly substantial – probability for fundamental reasons but never do so because of their
interbank exposures. Second, the parallelly raised cloud of banks being involved in con-
tagion is beneath its benchmark counterpart, suggesting that the (asssumed) set of “total
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Figure 4: Frequency distributions of individual bank PDs

(a) Before IB contagion

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

0

1000

2000

3000

4000

5000

p
d

f

* *

TA

VaR

Opsahl

(b) After IB contagion
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Note: On Y-axis is presented the frequency distribution (no of occurrences) of individual
bank PDs. On X-axis, are represented PDs (per bank). Sign “*” denotes that the dis-
tribution has a longer tail but has been truncated and observations after that threshold
are aggregated at that point. Capital allocations are: i) BLUE based on Total Assets
(TA) (with min capital VaR (α = 99%)), ii) GREEN based on VaR (α = 99.9%) [our
benchmark allocation], iii) ORANGE based on Opsahl centrality. Results obtained with
20,000 simulations (using importance sampling).

breakdown” events has become scarcer.We investigate further which bank characteristics
can be distinguished between the two groups. Similar results are shown for the best al-
location under TA when we compare them with the benchmark case in Figure 5b. Thus,
we claim that allocations based on TA and Opsahl centrality shift capital from smaller
and less interconnected nodes to bigger and more interconnected and therefore the system
becomes less prone to interbank contagion.

In order to get the full picture, instead of focusing on unconditional expected bankruptcy
costs we now switch to tail expectations.34 First we provide in Figure 6a the 99%-tail
of the distribution of total bankruptcy costs for the benchmark case and the optimal
TA and Opsahl-Centrality-based allocations. Tail-conditional expected bankruptcy costs
under the benchmark allocation are equal to around €115 Bn, while under TA allocation
they are almost halved. With Opsahl Centrality allocation, conditional expected losses
are around €89 Bn. Total bankruptcy costs reach a maximum around €900 Bn. This
amount is equivalent to a total system collapse where approx. 5% of total system assets
are lost. In Figure 6b we zoom further into the conditional tail and measure losses in the
99.9%-tail. Our findings reinforce the idea that TA and Opsahl centrality perform better
than the benchmark allocation. Top 0.1% losses exceed on average €435 Bn in the case
of TA, €589 Bn under the best allocation using Opsahl centrality and around €663 Bn
under the benchmark case.

Finally, Figure 7 shows bank individual ratios between best capital allocations under
Total Assets (TA), Opsahl centrality, and Weighted Eigenvector centrality, respectively, to

34In Figure 12 we present the unconditional distributions of system losses, as defined in eq. 8. The un-
conditional mean under the benchmark allocation (VaR) equals €1211 Mn, while under best TA allocation
it is €730 Mn and €977 Mn under Opsahl Centrality allocation.
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VaR benchmark allocation. The first observation is that ratios of TA to VaR allocations
have a maximum around two. That implies that capital doubles for some banks under this
allocation. On the lower side, some banks may hold less capital, floored at a minimum
of 20% of initial capital. The ratios of Opsahl vs. benchmark allocation look more
dispersed. There is one bank that receives 13 times more capital than in the benchmark
case, and several that are required to hold around four times more. On the lower side,
banks hold around 60% of initial capital. The third allocation, which involves a tradeoff
between Weighted Eigenvector centrality and the benchmark, shows one outlier with
around seven times more capital than in the benchmark case and another node with twice
the initial capital. On the lower side, results are similar to the Opsahl best allocation.
To conclude, we infer that the TA based allocation is a comparably “mild” modification
of the benchmark case because the extra capital allocated to some banks is not excessive.
Of course, we must acknowledge that this finding may largely be driven by our data.
35 Another intuitive inference is that the other centrality measures might mis-reallocate
capital. For example, let’s say that benchmark capital for a bank represents 8% of the
total assets. Forcing this bank to hold 13 times more capital under the new allocation
rule would mean it would have to hold more capital than total assets. Due to this
misallocation likelihood, we infer that more constraints should be set in order to achieve
better performing allocations using centrality measures. We leave this extra mile for
future research.

35For instance, we could construct a large bank with loans to the real economy being as safe as we like.
Lowering their PDs while keeping total assets constant, we could make its VaR converge to zero, and
so its benchmark capital. In contrast, TA-based capital would remain almost stable so that the ratio of
TA-based vs. benchmark capital would go to infinity.
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Figure 7: Relative changes of required capital for different capital allocations
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Note: Each observation represents a bank. The graph plots capital under the optimal
capital allocations ( based on Total Assets, Opsahl Centrality and Weighted Eigenvec-
tor)divdided by capital in the benchmark case.

7.2 Bailout fund mechanism
As we discussed in Section 6.4, we design a second policy direction to deal with SIFIs in
form of a bailout fund mechanism. Figure 8 depicts the probability distributions of the
number of bank defaults at different levels of total available resources of the bailout fund,
using a bank ranking (exclusively) based on Opsahl Centrality (top row) and using a
ranking (exclusively) based on Total Assets (bottom row), in contrast to a ranking based
only on the VaR of the benchmark case. As we increase the size of the bailout fund,
the bank ranking looses importance. In the case of a bailout fund with 100% resources,
rankings that consider VaR, TA or Opsahl Centrality lead to very similar PD distributions.
The difference is made when the bailout fund has less resources. Thus, targeting them
plays an important role. With 10% resources of the maximum size, the ranking based on
Opsahl centrality combined with the size delivers the best results. Rankings are actually
very similar. Compared with capital re-allocations, the bailout fund mechanism targets
resources when they are needed (when losses exceed existing capital) and to those who are
more systemically important (based on the bank ranking). This method gives less room
to misusing resources. Still the difference is made which entities to save or not, given
the limited amount of resources. Using the maximum amount of resources, the expected
system losses are close to zero. With 40% of the funds, the expected system losses are
similar to the optimal capital allocation obtained above.

