Quantifying the Effects of Online Bullishness... Investor Attention and FX Market Vol...

> by Mao, Counts, Bollen by Goddard, Kita, Wang

Discussion by Peter Reinhard Hansen

European University Institute

Frankfurt, April 8, 2014

Quantifying the Effects of Online Bullishness on International Financial Markets by Huina Mao, Scott Counts, and Johan Bollen

- Simple Classification (Positive of Negative) of Twitter feeds & Google search queries.
- Twitter Bullishness predict daily returns one-day-ahead.
 - One standard deviation increase in Twitter Bullishness -> 12.56 bps higher return.

Quantifying the Effects of Online Bullishness on International Financial Markets by Huina Mao, Scott Counts, and Johan Bollen

- Simple Classification (Positive of Negative) of Twitter feeds & Google search queries.
- Twitter Bullishness predict daily returns one-day-ahead.
 - One standard deviation increase in Twitter Bullishness -> 12.56 bps higher return.

Quantifying the Effects of Online Bullishness on International Financial Markets

by Huina Mao, Scott Counts, and Johan Bollen

- Simple Classification (Positive of Negative) of Twitter feeds & Google search queries.
- Twitter Bullishness predict daily returns one-day-ahead.
 - One standard deviation increase in Twitter Bullishness -> 12.56 bps higher return.

• Sentiment Measures: Classifier or Dictionary-based.

- Classifier: Algorithms..
- Dictionary: Negative words from Harvard psychosocial dictionary.
 - "many words that are classified as negative [in a psychosocial sense] are not negative in a financial context".
- Here: "Bullish" "Bull Market" or "Bearish"/"Bear Market"

- Sentiment Measures: Classifier or Dictionary-based.
- Classifier: Algorithms..
- Dictionary: Negative words from Harvard psychosocial dictionary.
 - "many words that are classified as negative [in a psychosocial sense] are not negative in a financial context".
- Here: "Bullish" "Bull Market" or "Bearish"/"Bear Market"

- Sentiment Measures: Classifier or Dictionary-based.
- Classifier: Algorithms..
- Dictionary: Negative words from Harvard psychosocial dictionary.
 - "many words that are classified as negative [in a psychosocial sense] are not negative in a financial context".
- Here: "Bullish" "Bull Market" or "Bearish"/"Bear Market"

- Sentiment Measures: Classifier or Dictionary-based.
- Classifier: Algorithms..
- Dictionary: Negative words from Harvard psychosocial dictionary.
 - "many words that are classified as negative [in a psychosocial sense] are not negative in a financial context".
- Here: "Bullish" "Bull Market" or "Bearish"/"Bear Market"

- Sentiment Measures: Classifier or Dictionary-based.
- Classifier: Algorithms..
- Dictionary: Negative words from Harvard psychosocial dictionary.
 - "many words that are classified as negative [in a psychosocial sense] are not negative in a financial context".
- Here: "Bullish" "Bull Market" or "Bearish"/"Bear Market"

Regression

$R_t = \alpha + \sum_{i=1}^{5} \beta_i R_{t-i} + \sum_{i=1}^{5} \chi_i T_{t-i}^B + \sum_{i=1}^{5} \delta_i \text{Vol}_{t-i} + \phi \text{Exog}_t + \epsilon_t$

• *Exog_t* includes VIX, Daily Sentiment Index, Calendar Dummies.

• Regression

$$R_t = \alpha + \sum_{i=1}^5 \beta_i R_{t-i} + \sum_{i=1}^5 \chi_i T^B_{t-i} + \sum_{i=1}^5 \delta_i \operatorname{Vol}_{t-i} + \phi \operatorname{Exog}_t + \epsilon_t$$

• *Exog_t* includes VIX, Daily Sentiment Index, Calendar Dummies.

Discussion: Quantifying the Effects of Online...

• Can you predict risk adjusted returns?

• E.g. What is the resulting Sharpe ratio?

$\frac{r_t}{\sigma_t}$

- What if T_t^B is correlated with volatility.
- What if T_t^B is correlated with the variables in $Exog_t$? Monday?
- Do the results hold Out-of-Sample?

• Can you predict risk adjusted returns?

• E.g. What is the resulting Sharpe ratio?

$\frac{r_t}{\sigma_t}$

• What if T_t^B is correlated with volatility.

- What if T_t^B is correlated with the variables in $Exog_t$? Monday?
- Do the results hold Out-of-Sample?

• Can you predict risk adjusted returns?

• E.g. What is the resulting Sharpe ratio?

$\frac{r_t}{\sigma_t}$

• What if T_t^B is correlated with volatility.

• What if T_t^B is correlated with the variables in $Exog_t$? Monday?

• Do the results hold Out-of-Sample?

• Can you predict risk adjusted returns?

• E.g. What is the resulting Sharpe ratio?

$\frac{r_t}{\sigma_t}$

• What if T_t^B is correlated with volatility.

• What if T_t^B is correlated with the variables in $Exog_t$? Monday?

• Do the results hold Out-of-Sample?

- Can you predict risk adjusted returns?
 - E.g. What is the resulting Sharpe ratio?

$\frac{r_t}{\sigma_t}$

- What if T_t^B is correlated with volatility.
- What if T_t^B is correlated with the variables in $Exog_t$? Monday?
- Do the results hold Out-of-Sample?

