Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Macroprudential Policy Implementation in a Heterogeneous Monetary Union

Margarita Rubio University of Nottingham

ECB conference on "Heterogenity in currency areas and macroeconomic policies" - 28-29 November 2013

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
•000000									

Introduction

- The crisis has taught us that the new direction of policy measures should contain the so-called macroprudential approach
- Scholars and policy makers agree that macroprudential measures could help avoid systemic risks and ensure a more stable financial system
- Macroprudential policy implementation is a question open to debate:

- No empirical evidence
- Possible conflicts with monetary policy
- Implementation in a monetary union

Macroprudential policies in a monetary union

- The implementation of these macroprudential tools becomes more complex if countries are not able to manage their own monetary policy
- Optimal currency areas has been a much-discussed topic
 - Cross-country asymmetries or country-specific shocks have been an issue of concern and skepticism for the well-functioning of EMU.

• Do asymmetries also matter for macroprudential policy implementation in a monetary union?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
000000									

Motivation

- Countries in Europe clearly differ in their housing markets
 - Different loan-to-value ratios (LTVs)
 - Different proportions of residential debt relative to GDP

- Heterogeneous mortgage contracts.
- Different housing and business cycles
- These differences should matter...
 - Studies show that they do for monetary policy
 - What about macroprudential policy?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
0000000									

Evidence

Country	\mathbf{LTV}	$\mathrm{Debt}/\mathrm{GDP}$	Rate
BELGIUM	83	43,3	F
FINLAND	75	58	V
FRANCE	75	38	F
GERMANY	70	47,6	F
ITALY	50	21,7	V
IRELAND	70	90,3	F
NETHERLANDS	90	105,6	F
PORTUGAL	75	67,5	V
SPAIN	70	66,4	V

Table 1: Characteristics of mortgage markets. Source: IMF (2008)

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
0000000									

Research Questions

- Does heterogeneity matter for the optimal design of macroprudential policies in a monetary union?
- Should macroprudential policies be implemented at a national or at a centralized level? Not a straightforward answer:
 - Given heterogeneity, the national level may be the best option

• A national level macroprudential policy could exacerbate heterogeneity and worsen the well-functioning of the single monetary policy

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
0000000									

Aim of the Paper

- Explore the implementation in a heterogeneous monetary union of a specific macroprudential tool
 - A rule on the LTV that can be implemented at a centralized or a decentralized level

- Study the optimal way to implement the rule
- Study the implications of the rule for shock transmission and volatilities

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
0000000									

Novelty of the Paper

- This issues have been studied considering asymmetric shocks and differences in country size
- NOVELTY: cross-country structural differences in housing markets

Introduction	The Model ●○○○○○○○	Simulations	Symmetry 000	Asym Shock	LTVs 00	Prop borr 00	Mort Contracts	Conclusions	Appendix

Model Overview

- Two-country, microfounded DSGE with housing (different LTVs, different proportion of borrowers, mortgage contracts, asymmetric shocks)
- Heterogeneous households: Savers, fixed-rate borrowers, variable-rate borrowers
- Borrowers face a collateral constraint which is more or less tight depending on LTVs

- The LTV ratio follows a Taylor-type rule
 - Centralized
 - Decentralized
- The ECB sets interest rates following a Taylor rule

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
	0000000								

Savers Country A

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \left(\ln C_t^u + j_t \ln H_t^u - \frac{(L_t^u)^{\eta}}{\eta} \right)$$

s.t.

$$C_{At}^{u} + \frac{P_{Bt}}{P_{At}}C_{Bt}^{u} + q_{t}H_{t}^{u} + \frac{R_{At-1}b_{t-1}^{u}}{\pi_{At}} + R_{Bt-1}d_{t-1} \le q_{t}H_{t-1}^{u} + w_{t}^{u}L_{t}^{u} + b_{t}^{u} + d_{t} + F_{t} + S_{t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Borrowers Country A

- $\widetilde{\beta} < \beta$ and need to collateralize their debt
- α_A of them borrow at a variable rate, the rest at a fixed rate
- Maximize utility function subject to BC + an extra collateral constraint:

$$E_t \frac{R_{At}}{\pi_{At+1}} b_{At}^{cv} \le k_{At} E_t q_{t+1} H_t^{cv}$$
$$E_t \frac{\overline{R}_{At}}{\pi_{At+1}} b_{At}^{cf} \le k_{At} E_t q_{t+1} H_t^{cf}$$

 Collateral constraint holds with equality⇒economy is endogenously divided into borrowers and savers