Figure 9 shows us how the expected bankruptcy costs evolve at different levels of
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bailout funds and at different weights on centrality measure as compared to VaR . As
resources in the bailout fund increase (X-axis) the expected losses decrease (Y-axis).
Fund resources increase from €54 Bn (20% of the maximum bailout fund) to nearly €270
Bn (100% of the maximum bailout fund). This effect is non-linear. On the Z-dimension,
in the case of the maximum bailout fund, there is a minimum at the ranking based on 90%
weight on VaR and 10% weight on Opsahl centrality. The optimal bailout rule changes
as bailout funds decrease, with the weight on Opsahl centrality gaining in importance.

Figure 9: Bailout efficiency surface: Opsahl centrality

Note: Expected Funds Used are the expected value of the utilized resources by the bailout
fund, as we increase the capital of Bailout fund from €54 Bn to €270 Bn in steps of €54
Bn (20% of €270bn) up to a maximum amount pooled (i.e. ∑(−V aR99.9% +V aR99%) over
all 1764 banks is €270 Bn). Results obtained with 10,000 simulations (using importance
sampling).

8 Robustness checks
In this section we provide an analysis of the stability of centrality measures, liabilities’
distributions and robustness checks of the parameters utilized throughout this paper.
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8.1 Interbank liabilities
In Table 1 we have shown the properties of the interbank assets and liabilities for our
empirical application using the data reported at the end of Q1 2011.

Since the utilized data is highly confidential, we focus on distributional properties of
the interbank liabilities. In Figure 13 we attempt to compare the goodness-of-fit for a
power-law distribution versus a log-normal one. The coefficient α of the power law is
0.45 while the constant term is around 4. As a standard convention, the minus in front
of α corresponds to the negative slope. Figure 14 shows ranked liabilities for the first
quarter of 2005, 2007, 2009, and 2011.36 We find the α-coefficient to change from 0.51 in
2005 to 0.45 in 2011. The constant term decreases from 4.7 in 2005 to 4 in 2011. At the
top of exposures we observe an increase in volumes over time. The number of interbank
liabilities decreases from 29,000 in 2005 to 22,000 in 2011. This effect is probably also
a consequence of mergers and acquisitions in the German banking sector.37 Most of the
interbank lending volume then turns into intra-group transactions, which are neglected
in our analysis.

8.2 Network structure
As a robustness check of our results, we compare interbank properties, liabilities and
centrality measures over the period 2005 - 2011. Tables 6, 7, and 8 are similar to Table 1.
As mentioned before both number of banks and number of interbank exposures decrease
by 11% and around 21%, respectively, from 2005 to 2011. The average individual bank
total IB exposure increased from €900 Mn to almost €1 Bn. The average number of
connections decreases from 29 to 26. The distributions of centrality measures are very
similar over this period. For example, looking at different quantiles, mean or standard
deviation of Opsahl centrality distributions we observe similar ranges across the four
snapshots presented in this paper. At the higher end of the distribution, connectivity as
measured by this measure picks in 2007 Q1, meaning that big banks are trading less in the
interbank market. Very small banks show a lag in this behavior, with a peak in 2009 Q1.
Weighted betweenness and clustering coefficient show a very skewed distribution. Most of
the banks have a zero coefficient in this this case. We infer that this feature has an impact
on our results when we try to re-allocate capital based on these network measures. Over
time, these two indicators show a less clustered network structure and rather a tiered one.
This feature is strengthen by the dynamics of closeness centrality, that decreases over the
period 2005 - 2011. On average, eigenvector-type centrality measures bottom in 2009 Q1,
in the midst of the financial crisis. At the top of the distribution, the most recent results
reveal that important banks became even more interconnected compared to the before
crisis period.

This comparison over time leaves room for a dynamic re-adjustment process of the
capital re-allocations. Since interbank network properties do not change at a daily or
weekly frequency, we propose a one year gap between re-estimations as acceptable.

36For confidentiality reasons, we have transformed real data into a sequence of averages, using three
consecutive data points.

37The number of active banks decreases from 1.989 in 2005 to 1.764 in 2011.
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8.3 Credit risk parameters
In this subsection we outline the robustness checks that we employed with respect to the
credit risk model. We re-run several times the computation of VaR measures at quantile
α = 99.9% . For this computation we employed a new set of 1 Mn. simulations, and
kept the same generated PDs. Results are very similar, the average variance is under 2%.
At lower quantiles the variance decreases considerably, e.g. VaR measures at 99% have a
variance of under .5%.

9 Conclusion
In this paper we present a tractable framework to assess the impact of different capital
allocations on the financial stability of large banking systems. Furthermore, we attempt to
provide some empirical evidence of the usefulness of network-based centrality measures.
Combining simulations techniques with confidential bank balance sheet data, we test
our framework for different capital re-allocations. Our aim two fold. First, to provide
regulators and policymakers with a stylized framework to assess capital for SIFIs. And
second, to give a new direction to future research in the financial stability field using
network analysis.

