Market Liquidity, Funding Liquidity, and TED Spread: A Two-Regime Model

Kris Boudt¹ Ellen C.S. Paulus² Dale W.R. Rosenthal³

Structural Changes in Money Markets: Implications for Monetary Policy European Central Bank

30 September 2013

¹VU Amsterdam, VU Brussel

²London Business School

³University of Illinois at Chicago, daler@uic.edu

Liquidity

- Liquidity is a key idea in markets:
 - Market liquidity: ease of trading an asset without moving price.
 - Funding liquidity: ease of obtaining funds (usu. w/collateral).
- These different liquidities are endogenous:
 - Funding for intermediaries, investors affects market liquidity.
 - Market liquidity improves value of funding collateral.
- Theory: two equilibria (spirals) for market, funding liquidity.
 - Peacetime: one liquidity decreases \implies other increases
 - ullet Crises: one liquidity decreases \Longrightarrow other decreases
- Theory and evidence for bad equilibrium in recent crisis.
- Few empirical studies of interaction b/w these liquidities.

How Market Liquidity Affects Funding Liquidity

- Question: how does market liquidity affect funding liquidity?
- Find a proxy for equity-collateralized funding liquidity; and,
- Use that to study funding, market liquidity in equity markets.
- Lets us test important features of the theorized relation:
 - Two regimes (stabilizing vs destabilizing)
 - Feedback b/w funding liquidity vs market liquidity, volatility

Results Preview

- Data \implies two regimes in funding, market liquidity dynamics.
- May separate regimes using a TED spread threshold.
- TED spread \leq 48bp \implies stabilizing funding cycle:
 - Bid-ask spreads \uparrow 10% \implies funding illiquidity \downarrow 36%.
- TED spread > 48bp $\stackrel{?}{\Longrightarrow}$ destabilizing funding cycle:
 - Bid-ask spreads $\uparrow 10\% \stackrel{?}{\Longrightarrow}$ funding illiquidity $\uparrow 16\%$?
 - Coefficient sign implies so, but magnitude insignificant.
- Handling endogeneity: crucial to analyzing funding cycles.

Related Literature

- Theory: Funding Liquidity ← Market Liquidity
 - Sophisticated investors/arbitrageurs supply market liquidity.
 - Must finance positions, usu. by collateralized lending.
 - Pay loan fees/margins, budget constrained in crises.
 - So expect to see two regimes of liquidity provision.
 - Gromb and Vayanos (2002, 2010)
 - Brunnermeier and Pedersen (2009)
- Empirical Studies
 - ullet Funding Liquidity \Longrightarrow Market Liquidity
 - Mitchel, Pedersen and Pulvino (2009);
 - Comerton-Forde et al. (2010)
 - - Drehmann and Nikolaou (2010)
 - Does not account for endogeneity, two regimes.

Theory of Market, Funding Liquidity Interaction

Theory for market and funding liquidity interactions:

- Cost of collateralized borrowing: increases w/asset volatility.
- Drop in market liquidity may increase borrowing costs
 - Financiers don't know fundamental value of assets, and
 - Worry about lower liquidity of collateral, increase loan fees.
 - Budget constraint binds, unwinding positions moves prices
 - ullet Prices further from fundamentals, market liquidity \downarrow
 - Destabilizing Funding Cycle
- Drop in market liquidity may decrease borrowing costs
 - Financiers believe prices will return to fundamental value,
 - ullet \Longrightarrow arb positions more profitable, decrease loan fees
 - Budget constraint relaxes, positions grow moving prices
 - Prices move closer to fundamentals, market liquidity ↑
 - Stabilizing Funding Cycle
- ullet Destabilizing funding \Longrightarrow flight-to-quality.

Funding Liquidity: Equity-Collateralized Loans

- Best measure of collateralized funding: repo rates.
- Unfortunately, we could not find good repo rates source.
- However, believe stock loan data is a good proxy:
 - Traders borrow stock (usu for shorting) via stock loans.
 - Fees increase when more demand to borrow.
 - Lender also holds back haircut of deposited cash.
 - Haircut, fees rise when stock more likely to decline.
 - Thus haircut, fees proxy for perceived collateral quality.
- Loan fee data available; haircut data not (but correlated).

Stock Loan Fees

- Consider demand for borrowing stock (usually: to short)
 - Curve shift out/in \implies more/less capital betting on price fall
- Cohen, Diether, and Malloy (2007) studied stock loan fees.
 - Isolated outward shifts of stock loan demand curves
 - Significant negative abnormal next-month returns
 - Stock loans reveal private information about stock
- Demand curve shifts in/out: stock is worse/better collateral.
- Use daily S&P 500 stock loan data, 200607–201105⁴:
 - Volume-Weighted Average stock loan Fee (VWAF)
 - Total Balance Quantities (TBQ) = qty of stock on loan
 - # loan transactions: stock i, day t (Trades_{it})

⁴We thank Data Explorers for these data.