Financial Intermediary in Country A

- Accepts deposits, and extends both fixed and variable-rate loans to consumers
- Optimality condition for setting the fixed interest rate implies that at each point in time, the intermediary is indifferent between lending at a variable or at a fixed rate ••••

 Financial markets clear⇒domestic savings=domestic borrowings

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
	00000000								

Firms in Country A

Firms produce consumption goods

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Sticky prices⇒Phillips Curve PC
- Housing supply is fixed

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
	00000000								

Monetary Policy

• Monetary Union. Taylor rule responds to inflation in both countries

$$R_{t} = (R_{t-1})^{\rho} \left(\left[(\pi_{At})^{n} (\pi_{Bt})^{(1-n)} \right]^{(1+\phi_{\pi})} R \right)^{1-\rho} \varepsilon_{R,t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
	00000000								

Macroprudential Policy

Centralized

$$k_{t} = k_{SS} \left[\left(\frac{Y_{At}}{Y_{A}} \right)^{n} \left(\frac{Y_{Bt}}{Y_{B}} \right)^{1-n} \right]^{-\phi_{y}^{k}} \left[\left(\frac{q_{At}}{q_{A}} \right)^{n} \left(\frac{q_{Bt}}{q_{B}} \right)^{1-n} \right]^{-\phi_{q}^{k}}$$

Decentralized

$$k_{At} = k_{SSA} \left(\frac{Y_{At}}{Y_A}\right)^{-\phi_{Ay}^k} \left(\frac{q_{At}}{q_A}\right)^{-\phi_{Aq}^k}$$
$$k_{Bt} = k_{SSB} \left(\frac{Y_{Bt}}{Y_B}\right)^{-\phi_{By}^k} \left(\frac{q_{Bt}}{q_B}\right)^{-\phi_{Bq}^k}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
0000000	00000000								

Welfare

Second order approximation of future stream of utility of each agents

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Aggregate across agents and countries
- Present results in consumption equivalents
- ▶ Welfare

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
		•00							

Parameter Values

	Para	ameter Values in Baseline Model
β	.99	Discount Factor for Savers
$\widetilde{\beta}$.98	Discount Factor for Borrowers
j	.1	Weight of Housing in Utility Function
$\eta - 1$	1	Inverse of labor elasticity
kss	.9	SS Loan-to-value ratio
γ	.7	Labor-income share for Savers
X	1.2	Steady-state markup
n	.5	Country size
θ	.75	Probability of not changing prices
ρ	.8	Interest-Rate-Smoothing Parameter in TR
ϕ_{π}	.5	Inflation Parameter in TR

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
0000000	00000000	000	000						

Cases Studied

- Common techno shock and symmetric countries
- Asymmetric techno shock and symmetric countries
- Common techno shock and asymmetric countries (different mortgage contracts, different share of borrowers, different LTVs)

IntroductionThe ModelSimulationsSymmetryAsym ShockLTVsProp borrMort ContractsConclusionsAppendix0000000000000000000000000000000000000

Optimal Macroprudential Policy

- For given monetary policy, find the parameters in the LTV rule that maximize welfare
- Consider the centralized and the decentralized setting and see which one delivers higher welfare

• Consider all sources of asymmetries, one by one

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
			000						

Symmetry-Dynamics

- A common technology shock generates a boom
- Output increases and inflation decreases.
- The decrease in inflation makes monetary policy react and interest rates go down
- House prices, which move inversely with the interest rate, go up, generating collateral effects
- Since the collateral has more value now borrowing can increase, making consumption and output increase even further.

► IR Functions

Symmetry-Optimal Macroprudential

- The optimal macroprudential policy is one in which the LTV responds little to changes in output while relatively more aggressively to changes in house prices.
- This policy is welfare enhancing because it ensures a more stable financial system (lower volatility of borrowing)

Opt Policy

Volatilities

IntroductionThe ModelSimulationsSymmetryAsym ShockLTVsProp borrMort ContractsConclusionsAppendix00000000000000000000000000000000000000

Symmetry-Dynamics (Optimal Macroprudential)

- We compare the baseline case in which there is no macroprudential policy with the case in which the loan-to-value rule is active.
- Since output and house prices are increasing and this could potentially generate a situation of excessive credit growth, the regulator cuts the LTV.