Our main results show that there are certain capital allocations that improve finan-
cial stability, as defined in this paper. Focusing on the system as a whole and assigning
capital allocations based on networks metrics produces outperforming results compared
with the benchmark capital allocation, that is based solely on the individual bank bal-
ance sheet. Similarities among bank portfolios make the financial system vulnerable to
common macro-shocks. Our findings come with no surprise when considering a stylized
contagion algorithm. The improvement comes from getting the ”big picture” of the entire
system with interconnectedness and centrality playing a major role in triggering and am-
plifying contagious defaults. What is interesting is that capital allocations based on total
assets dominate any other centrality measure tested. These results strengthen the findings
that systemic capital requirements should depend mainly on total assets as proposed by
Tarashev et al. (2010). Combining total assets and network metrics on top of individual
bank asset riskiness (given for example by VaR measure), one could improve even further
system’s stability.

We find our work relevant for the forthcoming micro-prudential mandate of the ECB
to supervise the entire European banking system with a focus on SIFIs. In order to apply
our methodology, an harmonized European credit register is necessary. Micro-prudential
supervision should incorporate macro-prudential implications. The information regard-
ing both interconnectedness, that could fuel interbank contagion, and correlated credit
exposures, that show vulnerability to common shocks, are strongly dependent on the avail-
ability of this kind of dataset. As shown by Löffler and Raupach (2013), market-based
systemic risk measures seem unreliable when willing to assign capital surcharges for sys-
temically important institutions (or other alternatives like for example the systemic risk
tax proposed by Acharya, Pedersen, Philippon, and Richardson (2010)). Thus, what we
propose in this paper is a novel tractable framework to improve system stability based on
network and balance sheet measures. Our study complements the methodology proposed
by Gauthier et al. (2012). Since market data for all financial intermediaries does not exist
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when dealing with large financial systems, we propose a methodology that relies mainly
on the information extracted from the central credit register.

We are not providing technical details on how capital re-allocation in the system could
be implemented by policymakers. This aspect is complex and the practical application
involves legal and political consensus.

Future research could include several directions. First, we would like to refine the
allocation rule to combine more measures. Second, the methodology can be extended by
including information regarding other systemically important institutions (e.g. insurance
companies or other shadow banking institutions). In order to accomplish this direction
further reporting requirements are necessary. Last, we want to calculate the insurance
premium for each bank based on the expected bailout resources utilized.

35



References
Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2013). Systemic risk and stability in
financial networks. Working Paper.

Acharya, V. V., L. H. Pedersen, T. Philippon, and M. Richardson (2010). Measuring
systemic risk. Mimeo.

Alessandri, P., P. Gai, S. Kapadia, N. Mora, and C. Puhr (2009). Towards a framework
for quantifying systemic stability. International Journal of Central Banking September,
47–81.

Altman, E. (1984). A further empirical investigation of the bankruptcy cost question.
The Jornal of Finance 39, 1067 – 1089.

Anand, K., P. Gai, S. Kapadia, S. Brennan, and M. Willison (2013). A network model of
financial system resilience. Journal of Economic Behavior and Organization 85, 219–
235.

Basel Committee on Banking Supervision (2011). Global systemically important banks:
Assessment methodology and the additional loss absorbency requirement. Bank for
International Settlements.

Battiston, S., D. D. Gatti, M. Gallegati, B. Greenwald, and J. E. Stiglitz (2012). Li-
aisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. Journal of
Economic Dynamics and Control 36(8), 1121–1141.

Battiston, S., M. Puliga, R. Kaushik, and P. T. G. Caldarelli (2012). Debtrank: Too
central to fail? financial networks, the fed and systemic risk. Scientific Reports 2(541),
1–6.

Bluhm, C., L. Overbeck, and C. Wagner (2003). An introduction to credit risk modeling.
Chapman & Hall.

Bonacich, P. (1987). Power and centrality: A family of measures. The American Journal
of Sociaology 92 (5), 1170–1182.

Cont, R., A. Moussa, and E. B. e Santos (2010). Network structure and systemic risk in
banking systems. Mimeo.

Craig, B. and G. von Peter (2010). Interbank tiering and money center banks. Working
Paper Bank for International Settlements (BIS) No 322.

Dangalchev, C. (2006). Residual closeness in networks. Physica A 365, 556–564.

Davydenko, S. A. and J. R. Franks (2008). Do bankruptcy codes matter? a study of
defaults in france, germany, and the uk. The Journal of Finance 63 (2), 565–608.

Deutsche Bundesbank (2009). Guidelines on the borrowers statistics. January 2009.

36



Eisenberg, L. and T. H. Noe (2001). Systemic risk in financial systems. Management
Science 47(2), 236–249.

Elsinger, H., A. Lehar, and M. Summer (2006). Risk assessment for banking systems.
Management Science 52, 1301–1314.

Gabrieli, S. (2011). Too-interconnected versus too-big-to-fail: banks network centrality
and overnight interest rates. SSRN .

Gai, P. and S. Kapadia (2010). Contagion in financial networks. Proceedings of the Royal
Society, Series A: Mathematical, Physical and Engineering Sciences 466, 2401–2423.

Gauthier, C., A. Lehar, and M. Souissi (2012). Macroprudential capital requirements and
systemic risk. Journal of Financial Intermediation 21, 594–618.

Grunert, J. and M. Weber (2009). Recovery rates of commercial lending: Empirical
evidence for german companies. Journal of Banking & Finance 33 (3), 505–513.

Gupton, G., C. Finger, and M. Bhatia (1997). Creditmetrics - technical document. JP
Morgan & Co..

Haldane, A. (2009). Rethinking the financial network. Speech delivered at the Financial
Student Association, Amsterdam.

Hart, P. E. (1975). Moment distributions in economics: An exposition. Journal of the
Royal Statistical Society. Series A (General) 138, 423 – 434.

