

Workshop on using big data for forecasting and statistics

Monday, 7 and Tuesday, 8 April 2014 European Central Bank, Eurotower Frankfurt am Main

CAN INFORMATION DEMAND HELP TO PREDICT STOCK MARKET LIQUIDITY ? GOOGLE IT!

Presented by: Amal AOUADI

April 7, 2014

Contribution

Data & Methodology

Empirical Results

Conclusion

THE STORY

Contribution

Data & Methodology

Empirical Results

Conclusion

OURAIM

EXISTING STUDIES

- Da et al. (2011), Vlastakis and Markellos (2012), Aouadi et al.(2013)
- Drake et al. (2012) and Vlastakis and Markellos (2012)
- Askitas and Zimmermann (2009), Kulkarni et al. (2009), Da et al. (2011) and Dzielinski (2011)

CENTRAL QUESTION

Can information demand help to forecast the French stock market liquidity?

Google Insights for search data, Several liquidity measures

From January 09, 2004 to June, 22, 2012

Contribution

Data & Methodology

Empirical Results

Conclusion

MODELS

• IN SAMPLE ANALYSIS

 $1 \quad Turnover_{it} = \alpha + \beta_1 Turnover_{i,t-1} + \beta_2 Ln(Number _ of _ Analysts)_{i,t-1} + \beta_3 Ln(Number _ of _ Employees)_{i,t-1} + \beta_4 Ln (Market _ Value)_{i,t-1} + \beta_5 Inverse _ of _ Stock _ Price_{i,t-1} + \beta_6 Absolute _ return_{i,t-1} + \beta_7 Std _ Dev_{i,t-1} + \varepsilon_{it}$

 $\frac{1}{2} Turnover_{it} = \alpha + \beta_1 Turnover_{i,t-1} + \beta_2 Ln(Number_of _Analysts)_{i,t-1} + \beta_3 Ln(Number_of _Employees)_{i,t-1} + \beta_4 Ln(Market_Value)_{i,t-1} + \beta_5 Inverse_of _Stock_Price_{i,t-1} + \beta_6 Absolute_return_{i,t-1} + \beta_7 Std_Dev_{i,t-1} + \lambda_1 Ln(GSV)_{i,t-1} + \lambda_2 Ln(GSV)_{CAC40,t-1} + \varepsilon_{it}$

<u>OUT-OF-SAMPLE ANALYSIS</u>

$$RMSE_{i} = \sqrt{h^{-1} \sum_{t=T+1}^{T+h} (l_{it} - \hat{l}_{it})^{2}}$$
$$MAPE_{i} = h^{-1} \sum_{t=T+1}^{T+h} \left| \frac{l_{it} - \hat{l}_{it}}{l_{it}} \right|$$

Contribution

Data & Methodology

Empirical Results

Conclusion

NEW RESULTS

- Google variables and turnover are **positively** and **strongly** correlated in most cases
- 2 Google search variables contribute to *better* understand liquidity formation in the French stock market
- 3 Higher level of Google search volume leads to *higher* turnover for the majority of our sample
- 4 Model (2) leads to *more precise* out-of-sample forecasts in most cases and for almost all horizons

Contribution

Data & Methodology

Empirical Results

Conclusion

SUMMARY & CONCLUSION

Implications for Liquidity Forecasting

- It is possible to predict liquidity using publicly available variables
- Information demand is able to refine liquidity forecasting results

2 Implications for Academics & Practitioners

- Better understand the dynamic of liquidity series, and help portfolio managers to conceive less costly trading strategies.
- The importance of including online investor search behavior in forecasting important economic outcomes.