- Then, borrowing does not increase as much
- The effects of the shock on output are mitigated

► IR Functions

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
				•0					

Asymmetric shock-Dynamics

- A techno shock in Country A increases output and decreases inflation in that country
- Monetary policy reacts to inflation and the common interest rate goes down
- This expansionary monetary policy measure makes production and inflation in B increase
- House prices are increasing because they move inversely with the interest rate
- Real rates decrease strongly in B and therefore borrowing in this country is increasing more strongly than in the country that receives the shock

IntroductionThe ModelSimulationsSymmetryAsym ShockLTVsProp borrMort ContractsConclusionsAppendix000000000000000000000000000000000000000

Asymmetric shock-Optimal Macroprudential

- Higher macro volatility in A, higher financial volatility in B
- CENTRALIZED: Similar parameters as in symmetric case
- DECENTRALIZED: Macropru policy more aggressive in B
- CENTRALIZED POLICIES PREFERRED: Manage to reduce aggregate volatility in both countries

Opt Policy Molatilities

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
					00				

Different LTV-Dynamics

- A common techno shock, Country A has a high LTV and Country B has a low LTV, 0.9 and 0.5, respectively
- In the country in which the LTV is higher, the financial accelerator effects will be stronger
- In Country A, the country with a higher LTV, borrowing increases by more than in the other country
- Also consumption increases by more, however in aggregate terms differences are not as noticeable.

IR Functions

Different LTV-Optimal Macroprudential

- Similar macro volatilities, higher financial volatility in A
- CENTRALIZED: Macropru targets output more than in symmetric case (to equalize financial accelerator effects)
- DECENTRALIZED: Macropru more aggressive in A, targeting output even more
- DECENTRALIZED SLIGHTLY PREFERRED: Volatilities are equalized more effectively than in the centralized case

IntroductionThe ModelSimulationsSymmetryAsym ShockLTVsProp borrMort ContractsConclusionsAppendix00000000000000000000000000000000000000

Different borrower proportion-Dynamics

- High proportion of borrowers in Country A
- Consumption in Country A increases by more than in the other country, given the high proportion of borrowers

• However, aggregate differences are not so noticeable

► IR Functions

Borrower proportion-Optimal Macroprudential

- Macroeconomic and financial volatilities very similar
- CENTRALIZED AND DECENTRALIZED POLICIES DELIVER SIMILAR RESULTS (Similar to the symmetric case)

Opt Policy
Volatilities

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
							•0		

Mortgage Contracts-Dynamics

- Borrowers in Country A take mortgages at a variable interest rate, while borrowers in Country B do it at a fixed rate
- Given a common technology shock, the union interest rate goes down.
- This affects more strongly borrowers in Country A, since their mortgage rates vary one for one with the policy rate
- In Country B the nominal interest rate is fixed. Since inflation is decreasing, real rates are increasing in B.
- Borrowing in Country B decreases.

IntroductionThe ModelSimulationsSymmetryAsym ShockLTVsProp borMort ContractsConclusionsAppendix00000000000000000000000000000000000000

Mortgage Contracts-Optimal Macroprudential

- Similar macro volatilities, higher financial volatility in B
- CENTRALIZED: The optimal macroprudential policy responds more strongly to house prices than in the previous cases to compensate the lack of effectiveness of monetary policy for the fixed-rate case
- DECENTRALIZED: More aggressive for the fixed-rate country

• DECENTRALIZED ARE PREFERRED

- I build a two-country DSGE model, with housing, and collateral constraints in order to explore the effects of macroprudential policies in a monetary union
- The policy can be implemented at a national level or at a union level.
- As a benchmark, I consider a monetary union in which members are symmetric and shocks are synchronized
- Then, I consider four sources of asymmetries within the monetary union
 - non-synchronized business cycles
 - asymmetries on the strength of financial accelerator effects
 - differences in the labor income share of borrowers
 - mortgage contract asymmetries: fixed- vs. variable-rate mortgages

Introduction	The Model	Simulations	Symmetry 000	Asym Shock	LTVs 00	Prop borr 00	Mort Contracts	Conclusions ○●○	Appendix
Concl	usion	s (2)							

- For the symmetric case, the optimal rule is one that responds more strongly to house prices than to output deviations
- For asymmetries: Macropru policy is more aggressive in the country with higher financial volatility
 - Asymmetric shock: The decentralized policy targets the country that does not receive the shock
 - LTV ratio asymmetry: The output response is higher in the country with high LTV to equalize financial accelerator effects
 - Different prop. of borrowers: Similar volatilities so it does not matter if the policy is centralized or decentralized
 - Different mortgage contracts: Macropru policy more aggressive in the country with fixed rates (to compensate for less efficiency of monetary policy)

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix
								000	

To do

- Experiment with other specifications of the LTV rule (include credit variables)
- Optimize monetary policy (coordinated vs. non-coordinated case)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse Responses to a Technology Shock. Symmetric Countries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. Symmetric countries. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: LTV response to a common technology shock. Symmetric countries. Optimized Macroprudential Rule.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

🕨 Back 🛛

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a technology shock in Country A. No macroprudential policy. Country A versus Country B.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. High LTV in Country A, low LTV in Country B

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions Appen	idix

Figure: Impulse responses to a technology shock in Country A. Symmetric countries. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: LTV response to a technology shock in Country A. Symmetric countries. Optimized Macroprudential Rule.