Löffler, G. and P. Raupach (2013). Robustness and informativeness of systemic risk
measures. Deutsche Bundesbank Discussion Paper No. 04/2013 .

Minoiu, C. and J. A. Reyes (2011). A network analysis of global banking:1978-2009. IMF
Working Papers 11/74, 1–42.

Newman, M. (2010). Networks: An Introduction. Oxford, UK: Oxford University Press.

Opsahl, T., F. Agneessens, and J. Skvoretz (2010). Node centrality in weighted networks:
Generalized degree and shortest paths. Social Networks 32, 245 – 251.

Sachs, A. (2010). Completeness, interconnectedness and distribution of interbank expo-
sures a parameterized analysis of the stability of financial networks. Discussion Paper
08/2010, Series 2, Deutsche Bundesbank.

Schmieder, C. (2006). The Deutsche Bundesbank’s large credit database (BAKIS-M and
MiMiK). Schmollers Jahrbuch 126, 653–663.

Soramäki, K., K. M. Bech, J. Arnolda, R. J. Glass, and W. E. Beyeler (2007). The
topology of interbank payment flows. Physica A 379, 317–333.

Soramäki, K. and S. Cook (2012). Algorithm for identifying systemically important banks
in payment systems. Discussion Paper No. 2012-43 . Discussion Paper 2012-43.

37



Standard and Poor’s (2011). 2010 annual global corporate default study and rating transi-
tions. http://www.standardandpoors.com/ratings/articles/en/eu/?articleType=HTML&assetID=1245302234237.

Tarashev, N., C. Borio, and K. Tsatsaronis (2010). Attributing systemic risk to individual
institutions. BIS Working Papers No. 308.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank
markets. Journal of Financial Stability 7, 111–125.

Watts, D. J. and S. Strogatz (1998). Collective dynamics of ’small-world’ networks.
Nature 393(6684), 440–442.

Webber, L. and M. Willison (2011). Systemic capital requirements. Bank of England
Working Paper No. 436 .

Yellen, J. L. (2013). Interconnectedness and systemic risk: Lessons from the financial
crisis and policy implications. Speech at the American Economic Association/American
Finance Association Joint Luncheon, San Diego, California.

Zeng, B. and J. Zhang (2001). An empirical assessment of asset correlation models.
Moody’s Investors Service.

38



Appendix

A Portfolio risk model and contagion mechanism

Table 2: Risk model (RM) sectors

No Risk Model Sector No of Volume Default probabilities
Borrowers Weight 5% 25% 50% 75% 95% mean

1 Chemicals 3200 0.88% 0.00008 0.0019 0.0059 0.0154 0.0666 0.0166
2 Basic Materials 14,419 1.49% 0 0.0027 0.0085 0.0205 0.1000 0.0220
3 Construction and Materials 17,776 1.34% 0 0.0012 0.0066 0.0185 0.0795 0.0199
4 Industrial Goods and Services 73,548 15.06% 0 0.0023 0.0077 0.0207 0.1300 0.0257
5 Automobiles and Parts 1721 0.67% 0.00001 0.0031 0.0105 0.0300 0.1498 0.0291
6 Food and Beverage 13,682 0.76% 0.00001 0.0027 0.0082 0.0185 0.0800 0.0192
7 Personal and Household Goods 21,256 1.26% 0 0.0017 0.0074 0.0199 0.1490 0.0275
8 Health Care 16,460 0.95% 0 0.0003 0.0012 0.0086 0.0384 0.0098
9 Retail 25,052 1.62% 0 0.0017 0.0079 0.0267 0.1140 0.0237
10 Media 2,534 0.24% 0 0.0017 0.0045 0.0171 0.0790 0.0181
11 Travel and Leisure 8,660 0.68% 0 0.0036 0.0117 0.0292 0.2000 0.0316
12 Telecommunications 299 0.75% 0 0.0012 0.0036 0.0232 0.0632 0.0182
13 Utilities 15,679 3.22% 0 0.0009 0.0039 0.0126 0.0677 0.0162
14 Insurance 1392 4.12% 0.00029 0.0003 0.0009 0.0066 0.0482 0.0115
15 Financial Services 23,634 22.48% 0.00021 0.0003 0.0005 0.0057 0.0482 0.0107
16 Technology 2249 0.16% 0 0.0020 0.0050 0.0160 0.0468 0.0131
17 Foreign Banks 3134 22.06% 0.00003 0.0003 0.0009 0.0088 0.0795 0.0140
18 Real Estate 56,451 11.39% 0 0.0010 0.0051 0.0168 0.0831 0.0182
19 Oil and Gas 320 0.48% 0.00038 0.0022 0.0081 0.0296 0.1286 0.0303
20 Households (incl. NGOs) 79,913 1.26% 0 0.0005 0.0035 0.0124 0.0600 0.0134
21 Public Sector 1948 9.15% 0 0 0 0 0 0

TOTAL 388,327 100% 0.015
Note: Volume weight refers to credit exposure.
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Table 3: Model parameters

Parameter Description Value Robustness
Portfolio Credit Risk

Σ correlation matrix of systematic factors Y Table 4a
ρ intra-sector asset correlation 0.1995
eLGD LGD beta distribution: expectation 0.39
vLGD LGD beta distribution: standard deviation 0.34
rf risk free rate 2%
s(R) rating specific credit spreads Table 4b
T loan maturity 4 yr
Centrality measures
ϕ Opsahl centrality coefficient 0.5 0.2; 0.8
Bankruptcy costs
φ potential costs associated with Total