Funding Illiquidity: Average Stock Loan Fees

• Isolate shifts in stock loan (shorting) demand curve:

$$\mathbb{1}_{DS,it} = \begin{cases} 1 & \Delta VWAF_{i,t} > 0 \cap \Delta TBQ_{i,t} > 0; \\ 1 & \Delta VWAF_{i,t} < 0 \cap \Delta TBQ_{i,t} < 0; \\ 0 & \text{else.} \end{cases}$$
 (1)

Measure of funding illiquidity, fundilliq_t:

$$fundilliq_t = \log \left(\frac{\sum_{i=1}^{N} Trades_{it} \times VWAF_{it} \times \mathbb{1}_{DS,it}}{\sum_{i=1}^{N} Trades_{it} \times \mathbb{1}_{DS,it}} \right). \quad (2)$$

Funding Illiquidity: Plot

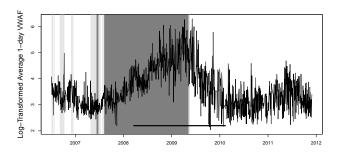


Figure: Log(Trade-Weighted Average Fee on S&P 500 Stock Loans). Light gray: $ted_t >$ 50bp; dark gray: $ted_t >$ 80bp; black bar: PDCF (03/2008–02/2010)

Market Illiquidity: Bid-Ask Spreads

- Market illiquidity: Mean % bid-ask spreads of S&P 500 stocks
- N.B. From CBOE calculation, changed in late-May 2011.⁵
- Take logarithm to reduce influence of skewness

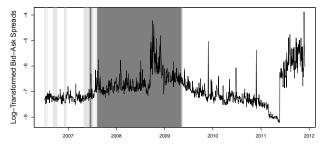


Figure: Log(Bid-Ask Spread for S&P 500 Stocks). Light gray:

 $ted_t >$ 50bp; dark gray: $ted_t >$ 80bp

⁵This change limits our ability to extend the study.

Volatility

• Market volatility proxy: CBOE Implied Volatility Index (VIX)

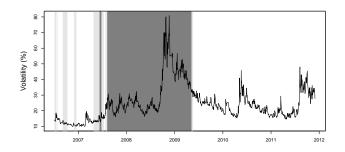


Figure: CBOE Implied Volatility Index. Light gray: $ted_t >$ 50bp; dark

gray: $ted_t > 80bp$

TED Spread

- TED Spread: <u>Treasury vs EuroDollar Deposits</u>
- Spread between LIBOR and 3M US T-bill rates
- Used to separate stabilizing, destabilizing funding regimes

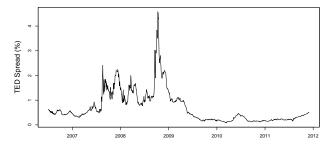


Figure: TED Spread. lower dashed line: $ted_t > 50$ bp; upper dashed line:

 $ted_t > 80bp$

Instruments

- Inter-trade duration trend: driven by exogenous tech shocks
 - Trade activity ⇒ mkt liquidity (George and Longstaff, 1993)
- ② AAA liquidity: $aaaliq = \Delta y_{AAA} \Delta LIBOR$

 - Change in AAA yields due to bond (il)liquidity
 - Exogenous to credit risk which affects stock loan fees
- Substitution of the state of

Instrument: Inter-trade Duration Trend

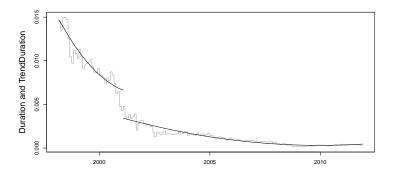


Figure: Inter-trade Duration Trend for US stocks (in years). Gray line: inter-trade duration; black line: trend pre-/post-NYSE decimalization in Jan 2001

Instrument: AAA Liquidity

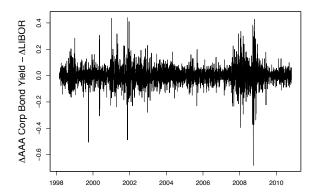


Figure: Difference b/w Δ Yields(1Y AAA Corporates), Δ LIBOR: Mar 1998–Dec 2011

Two-Regime Specification

- Allow for regime change if credit spread crosses threshold κ .
- Define market stress indicator, specify linear threshold model:

$$stress_t(\kappa) = \begin{cases} 1 & ted_t > \kappa \\ 0 & else \end{cases}$$
 (3)

$$\begin{aligned} \textit{fundilliq}_t &= \beta_0 + \beta_1 \textit{mktilliq}_t + \beta_2 \textit{vol}_t + \beta_3 \textit{volsq}_t \\ &+ \beta_4 \textit{ted}_t + \beta_5 \textit{stressmktilliq}_t + \beta_6 \textit{stressvol}_t \\ &+ \beta_7 \textit{stressted}_t + \varepsilon_t \end{aligned} \tag{4}$$

where *stress* variables have interaction with $stress_t(\kappa)$.