🕨 Back 🛛

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. High LTV in Country A. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: LTV response to a common technology shock. High LTV in Country A. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. High proportion of borrowers in Country A, low proportion in Country B.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. High proportion of borrowers in Country A. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: LTV response to a common technology shock. High proportion of borrowers in Country A. Optimized Macroprudential Rule.

🕨 Back 🛛

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. Variable rates in Country A, fixed rates in Country B.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. Variable rates in Country A. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: LTV response to a common technology shock. Variable rates in Country A. Optimized Macroprudential Rule.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

🕨 Back 🛛

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. Variable rates in Country A, fixed rates in Country B.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Figure: Impulse responses to a common technology shock. Variable rates in Country A. Optimized Macroprudential Rule.

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$\frac{C_{At}^u}{C_{Bt}^u} = \frac{nP_{Bt}}{(1-n)P_{At}}$$
$$\frac{1}{C_{At}^u} = \beta E_t \left(\frac{R_{At}}{\pi_{At+1}C_{At+1}^u}\right),$$
$$\frac{1}{C_{At}^u} = \beta E_t \left(\frac{R_{Bt}}{\pi_{At+1}C_{At+1}^u}\right),$$
$$w_t^u = (L_t^u)^{\eta-1} \frac{C_{At}^u}{n},$$

$$\frac{j_t}{H_t^u} = \frac{n}{C_{At}^u} q_t - \beta E_t \frac{n}{C_{At+1}^u} q_{t+1}.$$

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$\frac{C_{At}^{cv}}{C_{Bt}^{cv}} = \frac{nP_{Bt}}{(1-n)P_{At}}$$
$$\frac{n}{C_{At}^{cv}} = \widetilde{\beta}E_t \left(\frac{nR_{At}}{\pi_{At+1}C_{At+1}^{cv}}\right) + \lambda_{At}^{cv}R_{At},$$
$$w_t^{cv} = (L_t^{cv})^{\eta-1}\frac{C_{At}^{cv}}{n},$$

$$\frac{j_t}{H_t^{cv}} = \frac{n}{C_{At}^{cv}} q_t - \widetilde{\beta} E_t \frac{n}{C_{At+1}^{cv}} q_{t+1} - \lambda_{At}^{cv} k_A E_t q_{t+1} \pi_{At+1}.$$

▶ Back

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$\overline{R}_{A\tau}^{OPT} = \frac{E_{\tau} \sum_{i=\tau+1}^{\infty} \beta^{i-\tau} \Lambda_{\tau,i} R_{Ai-1}}{E_{\tau} \sum_{i=\tau+1}^{\infty} \beta^{i-\tau} \Lambda_{\tau,i}}.$$

$$\overline{R}_{At} = \frac{\overline{R}_{At-1}b_{t-1}^{cf} + \overline{R}_{At}^{OPT}\left(b_{t}^{cf} - b_{t-1}^{cf}\right)}{b_{t}^{cf}}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$Y_{At}(z) = \xi_t \left(L_t^u(z)\right)^{\gamma_A} \left(L_t^c(z)\right)^{(1-\gamma_A)}$$
$$w_t^u = \frac{\xi_t}{X_t} \gamma_A \frac{Y_{At}}{L_t^u},$$
$$w_t^{cv} = w_t^{cf} = \frac{\xi_t}{X_t} \left(1-\gamma_A\right) \frac{Y_{At}}{L_t^c},$$

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$\hat{\pi}_{At} = \beta \hat{\pi}_{At+1} - \tilde{k} \hat{x}_t + u_{At},$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Country	LTV	Debt/GDP	Rate
BELGIUM	83	43,3	F
FINLAND	75	58	V
FRANCE	75	38	F
GERMANY	70	47,6	F
ITALY	50	21,7	V
NETHERLANDS	90	105,6	F
SPAIN	70	66,4	V

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$nY_{At} = nC_{At} + (1 - n) C^*_{At}$$
$$b^c_t = b^u_t$$
$$nd_t + (1 - n) \frac{P_{Bt}}{P_{At}} d^*_t = 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 1: Optim	al Macroprudential Policy, given TR
	Country A/Country B
$\phi_{\mathbf{v}}^{\mathbf{k}*}$	0.02
ϕ_q^{k*}	0.34
Welfare gain	0.975