Assets
5% 1%; 3%; 10%

λ fire sales costs, associated with the severity
of total losses in the system

∈ [0, 1]

Capital allocation rule
β weight on VaR based benchmark capital ∈ [0, 1]
αbenchmark benchmark capital:V aRαis the euro value

at quantile α of the losses distribution
99.9%

αmin minimum capital:V aRαis the euro value at
quantile α of the losses distribution

99% 98%; 99.5%

Bailout mechanism
β weight on VaR ∈ [0, 1]
η maximum bailout size proportion ∈ [0, 1]
ε new capital buffer as a proportion of IB

assets
20% 10%

B Centrality measures – technical details
In this part, we follow the technical details provided by Newman (2010) to define centrality
measures used in our analysis. Eigenvector centrality is a recursive concept. A bank
is considered an important IB borrower if it borrows from many banks and they are
themselves considered important (as IB borrowers). Eigenvector centrality is defined as
the principal eigenvector of the adjacency matrix (see for example Bonacich, 1987). The
centrality of each node corresponds to its component in the eigenvector. It tends to be
large if the node has a high number of outbound connections (i.e., a high out degree) or
has such connections to other important nodes – or both, of course. In our analysis we
use both an unweighted and a weighted version of eigenvector centrality. The latter uses
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full information of the liabilities matrix X, and the former only the existence of links, i.e.,
the adjacency matrix.38

Betweenness centrality is a “path-type” measure that takes into account the number
of shortest paths that pass through a certain node. A higher betweenness coefficient is
related to a more strategically positioned node that acts as a bridge in connecting other
nodes. In terms of lending, a bank with high betweenness will cut off a lot of intermediation
in case of its default. We are using the weighted centrality version similar to the case of
eigenvector centrality.

Closeness centrality summarizes the shortest paths (distances) between any two nodes
of the network. A node is regarded as closer to the center of the network if the sum of
distances to the other nodes is lower (compared to others), such that information flow
spreads fast in the network. So-called “super-spreaders” have the capacity of contam-
inating the core institutions in relatively short time, causing the collapse of the entire
system.

The clustering coefficient measures the likelihood of a certain node to be in a complete
graph with its neighbors. A complete graph refers to a fully connected set of nodes, i.e.
there exists an edge between any two nodes of this set. As discussed by Watts and
Strogatz (1998), this measure is useful to infer whether the network has the small-world
property.

Using these centrality measures, we intend to assign capital buffers to those nodes
which create externalities to the banking system by being able to contaminate the entire
network. As we will discuss in Section 6 we intend to shift capital from the periphery to
more “central” financial institutions – according to alternative definitions of “centrality”
– such that contagion is contained and system losses are minimized.

B.1 Eigenvector centrality
Let A be the adjacency matrix, with aij = 1 if there is a credit exposure of bank j to bank
i, and aij = 0 otherwise. And κ1be the largest eigenvalue of A. Then eigenvector centrality
is given by the corresponding eigenvector x so that Ax = κ1x.Eigenvector centralities of
all nodes are non-negative. In the case of weighted eigenvector centrality, the adjacency
matrix A is replaced by the weighted liabilities matrix X, where each row is normalized
to sum up to 1. This measure was firstly proposed by Bonacich (1987).

B.2 Betweenness centrality
The geodesic distance between any two nodes is given by the shortest path. Let gij be the
number of possible geodesic paths from i to j (there might be more than a single shortest
path) and nqij be the number of geodesic paths from i to j that pass through node q, then
the betweenness centrality of node q is defined as

Bq =
∑
i,j
j 6=i

nqij
gij
,

where by convention nq
ij

gij
= 0 in case gij or nqij are zero.

38We provide a technical description of centrality measures in Appendix B.
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Figure 11: Centrality measures

(a) Betweenness (b) Eigenvector

Note: The scale-free random graphs were generated with iGraph toolbox in R. The red
nodes have the highest centrality values.

B.3 Closeness centrality
For the definition of closeness centrality we follow Dangalchev (2006):

Ci =
∑
j

j 6=i

2−dij ,

where dij is the lenght of the geodesic path from i to j. This formula is also appropriate
for disconnected graphs. Disconnected components have a closeness centrality equal to 0.

B.4 (Local) Clustering coefficient
Watts and Strogatz (1998) show that in real-world networks nodes tend to establish
clusters with a high density of edges.

The global clustering coefficient refers to the property of the overall network while
local coefficients refer to individual nodes. This property is related to the mathematical
concept of transitivity.

Cli = number of pairs of neighbors of i that are connected
number of pairs of neighbors of i .

The local clustering coefficient can be interpreted as the “probability” that a pair of
i’s neighbors are connected to each other (i.e. are neighbors as well). The local clustering
coefficient of a node with the degree 0 or 1 is equal to zero.
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C Credit risk of small loans
Let us consider a portfolio with loans from one sector only. Assume there we have Nr

loans in each rating class, which make up N in total. Each one is assigned to a latent
“asset return” Xi,r (sector index omitted). Conditionally on the single systematic factor
Y of the sector, the Xi,r are independent and so are corresponding rating migrations

Ri,r
0 = r → Ri,r

1 .