Investor Attention and FX Market Volatility by J. Goddard, A. Kita, Q. Wang

• Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.

Predicts

- Trading Volume
- Volatility
- Variance Risk Premium

• Discuss how findings relate to various theories.

• Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.

Predicts

- Trading Volume
- Volatility
- Variance Risk Premium
- Discuss how findings relate to various theories.

- Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.
- Predicts

Trading Volume

- Volatility
- Variance Risk Premium
- Discuss how findings relate to various theories.

- Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.
- Predicts
 - Trading Volume
 - Volatility
 - Variance Risk Premium
- Discuss how findings relate to various theories.

- Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.
- Predicts
 - Trading Volume
 - Volatility
 - Variance Risk Premium
- Discuss how findings relate to various theories.

- Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.
- Predicts
 - Trading Volume
 - Volatility
 - Variance Risk Premium
- Discuss how findings relate to various theories.

• Contemporaneous correlation.

 $Volatility_t = \lambda_0 + \lambda_1 SVI_t + \lambda_2 Volatility_{t-1}$

• What if Volatility $t \rightarrow SVI_t$?

• Contemporaneous correlation.

 $Volatility_t = \lambda_0 + \lambda_1 SVI_t + \lambda_2 Volatility_{t-1}$

• What if Volatility_t -> SVI_t?

• VAR(2)

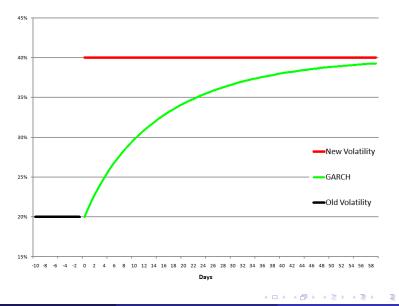
 $\begin{aligned} SVI_t &= \beta_0 + \beta_1 Vol_{t-1} + \beta_2 Vol_{t-1} + \beta_3 SVI_{t-1} + \beta_4 SVI_{t-2} + \eta_{1t} \\ Vol_t &= \lambda_0 + \lambda_1 SVI_{t-1} + \lambda_2 SVI_{t-2} + \lambda_3 Vol_{t-1} + \lambda_4 Vol_{t-1} + \eta_{2t} \end{aligned}$

• Volatility from GARCH(1,1)

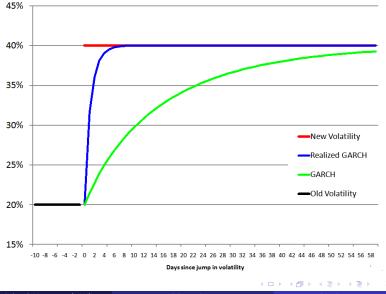
$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha r_{t-1}^2$$

GARCH is "slow". Responds slowly to big changes in volatility.
 Estimation unreliable if T < 1000.

• Volatility from GARCH(1,1)


$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha r_{t-1}^2$$

GARCH is "slow". Responds slowly to big changes in volatility.
 Estimation unreliable if T < 1000.


• Volatility from GARCH(1,1)

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha r_{t-1}^2$$

GARCH is "slow". Responds slowly to big changes in volatility.
Estimation unreliable if T < 1000.

GARCH-X with a Realized Measure is Fast

Discussion

Extended GARCH

$$\sigma_t^2 = \exp(\lambda_0 + \lambda_1 S V I_t) + \gamma \sigma_{t-1}^2 + \cdots$$

problematic because σ_t^2 is no longer \mathcal{F}_{t-1} -measurable. • Realized GARCH

• x_t is realized measure of volatility computed from high-frequency data.

Extended GARCH

$$\sigma_t^2 = \exp(\lambda_0 + \lambda_1 SVI_t) + \gamma \sigma_{t-1}^2 + \cdots$$

problematic because σ_t^2 is no longer \mathcal{F}_{t-1} -measurable.

Realized GARCH

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \gamma x_{t-1},$$

• x_t is realized measure of volatility computed from high-frequency data.

Extended GARCH

$$\sigma_t^2 = \exp(\lambda_0 + \lambda_1 S V I_t) + \gamma \sigma_{t-1}^2 + \cdots$$

problematic because σ_t^2 is no longer \mathcal{F}_{t-1} -measurable.

Realized GARCH

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \gamma x_{t-1},$$

• x_t is realized measure of volatility computed from high-frequency data.

• Twitter & SVI in relation to equity market....

- Dynamic association with an evolutionary component.
- Conditional one-period-ahead models. SVI etc. taken as exogenous predictor.
- Not a complete model. There will be a need to model these variables.

- Twitter & SVI in relation to equity market....
- Dynamic association with an evolutionary component.
- Conditional one-period-ahead models. SVI etc. taken as exogenous predictor.
- Not a complete model. There will be a need to model these variables.

- Twitter & SVI in relation to equity market....
- Dynamic association with an evolutionary component.
- Conditional one-period-ahead models. SVI etc. taken as exogenous predictor.
- Not a complete model. There will be a need to model these variables.

- Twitter & SVI in relation to equity market....
- Dynamic association with an evolutionary component.
- Conditional one-period-ahead models. SVI etc. taken as exogenous predictor.
- Not a complete model. There will be a need to model these variables.