- Estimation via Hansen (2000), Caner and Hansen (2004).
- For threshold $\hat{\kappa}$, estimate other coefficients by 2SLS.

First-Stage Regressions

- First-stage regressions for linear, two-regime IV.
- *durtrend*: less trading = less liquid, less volatile markets.
 - Agrees with George and Longstaff (1993).
 - Except ted > 48bp: less trading increases mkt liquidity.
 - Perhaps reduces panic trading?
- aaaliq: bond illiquidity $\uparrow \implies$ equity illiquidity \downarrow .
 - Agrees w/Chordia, Sarkar, Subrahmanyam (2005).
 - However, less effect when ted > 48bp.
- F-tests indicate relevance of instruments at 99% level

Estimation

Second-Stage Regressions

	Linear Model		Two-Regime Model	
Covariates	OLS	IV	OLS	IV
(intercept)	4.732	8.399	2.594	-26.327
	(0.516)	(2.746)	(0.665)	(18.332)
$mktilliq_t$	0.323	0.790	0.014	-3.612
	(0.065)	(0.348)	(0.082)	(2.283)
vol_t	6.263	4.953	5.192	13.093
	(0.655)	(1.290)	(0.652)	(7.240)
$volsq_t$	-4.550	-3.627	-8.303	-6.818
	(0.894)	(1.206)	(0.924)	(6.712)
ted_t	0.012	-0.174	0.717	3.965
	(0.042)	(0.134)	(0.292)	(1.962)
$stress_t$			2.466	40.553
			(0.977)	(13.222)
$stressmktilliq_t$			0.382	5.210
			(0.124)	(1.685)
$stressvol_t$			4.824	-6.267
			(0.649)	(4.853)
$stressted_t$			-1.055	-4.599
			(0.296)	(1.617)
Threshold κ			0.43	0.48
			[0.42, 0.44]	[0.44, 0.49]

Table: Funding Illiquidity vs Market Illiquidity, Volatility, etc.

Second-Stage Regression Results: Commentary

- Relationship b/w funding, market liquidity has two regimes:
 - **1** Stable markets ($ted \le 48$ bp): significant at 90% level.
 - Bid-ask spreads \uparrow 10% \Longrightarrow funding illiquidity \downarrow 36%.
 - ullet \Longrightarrow stabilizing funding cycle.
 - ② Unstable markets (ted > 48bp): not significant
 - Bid-ask spreads \uparrow 10% $\stackrel{?}{\Longrightarrow}$ funding illiquidity \uparrow 16%.
 - Weak evidence of destabilizing funding cycle.
- ullet Volatility $\uparrow \implies$ funding illiquidity \uparrow . (stronger in peacetime)
- Results are likely stronger: IV 2SLS inflates std errors.
- Naive approaches miss liquidity, volatility significance.
 - Signs off, magnitudes much smaller.

Robustness Check: Stock Loan Data

- A couple of robustness checks: are results fragile?
- First check: Look at all, weighted stock loan data 1.
 - Do not just look at shifts in the demand curve; and,
 - Weight average fees by loan sizes, not by # loans.
 - These changes expose us to more noise, outliers.
- Find significant threshold of 47 bp (vs 48 bp).
- Signs correct for *mktilliq* effect but not significant.

Robustness Check: Another Funding Measure

- Second check: another funding measure (Broker Call Rate).
- Charged by commercial banks to broker-dealers.
 - Rate is charged on short-term margin loans
 - Problem #1: rate is rarely-changing spread over Fed Funds.
 - Problem #2: No information on volume transacted.
- Consider this rate vs 3M US T-bills.
- Find two regimes, TED spread threshold of 77 bp:
 - ted < 77bp: market illiquidity $\uparrow 10\% \implies fundilliq \downarrow 3\%$ \implies stabilizing funding cycle
 - ted ≥ 77bp: stabilizing cycle is weakened.
 ⇒ no destabilizing relationship
- Sensible: don't expect policy-makers to destabilize market.
- Homework: Tell me if measure is useful/informative.

Conclusion

- Introduce stock-loan proxy for equity-collateralized funding.
- Use a two-regime 2SLS estimation to reveal:
 - Relationship b/w funding, market liquidity has two regimes.
 - May separate regimes using a TED-spread threshold
- Stable markets ($ted \le 48$ bp):
 - Funding liquidity based on volatility; and,
 - Bid-ask spread $\uparrow 10\% \implies$ funding illiquidity $\downarrow 36\%$.
 - Stabilizing funding cycle arises.
- Unstable markets (ted > 48bp):
 - Bid-ask spread $\uparrow 10\% \stackrel{?}{\Longrightarrow}$ funding illiquidity $\uparrow 16\%$.
 - Destabilizing funding cycle arises?
- Naive estimation cannot detect these funding, volatility cycles.
- Two regimes may exist in other funding measures.