All loans have the same uniform maturity T = 4 yr as the large loans. The notional of
loan (i, r) has a weight wi,r relative to the total of all loans in the sector’s portfolio. If not
in default, its rating specific discount factor is the same as in Section 4.1, i.e., D (r, r) = 1
at the beginning of the risk horizon and D

(
r, Ri,r

1

)
one period later. As for large loans,

the return on loan (i, r) is determined as

∆i,r = −1 +
D

(
C (r) , Ri,r

1 , 1, T
)

+ C (r) if Ri,r
1 < 18

(1 + C (r)) (1− LGD) if Ri,r
1 = 18

,

where C (r) was the loan rate. The corresponding return in the small-loans portfolio of
one sector is then

∆ =
17∑
r=1

Nr∑
i=1

wi,r∆i,r.

As we want to approximate ∆ by a Y -conditionally normal random variable ∆∗, we
now determine the conditional expectation E (∆|Y ) and variance var (∆|Y ). A further
approximation is that these moments are not to be based on all weights wi,r (which we
do not know for small loans) but instead on two aggregates that we can estimate: the
Herfindahl index, H = ∑17

r=1
∑Nr
i=1 w

2
i,r, and exposure weights wr ≡

∑Nr
i=1 wi,r of the rating

classes. To start with, the conditional migration probability, i.e., the probability of the
“asset return” Xi,r to fall between two neighbored thresholds, is

p (r, R|Y ) ≡ P
(
Ri,r

1 = R
∣∣∣Y )= P (θ (r, R) < Xi,r ≤ θ (r, R− 1)|Y )

= P
(
θ (r, R)−√ρY√

1− ρ < Zi,r ≤
θ (r, R− 1)−√ρY√

1− ρ

∣∣∣∣∣Y
)

= Φ
(
θ (r, R− 1)−√ρY√

1− ρ

)
− Φ

(
θ (r, R)−√ρY√

1− ρ

)
(10)

with θ (r, 18) = −∞ and θ (r, 0) = +∞. The conditional expectation in each rating class
immediately calculates as

µr (Y ) ≡ E (∆i,r|Y ) (11)

= −1 +
17∑
R=1

[D (r, R) + C (r)] p (r, R|Y ) + (1 + C (r)) (1− E (LGD)) p (r, 18|Y )

(which does not depend on i in fact) and, summing up over ratings,

E (∆|Y ) =
17∑
r=1

wrµr (Y ) .
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The conditional variance of a single ∆i,r is

vr (Y ) ≡ var (∆i,r|Y ) = var (∆i,r + 1|Y ) = E
(

(∆i,r + 1)2
∣∣∣Y )− (µr (Y ) + 1)2 (12)

=
17∑
R=1

[D (r, R) + C (r)]2 p (r, R|Y )

+ (1 + C (r))2 p (r, 18|Y )
[
var (LGD) + (1− ELGD)2

]
− (µr (Y ) + 1)2

where we utilize that LGD is independent of the other variables. Recall that migrations
are conditionally independent, from which we immediately obtain for the whole sector’s
portfolio:

var (∆|Y ) =
17∑
r=1

Nr∑
i=1

w2
i,rvr (Y ) .

If vr (Y ) were rating independent, we could extract it from the sum and would obtain H×
vr (Y ) as result. Because it is not, we make the weaker assumption that the distribution
of – € – loan sizes does not depend on the rating (but well on the sector). If that holds,
there is a relationship between H and the Herfindahl indices of the rating buckets that
can be used to derive the approximation

var (∆|Y ) ≈ H
17∑
r=1

wrvr (Y ) .

To sum up, returns for the small loans are simulated in the following way.
Input data: For each bank b, the exposure to sector j is SLb,j. From the SLb,j we

infer on the Herfindahl index Hb,j of its loans as described in Section C.1. Furthermore,
for each sector j the (bank-independent) rating distribution (wr,j)r=1...17 is gathered from
the sample of large loans and assumed to be the same for small loans. The matrix of
discount factors D (r, R)r=1...17,R=1...18 can be calculated once at the beginning.

Steps of one simulation round:

1. Draw systematic factors Yj; they affect both large and small loans.

2. Calculate the matrices (p (r, R |Yj ))r=1...17,R=1...18 according to (10) for all sectors j.

3. Calculate the vectors (µr (Yj))r=1...17 from (11) and (vr (Yj))r=1...17 from (12) for all
j. Based on them, calculate

µsect
j (Yj) ≡

17∑
r=1

wr,jµr (Yj) and σsect
j (Yj) ≡

√√√√ 17∑
r=1

wr,jvr (Yj) for all j.

4. For each bank b, the € return on small loans is

retsmall,b =
21∑
j=1

SLb,j ×
(√

Hb,jσ
sect
j (Yj)Zsmall

b,j + µsect
j (Yj)

)
, (13)

where the Zsmall
b,j are independent N (0, 1) random variables.
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C.1 Estimating the granularity of small-loans exposures (Herfind-
ahl index)

In Appendix C we quantify the granularity of a small-loans subportfolio by its Herfindahl
index H. We cannot estimate it directly as we know the total exposure SL for each bank
and sector only. Although individual exposures cannot exceed €1.5 Mn by construction
so that a small-loans portfolio of size SL cannot have an H in excess of 1.5 Mn/SL, this
upper bound will often be very imprecise, especially in the case of loans to households.

We therefore perform estimations and a simulation exercise based on a sample of indi-
vidual loans made by a large German bank. We assign all exposures to risk management
sectors and exclude all above €1.5 Mn. This gives us between 86 and 43,000 loans by
sector, with a median of 6156 observations. While it would be critical to assume that the
loan sizes of our full sample, which stems from a large bank, follow the same distribution
as those of small banks, we hope that any such difference is not substantial when only
small loans are concerned.

Let now U denote the random loan size in a certain sector. If the total exposure
SL is large relative to EU so that probably many loans are in the portfolio, elementary
arguments lead to the following approximation; cf. Hart (1975).