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 2: Volatilities. Symmetry								
	Baseline	Optimal Macroprudential						
stdev (y)	1.8204	1.7587						
stdev (π)	0.2382	0.2672						
stdev (b)	4.3871	1.3309						

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

→ Back

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 3: Optimal Macroprudential Policy, given TR									
	Centralized Decentralized								
		Country A	Country B						
ϕ_{y}^{k*}	0.02	0.02	0.02						
ϕ_q^{k*}	0.34	0.03	0.5						
Welfare Gain	0.171	0.0)44						

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 4: Volatilities. Techno shock in A

	Country A	4		Country B			
	Baseline	MP Cent	MP Dec	Baseline	MP Cent	MP Dec	
stdev (y)	1.7218	1.6953	1.7185	0.2259	0.1766	0.2105	
stdev (π)	0.2903	0.3095	0.2938	0.1354	0.1189	0.1337	
stdev (b)	1.6720	0.9691	1.3406	2.9039	1.2525	2.3829	

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 5: Optimal Macroprudential Policy, given TR. High LTV in A									
	Centralized	Decentralized							
		Country A	Country B						
ϕ_{y}^{k*}	0.12	0.26	0.01						
ϕ_q^{k*}	0.23	0.1	0.1						
Welfare Gain	0.334	334 0.343							

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

► Back

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 6: Volatilities. High LTV in A

	Country A	4		Country B			
	Baseline	MP Cent	MP Dec	Baseline	MP Cent	MP Dec	
stdev (y)	1.7813	1.7510	1.7520	1.8066	1.7785	1.7790	
stdev (π)	0.2484	0.2655	0.2651	0.2582	0.2698	0.2688	
stdev (b)	4.2801	1.4055	1.3467	1.9128	0.6097	1.3940	

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 7: Optimal Macroprudential Policy, given TR								
	Centralized	Decentralized						
		Country A	Country B					
ϕ_{y}^{k*}	0.02	0.02	0.02					
ϕ_{q}^{k*}	0.29	0.3	0.3					
Welfare Gain	3.336	3.271						

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 8: Volatilities. High proportion borrowers A

	Country A	ł		Country B				
	Baseline	MP Cent	MP Dec	Baseline	MP Cent	MP Dec		
stdev (y)	1.9252	1.7774	1.7721	1.9697	1.7679	1.7628		
stdev (π)	0.1877	0.2666	0.2695	0.1991	0.2678	0.2700		
stdev (b)	4.9073	1.6390	1.5616	4.9122	1.6952	1.5863		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 9: Optimal Macroprudential Policy, given TR									
	Centralized Decentralized								
		Country A	Country B						
$\phi_{\mathbf{v}}^{\mathbf{k}*}$	0.01	0.02	0.03						
ϕ_{q}^{k*}	1.13	0.48	1.45						
, Welfare Gain	0.853	7.7	'57						

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

Table 10: Volatilities. Variable Rates in A

	Country A	4		Country B				
	Baseline	MP Cent	MP Dec	Baseline	MP Cent	MP Dec		
stdev (y)	1.8687	1.7105	1.7422	1.8819	1.7513	1.7772		
stdev (π)	0.2167	0.2946	0.2720	0.2123	0.2824	0.2730		
stdev (b)	4.6647	4.6620	0.9552	12.9066	19.7884	20.0673		

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Introduction	The Model	Simulations	Symmetry	Asym Shock	LTVs	Prop borr	Mort Contracts	Conclusions	Appendix

$$V_{u,t} \equiv E_t \sum_{m=0}^{\infty} \beta^m \left(\ln C_{t+m}^u + j_t \ln H_{t+m}^u - \frac{\left(L_{t+m}^u\right)^{\eta}}{\eta} \right),$$

$$V_{cv,t} \equiv E_t \sum_{m=0}^{\infty} \widetilde{\beta}^m \left(\ln C_{t+m}^{cv} + j_t \ln H_{t+m}^{cv} - \frac{\left(L_{t+m}^{cv}\right)^{\eta}}{\eta} \right),$$

$$V_{cf,t} \equiv E_t \sum_{m=0}^{\infty} \widetilde{\beta}^m \left(\ln C_{t+m}^{cf} + j_t \ln H_{t+m}^{cf} - \frac{\left(L_{t+m}^{cf}\right)^{\eta}}{\eta} \right).$$

$$V_{t} = (1 - \beta) V_{u,t} + (1 - \tilde{\beta}) [\alpha_{A} V_{cv,t} + (1 - \alpha_{A}) V_{cf,t}]$$
$$W_{t} = nV_{t} + (1 - n)V_{t}^{*}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のみの