H ≈ E(U2)/(E(U)×SL) (14)

This relationship is used for large SL. For smaller values of SL, we rely on simulations
and subsequent curve fitting: we define a sequence of exposure buckets [SLk, SLk+1] and,
for each of them, randomly collect loans from the sample until the total exposure falls into
the bucket; this generates one possible H assigned to SLk+1. Repeating the procedure
provides us with a sample of such H for each exposure bucket. The bucket specific average
H̄k is our approximation of the size dependent Herfindahl index. It turns out that (14)
works well for SL > 5.9 Mn. For smaller values, a sector-specific cubic function (of
logarithms) is fitted to the averages H̄k. Some data entries are equal to the minimum
reporting unit 1000. We assume they arise from a single loan. To sum up, we define

H (SL) ≡


1 if SL ≤ 1000
exp

{
a log3 SL+ b log2 SL+ c logSL+ d

}
if 1000 < SL ≤ 5, 844, 325

E(U2)/(E(U)×SL) else

where a, b, c, d, E (U2), and E (U) are sector specific parameters.

D Other target functions
First, the deadweight loss can be distributed to the banking sector and to the non-banking
sector in the sense that those bankruptcy costs not covered by interbank liabilities accrue
to the outside sector. Second, the initial losses of the sectors outside of banking are
distributed to the banks through the capital losses. Thus, a case can be made that the
loss minimized should have the capital losses to the banks subtracted from them:

EBC1 ≡ E
∑
i

I(Li −Ki > 0)(BCi + Li −Ki).
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The fact that the bankruptcy costs are distributed among the banks only partially,
and the rest are absorbed in the non-bank sector indicates a third loss measure which is
EBC1, above, but with the bankruptcy costs modified so reflect the non-banking sector
share:

EBC2 ≡ E
∑
i

I(Li −Ki > 0) [I(BCi > li)(BCi − li) + Li −Ki] ,

where li are the total interbank liabilities of bank i. In this case, bankruptcy costs in
excess of interbank liabilities are counted.

The nice thing about expected bankruptcy costs as a target function is that they are,
as a dead-weight social loss, never desirable per se. As well, they are free of distributional
assumptions. However, some amount of bankruptcy costs can well be acceptable as an
inevitable side-effect of otherwise desirable phenomena (such as the sheer existence of
bank business) so that minimizing expected bankruptcy costs does not necessarily lead to
a “better” system in a more general sense. Finally, deposits, as a major part of non-bank
debt, should always be in the focus of. Therefore, the following losses are at least of
interest, if not considered as alternative target functions. It is important to note that we
consider banks as institutions only, meaning that any loss hitting a bank must ultimately
hit one of its non-bank claimants. In our model, these are simply non-bank debtors and
bank equity holders, as we split bank debt into non-bank an interbank debt only.

Using the notation of ??, the expected total loss to equity holders (which, as a partici-
pation constraint, should be negative) is simply

ELE ≡ E
∑
i

min (Ki, Li) .

Note that Li includes interbank losses. We do not seriously consider ELE a target function
but a figure worth being reported.

The expected loss to non-bank debt holders is

ENB ≡
∑
i

max (0, Li +BCiDi −Ki − li)

where li was total interbank liabilities of bank i. Here again we assume that interbank
debt is junior to other debt. The formula would not be correct in presence of a bailout
found.

In contrast, counting total losses on banks’ balance sheets (or just their credit losses)
makes little sense as they involve interbank losses and therefore a danger of double count-
ing. The measures ELE and ENB do not count losses doubly.

Finally, defining their sum as a target function appears as a natural choice, this way
treating the interests of bank owners and (non-bank!) debt holders equally important.
This target function is equivalent to ours, the expected bankruptcy costs. To see why,
recall that every loss is either generated in the real economy or by bankruptcy and ulti-
mately must end up with any non-bank claimant. This means

ELE + ENB = E
∑
i

(
Lreal
i +BCiDi

)
= E

∑
i

Lreal
i + EBC .

As the losses Lreal
i are exclusively driven by portfolio characteristics, ELE + ENB and

EBC differ only by a constant when capital is optimized.
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E Other results

Figure 12: Unconditional frequency distribution of total bankruptcy costs
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F Liabilities and network properties

Figure 13: Power law vs log-normal diagnostics

Note: For confidentiality reasons liabilities are plotted as averages of three consecutive
values (ranked by size).
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Figure 14: Comparison between ranked interbank liabilities (by size)

Note: For confidentiality reasons, liabilities are plotted as averages of three consecutive
values.
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G “Eisenberg and Noe” - interbank contagion algo-
rithm

When a bank defaults (or a group of them), it triggers losses in the interbank market. If
interbank losses (plus losses on loans to the real economy) exceed the remaining capital
of the banks that lent to the defaulted group, this can develop into a domino cascade.

At every simulation when interbank contagion arises, we follow Elsinger et al. (2006),
who build on Eisenberg and Noe (2001), to compute losses that take into account the
assumptions (1)—(3) at the beginning of Section 5. However, we describe the mechanism
in terms of losses rather than of a clearing payment vector.39

The following set of definitions and equations describe an equation system. Each bank
incurs total portfolio losses Li, which consists, first, of its fundamental losses made in the
real economy40, and second, of losses on its interbank loans, defined below in (18):

Li = Lreal
i + LIB

i . (15)

A bank defaults if its capital Ki cannot absorb the real-economy and interbank credit
losses. We define the default indicator as

Di =
1 if Ki < Li,

0 otherwise.
(16)

We have modeled bankruptcy costs such that their (potential) extent BCi is known before
contagion; i.e., they are just a parameter of the equation system. Yet, whether they
become real is captured by Di.

Total portfolio losses and bankruptcy costs are now distributed to the bank’s claimants.
If capital is exhausted, further losses are primarily borne by interbank creditors since their
claim is junior to other debt, as stated in assumption 5 at the beginning of Section 5.
Bank i causes its interbank creditors an aggregate loss of

ΛIB
i = min (li,max (0, Li +BCiDi −Ki)) , (17)

which is zero if the bank does not default. The greek letter signals that ΛIB
i is a loss on the

liability side of bank i, which causes a loss on the assets of its creditors. Recall that xij
denotes interbank liabilities of bank i against bank j. The row sum li = ∑N

j=i xij defines
total interbank liabilities of bank i. This gives us a proportionality matrix π to allocate
losses, given by

πij =


xij

li
if li > 0;

0 otherwise.
If the loss amount ΛIB

i is proportionally shared among the creditors, bank j incurs a loss
of πijΛIB

i due to the default of i. Also bank i may have incurred interbank losses; they
amount to

LIB
i =

N∑
k=1

πjiΛIB
j , (18)

39The clearing payment vector used by Elsinger et al. (2006) and Eisenberg and Noe (2001) is not a
sufficient statistic for the payoffs to all claimants. It is so for the interbank market but, for instance, it
does not contain full information on the size of losses to non-bank debtors or equity holders.

40This loss can also be negative, i.e.,the bank makes a profit on these assets.
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which provides the missing definition in (15). This completes the equation system (15)–
(18). We can either consider the vector of Li as a solution or, equivalently, Li + BCiDi.
The algorithm proposed by Eisenberg and Noe (2001) gives us a unique result.

H Formal treatment of the fixed point problem
Li = Lreal

i + LIB
i . (19)

Note that this variable does NOT include bankruptcy costs. Default dummy:

Di ≡ I{Li>Ki}

Equivalent vector form :
D ≡ I{L>K}. (20)

Losses in the IB market caused by bk i, incurred by the others:

ΛIB
i = min (li,max (0, Li +BCiDi −Ki)) ,

or as vector:
ΛIB = l ∧

[
L+ B̃D −K

]+
(21)

where l =
(∑N

j=i xij
)
i
is the vector of interbank liabilities, ∧ is the element-wise minimum,

and B̃ is a diagonal matrix with BC on the diagonal. B̃D are the actual bankruptcy costs,
the ones that have become real.

Π is the proportionality matrix to allocate losses. Interbank losses (on the asset side!)
amount to

LIB = Π>ΛIB, (22)
Formulas (19) to (22) make up the fixed point problem. We could consider the total
portfolio lossesL (not containing BCs) as a solution but prefer to add them, which is why
we define Lall ≡ L+ B̃D. To get the system into a concise form, start with (19) and add
BCs on both sides. This gives

Lall = Lreal + B̃D + LIB

Apply (22):
Lall = Lreal + B̃D + Π>ΛIB

Now put (21) in, which gives the 1-line version of the fixed point problem

Lall = Lreal + B̃D + Π>
(
l ∧

[
Lall −K

]+)
Notice that BCs are NOT part of the default condition (but a consequence of it) so that,
if we want to express the system completely in terms of Lall, we utilize the trivial identity
L ≡ Lall − B̃D to reach at

Lall = Lreal + B̃I{Lall−B̃D>K} + Π>
(
l ∧

[
Lall −K

]+)
(23)
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Remark. The default condition in (23) looks worse than before, however it can be simpli-
fied since each component Lalli = Li + BCiI{Li>Ki} is a strictly increasing function of Li
so that it can be inverted, leading to the identity I{Lall−B̃D>K} = I{Lall>K}. This yields

Lall = Lreal + B̃I{Lall>K} + Π>
(
l ∧

[
Lall −K

]+)
(24)

but we must add now the restriction

Lalli > Ki ⇒ Lalli > Ki +BCi, ∀i

to the system (otherwise, an algorithm solving (24) alone might generate values above K
that do not, however, exceed K after subtraction of B̃). Taking this complication into
account, it finally appears simpler to solve the equivalent equation

L = Lreal + Π>
(
l ∧

[
L+ B̃I[L>K] −K

]+)
How does this look like in terms of LBen, the Losses in Ben’s routine, which are defined

as
LBen = (−l) ∨

(
K − Lall

)
and initialized by remEq ≡ K − Lreal in the algorithm? We can rewrite the default
condition to LBen < 0

LBen = (−l) ∨
(
K − Lall

)
= (−l) ∨

(
K − Lreal − B̃D − Π>

(
l ∧

[
Lall −K

]+))
= (−l) ∨

(
remEq − B̃D + Π>

(
(−l) ∨

(
K − Lall

)
∧ 0

))
= (−l) ∨

(
remEq − B̃D + Π>

(
LBen ∧ 0

))
and finally

LBen = (−l) ∨
(
remEq − B̃I{LBen<0} + Π>

(
LBen ∧ 0

))
.

This equation is a necessary condition to be checked. To make the system complete, we
would somehow have to add the property that LBen has to jump at 0 by BC. (omitted,
since this is already guaranteed by the algorithm).
Remark. LBen is closely related to (liability) losses in the IB market:[

−LBen
]+

=
[
l ∧

(
−K + Lall

)]+
= l ∧

[
−K + Lall

]+
= ΛIB

or
−ΛIB = 0 ∧ LBen.
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